
A Novel Differential Evolution (DE) Algorithm
for Multi-objective Optimization

Xin Qiu
NUS Graduate School for

Integrative Sciences and Engineering
National University of Singapore

119077, Singapore
Email: qiuxin@nus.edu.sg

Jianxin Xu
Department of Electrical

and Computer Engineering
National University of Singapore

119077, Singapore
Email: elexujx@nus.edu.sg

Kay Chen Tan
Department of Electrical

and Computer Engineering
National University of Singapore

119077, Singapore
Email: eletankc@nus.edu.sg

Abstract—Convergence speed and parametric sensitivity are
two issues that tend to be neglected when extending Differential
Evolution (DE) for multi-objective optimization. To fill in this
gap, we propose a multi-objective DE variant with an extraor-
dinary mutation strategy and unfixed parameters. Wise tradeoff
between convergence and diversity is achieved via the novel cross-
generation mutation operators. In addition, a dynamic mecha-
nism enables the parameters to evolve continuously during the
optimization process. Empirical results show that the proposed
algorithm is powerful in handling multi-objective problems.

I. INTRODUCTION

Differential Evolution (DE), proposed by Storn and Price
[1], is arguably one of the most powerful evolutionary algo-
rithms for single objective numerical optimization. DE inher-
ently has many advantages over most Evolutionary Algorithms
(EA) [2], and it generally produces good performance in
different types of optimization problems. Due to this success,
its use has been extended into multi-objective optimization
(MO) in recent years.

When a DE operator is employed for multi-objective prob-
lems, the original crossover and mutation strategy of DE need
to be altered as the solution set consists of more than one
solution. Unlike single-objective optimization, the target of
multi-objective optimization problems is to find a set of evenly
distributed solutions in Pareto Front. Thus, two core problems
that have been studied by the researchers who have extended
DE into MO are diversity maintenance and survival selection
criterion. Based on these two design aspects, some non-Pareto-
based approaches and Pareto-based approaches have been
proposed.

Chang et al. [3] constitute the first systematical attempt to
extend DE in MO. In their paper, DE/rand/1/bin is utilized
with a Pareto optimal set, which is an external archive to store
the non-dominated solutions during the search process. Fitness
sharing is also incorporated into their approach in order to
maintain the diversity of the whole population. Babu and Jehan
[4] proposed the Differential Evolution for Multi-Objective
Optimization approach. One objective function is incorporated
as an additional constraint in their algorithm, and an aggrega-
tion function is utilized. Li and Zhang [5] figured out an MO
Differential Evolution based on decomposition for continuous

MO problems with variable linkages. Kukkonen and Lampinen
[6] [7] modified basic DE algorithm for MO problems,
and named the framework Generalized Differential Evolution
(GDE). The survival selection between the parent and the
offspring is based on the Pareto Dominance and the constraints
of the problems are also handled with Pareto Dominance in the
constraint space. In their later work [8] [9], two new versions
of GDE were proposed to achieve a better diversity of the final
population and to overcome the slow converging speed. Other
MO-DEs where Pareto Dominance works as the criterion for
survival selection include [10] [11] [12] [13]. Another branch
of the Pareto-based algorithms encompass approaches that
introduce a Pareto ranking procedure into DE. Representative
methods include Pareto-Based Differential Evolution (PBDE)
algorithm [14], Nondominated Sorting Differential Evolution
(NSDE) [15] and Differential Evolution for Multi-Objective
Optimization (DEMO) [16]. In these algorithms, a (µ + λ)-
selection is implemented after a set of trial vectors have
been generated from the current population. One of the more
recent works that gave an outstanding performance should be
the MOEA/D-DE and NSGA-II-DE proposed in [17]. In that
paper, a neighborhood selection mechanism is utilized to help
enhance the diversity maintenance ability of MOEA/D-DE,
which outperforms NSGA-II-DE in most benchmark problems
with complicated Pareto sets.

