
 
 

 

  

Abstract—To deal with the disadvantages of Group Search 
Optimizer (GSO) as slow convergence, easy entrapment in local 
optima and failure to use history information, a Self-adaptive 
Group Search Optimizer with Elitist strategy (SEGSO) is 
proposed in this paper. To maintain the group diversity, 
SEGSO employs a self-adaptive role assignment strategy, which 
determines whether a member is a scrounger or a ranger based 
on ConK consecutive iterations of the producer. On the other 
hand, scroungers are updated with elitist strategy based on 
simulated annealing by using history information to improve 
convergence and guarantee SEGSO to remain global search. 
Experimental results demonstrate that SEGSO outperform 
particle swarm optimizer and original GSO in convergence rate 
and escaping from local optima. 

Keywords—group search optimizer; simulated annealing; 
elitist strategy; role assignment 

I. INTRODUCTION 
Evolutionary Algorithms (EAs) are popular in recent years 

for its easy implementation and its ability to efficiently solve a 
lot of complex problems which are difficult to deal with 
traditional optimization algorithms [1]. Inspired by animal 
searching behavior and group living theory, a new 
optimization approach named as Group Search Optimizer 
(GSO) is proposed by He S, Wu Q H and Saunders J R in 2006 
[2]. The population of GSO is called a group and each 
individual in the population is called a member. In GSO, 
members are classified as a producer, scroungers and rangers. 
Producer is responsible for finding food and is the best 
member in the group. The framework of GSO is mainly based 
on the producer–scrounger (PS) model where scroungers join 
producers to find food while rangers perform random walk 
motions to avoid entrapments. Comparing with ACO and 
PSO, GSO emphasizes more on imitating searching behavior 
of animals. In original GSO algorithm, about 80% individuals 
are chosen as scroungers, and the producer is the one and only 
destination of them. In contrast with other EAs, GSO is 
conceptually simple and easy to be implemented. Original 
GSO and some improved GSO are proved to be an efficient 
method for solving function optimization problems [3].  

However, GSO has the disadvantages as slow 
convergence, easy entrapment in local optima and failure to 
use history information. To deal with these disadvantages of 
GSO, a Self-adaptive Group Search Optimizer with Elitist 
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strategy (SEGSO) is proposed in this paper. First, SEGSO 
employs a self-adaptive role assignment strategy to determine 
whether a member is a scrounger or a ranger based on ConK 
consecutive iterations of the producer. This dynamic role 
change will maintain group diversity. Second, scroungers are 
updated with elitist strategy based on Simulated Annealing 
(SA) by using history information to improve convergence 
and guarantee SEGSO to remain global search. At last, 
experimental results demonstrate that SEGSO outperform 
particle swarm optimizer and original GSO in convergence 
rate and escaping from local optima. 

The rest of this paper is organized as follows. Section II 
briefly reviews related work of GSO and Section III describes 
the proposed SEGSO algorithm in our study. Section IV 
presents experimental results and discussion. Section V 
concludes the paper and points out future work. 

II. RELATED WORK 
To deal with the disadvantages of GSO, some improved 

GSOs are proposed and then applied to some practical 
application problems.  

Firstly, some improved GSOs incorporated other EAs’ 
operators. D Chen, J Wang and et al proposed an improved 
GSO optimizer with quantum-behaved operator for 
scroungers to escape from local optima [4]. The scroungers 
are divided into two parts, the scroungers in the first part 
update their positions with the operators of QPSO to improve 
diversity of population, and the remainders keep searching for 
opportunities to join the resources found by the producer. Q 
Kang, T Lan, Y Yan and et al proposed an improved group 
search optimizer (iGSO) by incorporating particle swarm 
optimization for optimal setting of distributed generations [5].  

Secondly, some improved GSOs modified GSO structure. 
M Junaed, M Akhand and K Murase studied model of multiple 
producers in nature and extended GSO with multiple 
producers [6]. M Moradi-Dalvand, B Mohammadi-Ivatloo, 
and et al proposed a continuous version of quick group search 
optimizer (QGSO) [7] and is applied for solution of 
non-convex and large scale economic dispatch problems. 
Based on cooperative evolutionary mechanism and 
divide-and-conquer paradigm, L Pacifico and T Ludermir 
designed a Cooperative Group Search Optimizer (CGSO) [8], 
which improves the performance of standard GSO. 
Experiments on some benchmark functions show that CGSO 
is able to achieve better results than standard GSO in most of 
the tested problems. 
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At last, some improved GSOs were employed to practical 
applications. L Wang, X Zhong and M Liu applied group 
search optimizer to solve multi-objective optimization 
problems [9]. The scanning strategy of the original GSO is 
replaced by the limited pattern search procedure and a special 
mutation is designed to balance the exploration and 
exploitation. In addition, the non-dominated sorting scheme 
and multiple producers are used in the algorithm. S He, Q Wu 
and J Saunders applied a group search optimizer (GSO) to 
train a three-layer feed-forward artificial neural network used 
for diagnosis of breast cancer [10], including connection 
weights and bias. The comparison experiments show that GSO 
for artificial neural network has a better convergence rate and 
generalization performances for the breast cancer diagnosis 
problem. 