Based on the above review, most existing works on MO-
DE focus on designing a diversity maintenance mechanism
and / or a survival selection procedure. However, there are
still several other problems remaining while extending DE
into multi-objective optimization: 1. The performance of DE is
sensitive to parametric setting, which would be a thorny issue
when multiple problems need to be handled simultaneously.
2. While much effort has been paid to maintain the diversity
of the population, a satisfactory converging speed cannot be
guaranteed. 3. During applications, different multi-objective
optimization frameworks may be needed depending on the
nature of the problem. However, most existing MO-DEs
are inconvenient to implement on different MO frameworks
because they already define the whole evolutionary process
instead of only providing a way to reproduce offspring.

To address the above issues, this paper presents a new

2391

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

multi-objective Differential Evolution algorithm with a novel
mutation strategy, namely Cross-Generation mutation and a
dynamic parametric tuning mechanism (CGDE). The proposed
DE variant utilizes the information between different genera-
tions to help predict the correct searching direction for each so-
lution so that not only the converging speed could be increased
but also the diversity of the whole population is enhanced.
Meanwhile, the dynamic parameters of the proposed algorithm
would be tuned automatically during the optimization process
similar to an evolving variable. Moreover, CGDE is portable,
and can be easily implemented onto different MO frameworks.
The experimental results demonstrate that CGDE is powerful
in handling Multi-objective Optimization Problems (MOPs).

The remainder of this paper is organized as follows. Section
II gives a brief introduction about the structure of basic DE.
Section III provides the detailed algorithmic description of the
proposed approach. Section IV studies the performance of the
algorithm on benchmark problems with comparison to several
state-of-the-art MOEAs. Finally, Section V concludes this
paper and highlights some potential future research directions.

II. CLASSICAL DE ALGORITHM

A. Initialization

The first step of DE is the initialization of the pop-
ulation of NP and D over the search space, where
NP denotes the population size and D denotes the vari-
able dimensions. Now we symbolize each individual by
Xi,g = [x1i,g, x

2
i,g, . . . , x

D
i,g], where i = 1, 2, . . . , NP, g =

0, 1, . . . , Gmax and Gmax denotes the maximum number of
generations. Also, let us define the lower search bound as
Xmin = [x1min, x

2
min, . . . , x

D
min] and the upper search bound

as Xmax = [x1max, x
2
max, . . . , x

D
max]. Then, the initial value

of the ith individual is generated as below:

xji,0 = xjmin + rand(0, 1) · (xjmax − x
j
min), j = 1, 2, 3, . . . , D

(1)

B. Mutation

In this step, each individual will generate a new individual,
called the mutant vector vi,g . The most frequently used muta-
tion strategies are listed below:
1) ”DE/rand/1”

vi,g = xr1,g + F · (xr2,g − xr3,g) (2)

2) ”DE/best/1”

vi,g = xbest,g + F · (xr1,g − xr2,g) (3)

3) ”DE/current-to-best/1”

vi,g = xi,g + F · (xbest,g − xi,g) + F · (xr1,g − xr2,g) (4)

where xbest,g denotes the individual with the best fitness value
in current generation. The indices r1, r2, r3 are randomly
selected integers from [1, 2, 3, . . . , NP] that are distinct from
i and mutually different. F ∈ [0, 1] is a real parameter, called
the scaling factor.

C. Crossover

After mutation, crossover operation is employed to generate
the trial vectors. During the crossover, the mutant vectors
are recombined with the original members of the current
population, called the target vectors, to form the trial vectors.
Two basic crossover schemes of DE are the exponential
recombination and the binomial recombination. Binomial re-
combination is mostly used in DE literature [18].

Binomial recombination is performed on each variable and
it could be outlined as below:

uji,g =

{
vji,g if randi,j [0, 1] ≤ Cr or j = jrand
xji,g otherwise

(5)

where jrand ∈ [1, 2, 3, . . . , D] is a randomly selected index to
ensure that trial vector could get at least one component from
the mutant vector. Cr is called the crossover probability.

D. Selection

Selection is the last step to generate the population of
next generation. The process of selection is to determine
whether the target vector or the trial vector survives to the
next generation according to their fitness value. The selection
operation in DE is described below:

Xi,g+1 =

{
Ui,g if f(Ui,g) ≤ f(Xi,g)
Xi,g if f(Xi,g) < f(Ui,g)

(6)

where f(X) is the fitness function to be minimized.

III. PROPOSED ALGORITHM

A. Cross-Generation Mutation

f2

f1

Pareto Front

Figure 1. This figure shows the different converging directions of each
solution in objective space. The circle line draws the Pareto Optimal Front of
the 2-objective minimization problem. Each dot represents a solution and the
arrows denotes their convergence directions.

1) Converging direction and searching direction: Here,
convergence direction is defined as the direction that ap-
proaches the Pareto Optimal Front given a solution in the
objective space whereas searching direction is referred to the

2392

moving direction of an individual in the decision space. It is
intuitive that the best searching direction of an individual in
decision space should be the mapping of its corresponding
convergence direction in objective space. Thus, it would be
beneficial if the correct converging direction could be ob-
tained during the optimization process. Although the exact
converging direction is unavailable, it is possible to estimate
the convergence direction using the information across gener-
ations. Considering the nature of evolutionary algorithms, the
solutions are getting better and better while the number of
evolving generations increase. The changing of solutions may
provide some hints for estimating the converging directions.
As can be seen in Fig. 1, the converging direction varies for
the solutions from different regions in objective space. To
obtain a reasonable result, estimation of converging direction
should be derived within different regions separately. Defining
neighborhood for each individual is an intuitive way to extract
the information for certain limited area in objective space. In
the following subsections, a simple yet novel way to define
the neighborhood will be discussed.

2) Neighborhood based on subrank: In multi-objective
optimization, one common way to define the neighborhood
of a solution in objective space is to measure the Euclidean
distance between two solutions based on the objective values.
One shortcoming of this method is that for some problems,
the domain of each objective is different, which would make it
biased if the distance is calculated only based on the objective
values. Under these circumstances, normalization is a neces-
sary pre-processing step. Nevertheless, it cannot be guaranteed
that the true domains of each problem are known, especially
in some real life applications. Normalization becomes difficult
without knowledge of true domains. To circumvent this prob-
lem, a new term is defined: subrank, which is similar to the
ranking in [19]. Unlike the rank in non-dominated sorting [20],
subrank is a vector comprising the ranks of an individual in
each objective. For instance, in a 2-objective problem, if the
subrank of one individual is [1, 1], it means this individual
has the best fitness value for both objectives. In the proposed
algorithm, subrank would replace fitness value to measure the
distance between two individuals in objective space. In this
way, normalization could be skipped and the bias caused by
various domains would be eliminated. Similarly, the Euclidean
distance in terms of subrank is calculated between every two
individuals. Subsequently, the neighborhood of each individual
will be decided based on the calculated distance and the pre-
defined neighborhood size N . The N nearest solutions are
marked as the neighborhood of this individual.

3) Neighborhood-based Cross-Generation Mutation: Con-
ventional DE mutation operators only makes use of the
information within the current generation to generate the
mutant vector. However, based on the above discussions, the
information across generations may reveal the trend of how
solutions moved in the searching space, and in turn help to
guide search directions. In order to estimate the converging
directions for different regions in objective space and utilize
the corresponding searching directions to guide the evolution

process, a novel neighborhood-based cross-generation muta-
tion strategy is proposed. The mutant vector is generated
based on the differentiation of two individuals from different
generations.

In the proposed strategy, one individual will generate one
mutant vector, and the individual is called the parent of
this mutant vector. One interesting feature of the proposed
mutation strategy is that the parent itself is not involved in the
mutation process. Instead, the mutant vector is generated from
the two neighborhood pools of the parent. One neighborhood
pool is formed by N individuals selected from the population
of current generation, another consists of N individuals picked
from the population of previous generation. More specifically,
given a parent, first the distance between this parent and all
the other individuals of current generation would be calculated
based on subrank, then the N nearest individuals are marked to
become the neighborhood of this parent in current generation.
Similarly, for the same parent, the distance from it to all
the individuals of previous generation based on subrank is
computed, and the N nearest individuals are recorded as
the parent’s neighborhood of previous generation. With these
two neighborhood pools, the new mutation operation can be
conducted following the formula below:

vi,g = xrn1,g + F · (xrn1,g − xrn2,g−1) (7)

where vi,g denotes the new generated individual, called the
mutant vector, and i is the index of parent, g is the number of
current generation. xrn1,g is an individual randomly selected
from the parent’s neighborhood in current generation, where
index rn1 is a randomly selected integer from [1, 2, 3, . . . , N]
and N is the pre-defined neighborhood size. xrn2,g−1 is an
individual randomly selected from the parent’s neighborhood
in previous generation, where index rn2 is a randomly selected
integer from [1, 2, 3, . . . , N].