In summary, these improved and extended GSOs 
overcame the disadvantages of GSO in certain degree. 
However, GSO still has the disadvantages as slow 
convergence, easy entrapment in local optima and failure to 
use history information, therefore, this paper presents a new 
SEGSO to enhance its capability for search and optimization. 

III. A SELF-ADAPTIVE GROUP SEARCH OPTIMIZER WITH 
ELITIST STRATEGY  

A. Self-adaptive role assignment 
As mentioned above, the members in GSO group are 

classified as a producer, scroungers and rangers. This 
classification is similar to multi-population algorithms where 
the individuals of a sub-population can migrate from one 
subpopulation to another. However, when to migrate 
individuals and how many individuals should be migrated are 
two key issues in multi-population algorithms.  

By referring efficiency population utilization strategy for 
particle swarm optimizer (EPUS-PSO) [11], a self-adaptive 
role assignment method, namely how to determine whether a 
member belongs to scroungers or rangers, is designed to 
improve the convergence rate and accuracy of original GSO. 
The dynamic assignment model of scroungers and rangers 
defined in our study is different from the original GSO. At the 
initial stage, after selecting a producer, scroungers are the top 
80% members wth best fitness value and the remainders are 
rangers. With evolution progress, scrounger and rangers are 
interchanged according to optimization status. By borrowing 
idea from EPUS-PSO, a group manager is introduced to 
SEGSO to enhance its searching ability. The group manager 
will increase or decrease numbers of scroungers according to 
the producer status. The numbers of scroungers and rangers 
are updated according to the following rules. 

(1) If the producer has not been updated in ConK 
consecutive iterations, and if the current number of 
the scroungers doesn’t exceed the predefined 
number, a ranger will be designated as a scrounger. 
Here the random selection is employed to designate 
a ranger to be a scrounger. 

(2) If the producer is not updated within [round(ConK 
/2), ConK] consecutive iterations, and if the current 
number of the ranger doesn’t exceed the predefined 
number, a scrounger will be designated as a ranger 
and is updated according to the motion rule. Here 

the roulette wheel selection is employed to 
designate a worse scrounger to be a ranger. 

(3) Otherwise, the numbers of scroungers and rangers 
are not changed. 

Figure 1 is the variation of scrounger number and 
unchanged iteration of the producer based on dynamic 
self-adaptive role assignment. Here, ConK=6, group size=75. 

 
Fig. 1. the variation of scrounger number and unchanged iteration of the 
producer 

 

B. Scrounger update with elitist strategy based on SA 
In original GSO, once a producer is determined, 

scroungers will be randomly selected according to predefined 
ratio. However, scroungers may walk to a bad position and 
this will slow the convergence rate. Therefore SEGSO 
introduces elitist strategy to save the local optimal positions. 
Sometimes, the convergence rate is improved but the 
algorithms may be trapped in local optima. In our study, the 
idea of SA is employed to construct the elitist strategy of 
scrounger. SA was selected based on the following 
considerations. On the one hand, SA is a global search 
algorithm and is theoretically proved effective. On the other 
hand, SA is simple and successfully applied in many fields. At 
(k+1)th iteration, the behavior of ith scrounger ௜ܺ௞ାଵ  is 
modeled and updated as the following.  

௜ܺ௞ାଵ = ௜ܺ௞+ݎଷ。( ܺ௣௞ െ  ௜ܺ௞) 
If ݂൫ ௜ܺ௞ାଵ൯ ൏ ݂൫ ௜ܺ௞൯  
Then the scrounger moves to ௜ܺ௞ାଵ  
Else If r1<pk+1 

Then the scrounger moves to ௜ܺ௞ାଵ  
Else the scrounger don’t move i.e. ௜ܺ௞ାଵ = ௜ܺ௞ 
End 

End 
Where r1, r3 is random between (0,1); f(x) is the fitness 

function;  pk+1 is the annealing rate and pk+1  is defined in (10). ݌௞ାଵ ൌ A ୩Mୟ୶୧୲ୣ୰ୟ୲୧୭୬                                  (10) 
Maxiteration is the maximum iteration time of the 

algorithm. A is the annealing constant. 