The underlying rationale of the designed strategy is that
the movement of the solutions during evolution process may
assist to guide the subsequent search direction. Following the
proposed formula, xrn1,g stays in the current generation while
xrn2,g−1 comes from the previous generation, so taking into
account that both are selected from the neighborhood pools
of the same parent, the difference between them may reveal
the moving trend of the solutions near the parent in objective
space. Since the essence of evolutionary algorithm is to evolve
solutions, the better solutions would have a higher chance to
survive to next generation and the poor individuals will be
discarded. Thus, the moving directions of the solutions may
be close to the true converging directions. Adding the differ-
entiation of xrn1,g and xrn2,g−1 as a perturbation to xrn1,g is
like to make the current solution keep exploring following the
searching direction corresponding to the estimated converging
direction.

4) Population-based variant: One common issue with
neighborhood-based mutation strategies is that the searching
step may become excessively small because of the gradually
converged population. Since the individuals involved in mu-

2393

tation are selected from neighborhood of the same parent,
the differentiation of them should not be too large, which
will make the new generated individual stay near the parent.
If the population come to converge, the explorative ability
of the algorithm would be impaired. To make a reasonable
tradeoff between exploitative ability and explorative ability of
the search, another variant of the cross-generation mutation
based on population would be utilized simultaneously. Below
shows the details of the operation:

vi,g = xi,g + F · (xrp1,g − xrp2,g−1) (8)

where vi,g denotes the new generated mutant vector, and i is
the index of parent, g is the number of current generation. xi,g
is the parent itself. xrp1,g is an individual randomly selected
from the whole population in current generation, where index
rp1 is a randomly selected integer from [1, 2, 3, . . . , NP]
and NP is the population size. xrp2,g−1 is an individual
randomly selected from the whole population of the previous
generation, where index rp2 is a randomly selected integer
from [1, 2, 3, . . . , NP].

Unlike the neighborhood-based variant, the differentiation
part in population-based variant is formed with two individuals
randomly selected from the whole population, which is similar
to the traditional DE mutation strategy. However, because the
two individuals come from two different generations, the scale
of their differentiation may vary larger than the original DE
mutation strategy. In this way, the explorative ability could
be enhanced in some sense. Another special modification of
the population-based variant is that the differentiation would
be added to the parent directly. By this means, the searching
will continue centering on the parent instead of performing
a purely stochastic exploration. This could lead to a more
efficient optimization process.

In the current version of CGDE, the above two variants
are employed in a half-half manner, which means they have
the same probability (50%) to be utilized during each mutation
operation. Simulation results demonstrate that the performance
of the algorithm becomes better than the versions with only
one of them in most testing problems. A final note about the
new mutation strategy is that each individual in the current
generation would be a parent of a mutant vector, and after the
above mutation operation, each mutant vector still needs to go
through a binomial recombination (crossover operation) with
the parent to generate the final offspring.

5) Enhancing both the diversity and convergence: While
designing a multi-objective optimization algorithm, it is diffi-
cult to hasten the convergence speed without loss of diversity
as if they were conflicting to each other. Nonetheless, the un-
derlying mechanism enables the proposed approach to enhance
convergence along with diversity. In the neighborhood-based
variant, the convergence is sped up by guiding the searching
direction with information across generations. Meanwhile, due
to the neighborhood-based selection mode, the final offspring
will stay around the parent in objective space so that the
diversity of the population could be consistently maintained.

Analogously, the parent-centric search in population-based
variant helps preserve the diversity, and the more explorative
mutation operator contributes to a higher converging speed to
true Pareto Front.

B. Dynamic Parameters

1) Parametric Sensitivity in multi-objective optimization:
Sensitivity to the parametric setting is a critical issue during
the extension of DE into multi-objective optimization. The
performance of DE may vary tremendously with different
settings of parameters, especially with the scaling factor F.
This problem becomes more challenging in multi-objective
optimization. Each objective may have different requirements
for the parametric setup, and even for a certain objective,
the optimal setup of parameters may vary during different
searching stages, e.g., a large searching step is needed at
the start of exploration whereas a relatively smaller searching
scope is preferred near the end of the search. Hence, a dynamic
parameter tuning mechanism is proposed to help the algorithm
adapt its parameters automatically. Two targets are going to be
achieved with the new tuning method: first is that there should
be a selection pressure to reserve more proper parameters and
discard poor parameters; second is that as the current fitting
parameters may not conform to the requirement of the next
search stage, the value of parameters should not be fixed. In
other words, convergence of parameters need to be avoided. In
the following subsections, the details of the proposed dynamic
mechanism for tuning F (Scaling Factor) and Cr (Crossover
Rate) will be discussed.

2) Self-Tuning F (Scaling Factor): As shown in the mu-
tation formula of DE, Scaling Factor F has a significant
effect on the searching step of the algorithm, therefore the
performance of DE depends heavily on the selection of F .
In multi-objective optimization, each individual is responsible
for searching different regions in objective space. Concerning
that different objective might have various favored parametric
settings, the selection of F should not be identical for every
individual. To realize it, each individual will be independently
assigned a value randomly generated from a given interval
during initialization, and this value would be inherited by
the children of each individual. After that, in order to avert
convergence of F , a perturbation will be added to the current
F value of each survived solution after every generation.
The scale of the perturbation is randomly generated from
another pre-defined interval, and it is conducted separately
for each individual. To summarize, now F is similar to an
additional variable for each solution, and it would be inherited
by the offspring. The survival mechanism in multi-objective
optimization framework will gradually evolve the value of F
to make it more suitable for current problem.

3) Stochastic Cr (Crossover Rate): Crossover rate decides
how different the final offspring is from the parent, so the
choice of Cr mainly affects the convergence speed of the
optimization without too much influence on the searching
ability of the algorithm. A simple stochastic selection of Cr
value is applied here. The value of Cr is randomly generated

2394

Table I
MEAN AND STANDARD DEVIATION OF THE IGD VALUES (30 RUNS)

Problems
CGDE-NSGA-II NSGA-II-DE NSGA-II(SBX) MOEA/D-DE MOEA/D(SBX) CCPSO MOEGS SPEA2

Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

UF1
0.0536 0.0603 0.1230 0.0475 0.1568 0.0483 0.2207 0.1341

(0.0156) (0.0162) (0.0318) (0.0372) (0.0652) (0.0108) (0.1025) (0.0407)

UF2
0.0233 0.0429 0.0481 0.0426 0.0640 0.0481 0.0484 0.0626

(0.0027) (0.0047) (0.0125) (0.0316) (0.0310) (0.0079) (0.0091) (0.0071)

UF3
0.0970 0.1515 0.2179 0.1513 0.3064 0.3024 0.1318 0.3025

(0.0168) (0.0271) (0.0666) (0.0688) (0.0300) (0.0390) (0.0370) (0.0410)

UF4
0.0409 0.0723 0.0533 0.0866 0.0560 0.0639 0.1277 0.0682

(0.0003) (0.0078) (0.0018) (0.0104) (0.0034) (0.0068) (0.0105) (0.0031)

UF5
0.2839 0.8494 0.3257 0.7643 0.4318 0.4535 0.8727 0.4741

(0.0785) (0.1698) (0.0943) (0.1307) (0.0812) (0.0734) (0.5201) (0.0877)

UF6
0.1700 0.4181 0.2302 0.4386 0.4374 0.4701 0.6323 0.4609

(0.1034) (0.0819) (0.0680) (0.2206) (0.1509) (0.0356) (0.4519) (0.1292)