The benefits of our strategy are as follows. At the 
beginning, a scrounger joins the producer and retains its 
optimal position found by then because the initial search range 
is big and the search behavior is blind. With the progress of the 
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search, some local optima or global optima are found, the 
producer will retain the search result and scroungers are 
inspired to search more available positions. 

C. Algorithm description 
The proposed SEGSO algorithm is described as follows. 

 
Define and initialize algorithm parameters; 
Randomly initialize positions and head angles of all members; 
For i = 1 : MaxIteration  

Calculate the current fitness values of all members; 
Sort the members according to their fitness values in ascending 

order (for minimum); 
Select a producer, namely the member with best fittness value; 
Calculate the unchangediter of the producer; 
If unchangediter > ConK and scroungernumber <= 
predefinedscroungernumber 

Randomly select a ranger and change it as a scrounger; 
Elseif unchangediter >= round(ConK/2) and unchangediter < ConK  

and srangernumber <= predefinedsrangernumber 
Employ roulette wheel selection to select a scrounger and  
designate it as a ranger; 

End 
End 
Update scroungers with elitist strategy based on SA; 
Update rangers; 
Adjust feasible bound; 

End 
Output the results 

IV. SIMULATION EXPERIMENTS 

A. Benchmark functions 
In order to verify effectiveness of the proposed SEGSO, 

thirteen benchmark functions were used as listed in Table I 
which had local optima in their search spaces. The first seven 
functions, namely f01 to f07, are unimodal functions while the 
others are multimodal functions [3]. 

 

TABLE I BENCHMARK FUNCTIONS 

No. Benchmark Functions D S 

f01 f଴ଵሺxሻ ൌ ෍ x୧ଶ୬୧ୀଵ  30 [-100,100] 

f02 f଴ଶሺxሻ ൌ ෍ |x୧| ൅ ෑ |x୧|୬୧ୀଵ୬୧ୀଵ  30 [-10,10] 

f03 f଴ଷሺxሻ ൌ ෍ ሺ෍ x୨୧୨ୀଵ ሻଶ୬୧ୀଵ  30 [-100,100] 

f04 f଴ସሺxሻ ൌ max୧ሼ|x୧, 1 ൑ i ൑ n|ሽ 30 [-100,100] 

f05 f଴ହሺxሻ ൌ ෍ ሺ100ሺx୧ିଵ െ x୧ଶሻଶ ൅ ሺx୧ െ 1ሻሻଶ୬ିଵ୧ୀଵ  30 [-30,30] 

f06 f଴଺ሺxሻ ൌ ෍ ሺہx୧ ൅ ሻଶ୬୧ୀଵۂ0.5  30 [-100,100] 

f07 f଴଻ሺxሻ ൌ ෍ ix୧ସ ൅ randomሾ0,1ሻ୬୧ୀଵ  30 [-1.28,1.28] 

f08 f଴଼ሺxሻ ൌ െ ෍ ሺx୧sinሺඥ|x୧|ሻሻ୬୧ୀଵ  30 [-500,500] 

f09 f଴ଽሺxሻ ൌ െ ෍ ሺx୧ଶ െ 10cosሺ2πx୧ሻ ൅ 10ሻଶ୬୧ୀଵ  30 [-5.12,5.12] 

f10 fଵ଴ሺxሻ ൌ െ20expሺെ0.2ටቀଵ୬ ∑ x୧ଶ୬୧ୀଵ ቁሻ െ expሺଵ୬ ∑ cos2πx୧୬୧ୀଵ ) 30 [-32,32] 

f11 fଵଵሺxሻ ൌ 14000 ෍ ሺx୧ െ 100ሻଶ െ ෑ cosሺx୧ െ 100√i ሻ୬୧ୀଵଷ଴୧ୀଵ ൅ 1 30 [-600,600] 

f12 

fଵଶሺxሻ ൌ πn ൜10sinଶሺπyଵሻ൅ ෍ ሺy୧ െ 1ሻଶଶଽ୧ୀଵ ሾ1 ൅ 10sinଶሺπy୧ାଵሻሿ൅ ሺy୬ െ 1ሻଶൠ ൅ ෍ uሺx୧, 10,100,4ሻଷ଴୧ୀଵ  y୧ ൌ 1 ൅ 14 ሺxଵ ൅ 1ሻ uሺxi, a, k, mሻ ൌ ൝ kሺx୧ െ aሻ୫, x୧ ൐ ܽ0, െa ൑ x୧ ൑ akሺെx୧ െ aሻ୫, x୧ ൏ െܽ 