UF7
0.0243 0.0389 0.2359 0.1018 0.3536 0.0961 0.0833 0.1693

(0.0042) (0.0422) (0.1447) (0.1648) (0.1552) (0.0381) (0.1027) (0.1285)

WFG1
0.8784 1.2181 1.0790 1.1634 1.0483 0.9758 1.1818 1.0859

(0.0166) (0.0052) (0.0813) (0.0138) (0.0458) (0.0359) (0.0183) (0.0185)

WFG2
0.0135 0.0461 0.1604 0.1666 0.1871 0.5447 0.5816 0.2381

(0.0005) (0.0253) (0.0277) (0.0880) (0.0643) (0.1463) (0.1444) (0.0281)

WFG3
0.0201 0.0344 0.0211 0.0204 0.0203 0.1826 0.2399 0.1036

(0.0010) (0.0017) (0.0016) (0.0018) (0.0059) (0.0521) (0.0558) (0.0305)

WFG4
0.0215 0.0927 0.0189 0.0811 0.0167 0.0614 0.1842 0.0363

(0.0022) (0.0037) (0.0011) (0.0081) (0.0015) (0.0328) (0.0342) (0.0052)

WFG5
0.0682 0.0754 0.0705 0.0692 0.0691 0.0899 0.1698 0.0734

(0.0009) (0.0017) (0.0005) (0.0003) (0.0006) (0.0134) (0.1090) (0.0012)

WFG6
0.1141 0.1079 0.0640 0.1072 0.0820 0.1228 0.1335 0.0867

(0.0276) (0.0349) (0.0068) (0.0319) (0.0237) (0.0489) (0.0373) (0.0162)

WFG7
0.0168 0.0306 0.0170 0.0190 0.0205 0.2122 0.2250 0.0507

(0.0011) (0.0019) (0.0010) (0.0011) (0.0111) (0.0730) (0.1229) (0.0184)

WFG8
0.1089 0.1413 0.1371 0.1271 0.1270 0.2203 0.2502 0.1700

(0.0036) (0.0101) (0.0065) (0.0128) (0.0097) (0.0489) (0.0337) (0.0107)

WFG9
0.1260 0.1106 0.0844 0.0597 0.0606 0.1519 0.2660 0.1070

(0.0003) (0.0380) (0.0529) (0.0287) (0.0381) (0.0534) (0.1514) (0.0386)

from a pre-defined interval for each crossover operation. From
the experimental results, a stochastic Cr could make the
algorithm perform more consistently in face of different types
of problems.

IV. EXPERIMENTAL RESULTS

A. Implementation
The proposed CGDE is implemented into nondominated

sorting genetic algorithm II (NSGA-II) [20], which is a well-
known powerful multi-objective optimization algorithm. The
offspring in NSGA-II would be generated via CGDE, and
other parts of the original framework is reserved including fast-
non-dominated-sort and density estimation. The population
size NP is set to 100 for 2-objective problems. The neigh-
borhood size is selected as 5. The initialization interval for
F is [0.2, 0.9], and the lower bound of F during evolution is
0.2 while the upper bound is 0.9. The interval for perturbation
added to F is [−0.2,+0.2].

B. Benchmark Problems
In total, 16 frequently-used two-objective benchmark prob-

lems were utilized to evaluate the performance of the algo-
rithm, among which UF1 to UF7 are unconstrained problems

from CEC 2009 Special Session and Competition [21] and
WFG1 to WFG9 are from WFG test suites [22]. Numerous
types of problems are covered in terms of separability, modal-
ity, bias and shape of Pareto Optimal Front, and all of them
are minimization problems.

C. Comparison with State-of-the-art MOEAs

The performance of CGDE-NSGA-II is compared with
seven state-of-the-art Multi-objective Optimization Evolu-
tionary Algorithms (MOEAs), namely, NSGA-II(SBX) [20],
NSGA-II-DE [17], MOEA/D(SBX) [23], MOEA/D-DE [17],
CCPSO [24], MOEGS [25], SPEA2 [26]. The simulation
results of the above MOEAs have referred to [27]. The
population size is fixed as 100 for all the testing algorithms,
and the maximum number of function evaluations is set to
5× 104. Setup of other parameters are identical as suggested
in the original studies. Inverted Generational Distance (IGD)
[28] is employed as the indicator to quantitatively evaluate
the performance of each algorithm at the end of each run.
All of the simulations were done on an Intel(R) Core(TM)
i7 machine with 16-GB RAM and 3.40-GHz speed. Table I
shows the mean and standard deviation of the IGD values for

2395

30 independent runs of each algorithms on each benchmark.
The best entries are marked in boldface.