30 [-50,50] 
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f13 

fଵଷሺxሻ ൌ 0.1 ൜sinଶሺπ3xଵ ൅ ෍ ሺx୧ െ 1ሻଶሾ1 ൅ sinଶሺ3πx୧ାଵሻሿଶଽ୧ୀଵ൅ ሺx୬ െ 1ሻଶሾ1 ൅ sinଶሺ2πxଷ଴ሻሿൠ൅ ෍ uሺx୧, 5,100,4ሻଷ଴୧ୀଵ  

30 [-50,50] 

 

B. Simulation platform and setting 
Original GSO and PSO are selected as comparative 

algorithms in the following experiments. All the algorithm 
codes were written and executed in MATLAB 2008Ra in our 
study. Some codes in Matlab were downloaded from the 
authors’ homepages. The experiments were carried out on a 
PC with an i5 3.2 GHz Intel Processor and 4.0 GB RAM. The 
operating system is Microsoft Windows 7.  

The function evaluation times (FEs) for all the algorithms 
are the same. Here, for f03 and f09, the FEs are 250000 and for 
the others, the FEs are 150000 respectively.  

For PSO, experimental parameters are given as follows. 

 Population size: 75 or 125(for f03 and f09) 

 Maxiteration: 2000 

 c1, c2: 2 

 ω: 1.0~0.4 

 End times of ω: Maxiteration/2 

 Mutation probability: 0.1 

 Running times for each benchmark function: 50 

For GSO and SEGSO, experimental parameters are given 
as follows. 

 Group size: 75 or 125(for f03 and f09) 

 Maxiteration: 2000 

 Initial ratio of Scroungers to Rangers : 4:1 

 Initial angle: ߨ 4ൗ  

 Max pursuit angle: ߨ උ√ܦ ൅ 1ඏൗ  

 Max turning angle: Max pursuit angle/2 

 ConK: 6 (only for SEGSO, ConK can be tuned 
according the benchmark functions) 

 Running times for each benchmark function: 50 

C. Experimental results and discussion 
The experimental results on 13 benchmark functions are 

presented in Table II and Figure 2~14. The rank values were 
calculated based on the mean value of selected algorithms. 

It was found that the SEGSO has a better performance 
compared with original GSO and PSO in terms of accuracy 
and convergence speed. For unimodal functions (f01 to f07), 
experimental results show the better explorative ability of 
SEGSO. According to the ranks, SEGSO outperformed PSO 
and GSO on most benchmarks.  For multimodal functions (f08 
to f13), SEGSO demonstrates its strong ability in escaping from 
local optima. However, for f05, SEGSO doesn’t have good 
performance. 

 

 

TABLE II STATISTIC RESULTS FOR 13 BENCHMARK FUNCTIONS 

Benchmark Algorithm Mean Std Best Worst Median  Rank 

f01 

PSO 2.1436e-002 3.1569e-002 6.0356e-004 1.3842e-001 9.0447e-003 3 

GSO 1.6006e-009 3.1332e-009 6.1693e-011 1.9639e-008 5.2713e-010 2 
SEGSO 1.4666e-010 1.9461e-010 8.4766e-012 8.6182e-010 8.2305e-011 1 

f02 
PSO 3.1342e-002 2.1054e-002 3.4528e-003 1.0195e-001 3.1808e-002 3 
GSO 9.3213e-006 8.5055e-006 1.7932e-006 4.6436e-005 6.1897e-006 2 

SEGSO 3.5041e-006 3.3735e-006 7.1413e-007 2.0341e-005 2.3744e-006 1 

f03 
PSO 3.9197e+003 3.9189e+003 3.0487e+002 1.6839e+004 1.9128e+003 3 
GSO 1.2313e+001 6.9305e+000 2.6252e+000 3.4459e+001 1.0960e+001 2 

SEGSO 2.8208e+000 2.0924e+000 2.3930e-001 9.7607e+000 2.3269e+000 1 

f04 
PSO 3.3875e+000 8.4892e-001 1.9370e+000 5.2556e+000 3.2230e+000 3 
GSO 5.4923e-002 1.9654e-002 2.1465e-002 1.2235e-001 5.3978e-002 2 

SEGSO 2.8155e-002 1.2606e-002 6.8287e-003 6.4056e-002 2.6930e-002 1 

f05 
PSO 3.1793e+002 7.1733e+002 1.7360e+001 3.0903e+003 1.0674e+002 3 
GSO 4.0689e+001 2.9032e+001 1.5961e+000 9.0766e+001 2.6631e+001 1 

SEGSO 5.2254e+001 3.0211e+001 5.4484e+000 9.6970e+001 7.0649e+001 2 

f06 
PSO 1.6000e-001 5.0950e-001 0 3.0000e+000 0 3 
GSO 2.0000e-002 1.4142e-001 0 1.0000e+000 0 2 

SEGSO 0 0 0 0 0 1 
f07 PSO 2.3811e-002 9.0801e-003 1.2232e-002 5.4011e-002 2.0028e-002 2 
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GSO 4.2654e-002 2.2598e-002 7.4748e-003 9.7094e-002 3.7339e-002 3 
SEGSO 1.7714e-002 9.3533e-003 4.3225e-003 4.6161e-002 1.6536e-002 1 

f08 
PSO -1.1369e+004 3.8375e+002 -1.2331e+004 -1.0543e+004 -1.1367e+004 3 
GSO -1.2569e+004 2.7258e-002 -1.2569e+004 -1.2569e+004 -1.2569e+004 1 

SEGSO -1.2561e+004 3.7918e-003 -1.2561e+004 -1.2569e+004 -1.2569e+004 2 

f09 
PSO 1.2053e+002 5.6978e+001 4.1632e+001 3.0055e+002 1.0988e+002 3 
GSO 1.6435e+000 1.3207e+000 1.6088e-018 5.9408e+000 1.4851e+000 2 

SEGSO 5.3457e-001 6.0696e-001 4.2783e-018 1.9799e+000 2.0495e-008 1 

f10 
PSO 8.3420e-001 3.9389e+000 6.6982e-003 1.9941e+001 3.0045e-002 3 
GSO 6.2292e-006 4.0929e-006 1.5045e-006 2.0800e-005 5.1193e-006 2 

SEGSO 3.9064e-006 5.0246e-006 8.8179e-007 2.8644e-005 2.5856e-006 1 

f11 
PSO 9.3817e-002 1.1698e-001 2.1020e-004 5.8898e-001 4.5348e-002 3 
GSO 2.6621e-002 2.9299e-002 4.7978e-011 1.3977e-001 2.3365e-002 2 

SEGSO 2.2775e-002 2.8085e-002 8.1196e-011 1.3699e-001 1.2321e-002 1 

f12 
PSO 6.1239e-004 2.4898e-003 2.2953e-007 1.7424e-002 1.2008e-004 3 
GSO 2.2822e-012 3.7439e-012 5.5319e-014 1.8088e-011 9.9018e-013 2 

SEGSO 6.1510e-013 2.4722e-012 1.0988e-014 1.7586e-011 1.6164e-013 1 

f13 
PSO 5.7231e-003 7.9886e-003 2.6358e-005 3.3631e-002 2.3278e-003 3 
GSO 2.5332e-010 1.5534e-009 1.2818e-012  1.1012e-008 1.5916e-011 2 

SEGSO 6.9578e-012 1.0514e-011 4.1858e-013 5.1822e-011  3.0661e-012 1 
 

 
Fig. 2. the average fitness of f01 

 

 
Fig. 3. the average fitness of f02 

 

 
Fig. 4. the average fitness of f03 

 

 
Fig. 5. the average fitness of f04 
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Fig. 6. the average fitness of f05 

 

 
Fig. 7. the average fitness of f06 

 

 
Fig. 8. the average fitness of f07 

 

 
Fig. 9. the average fitness of f08 

 

 
Fig. 10. the average fitness of f09 

 

 
Fig. 11. the average fitness of f10 
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Fig. 12. the average fitness of f11 

 

 
Fig. 13. the average fitness of f12 

 

 
Fig. 14. the average fitness of f13 

V. CONCLUSION AND FUTURE WORK 
This paper presents a self-adaptive group search optimizer 

with elitist strategy to deal with the disadvantages of GSO. 
Based on ConK consecutive iterations of the producer, 
SEGSO employs a self-adaptive role assignment strategy to 
determine whether a member is a scrounger or a ranger to 
maintain group diversity. Scroungers are updated with elitist 
strategy based on SA by using history information to improve 
convergence and guarantee SEGSO to remain global search. 
Experimental results demonstrate the effectiveness of 

SEGSO. However, improvement of SEGSO to GSO is still 
limited and some parameters have to be determined on our 
experiences. In the future, new dynamic role assignment 
strategy and search methods will be elaborated to suit GSO 
and applied to more fields. 
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