From the comparative results, it clearly elucidates that
CGDE-NSGA-II is powerful in tackling multi-objective prob-
lems when compared to its competitors: it achieves the best
results in 12 out of 16 benchmark problems. To examine
further, CGDE-NSGA-II outperforms original NSGA-II-DE in
14 out of 16 problems, and the latter cannot give the best
performance in any of the benchmarks. The only disparity
between them lies in the DE operator, from which we can draw
the conclusion that the success of CGDE-NSGA-II should
benefit from the newly developed cross-generation mutation
operators as well as the dynamic parameters.

V. CONCLUSION

This paper has presented a new DE variant for multi-
objective optimization, which employs information across gen-
erations to help guide the searching directions. Two variants
of cross-generation mutation operators have been proposed to
enhance both the convergence and diversity in the evolution.
Moreover, the dynamic parameters would evolve automati-
cally according to different problems and searching stages.
Experimental results demonstrate that the proposed algorithm
is able to outperform seven state-of-the-art MOEAs in most
benchmark problems.

In future work, we would like to further study the optimal
settings for neighborhood size and perturbation interval. In ad-
dition, to better evaluate the performance of CGDE, problems
with more than two objectives are expected to be examined
and implementation into other multi-objective frameworks will
be considered.

ACKNOWLEDGMENT

This work was supported by the Singapore Ministry of
Education Academic Research Fund Tier 1.

REFERENCES

[1] R. Storn and K. V. Price, “Differential evolution - a simple and effi-
cient heuristic for global optimization over continuous spaces,” Golbal
Optimization, Journal of, vol. 11, no. 4, pp. 341–359, 1997.

[2] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” Evolutionary Computation, IEEE Transactions on,
vol. 15, no. 1, pp. 4 –31, feb. 2011.

[3] C. S. Chang, D. Y. Xu, and H. B. Quek, “Pareto-optimal set based
multiobjective tuning of fuzzy automatic train operation for mass transit
system,” IEEE Proceeding on Electric Power Applications, vol. 146(5),
pp. 577–583, 1999.

[4] B. V. Babu and M. M. L. Jehan, “Differential evolution for multi-
objective optimization,” Proceedings of the 2003 Congress on Evolu-
tionary Computation (CEC2003), vol. 4, pp. 2696–2703, 2003.

[5] H. Li and Q. Zhang, “A multiobjective differential evolution based on
decomposition for multiobjective optimization with variable linkages,”
Parallel Problem Solving from Nature - PPSN IX, 9th International
Conference, vol. 4193, pp. 583–592, 2006.

[6] J. Lampinen, “DE’s selection rule for multiobjective optimization,”
Technical report, Lappeenranta University of Technology, Department
of Information Technology, 2001.

[7] S. Kukkonen and J. Lampinen, “Solving multiobjective optimization
problems using an artificial immune system,” IASTED International
Conference on Artificial Intelligence and Applications (AIA 2004), pp.
96–102, 2004.

[8] ——, “An extension of generalized differential evolution for multi-
objective optimization with constraints,” Parallel Problem Solving from
Nature - PPSN VIII, vol. 3242, pp. 752–761, 2004.

[9] ——, “GDE3: The third evolution step of generalized differential
evolution,” IEEE Congress on Evolutionary Computation (CEC’2005),
vol. 1, pp. 443–450, 2005.

[10] H. A. Abbass, R. Sarker, and C. Newton, “PDE:a pareto-frontier dif-
ferential evolution approach for multi-objective optimization problems,”
Proceedings of the Congress on Evolutionary Computation 2001, vol. 2,
pp. 971–978, 2001.

[11] H. A. Abbass, “The self-adaptive pareto differential evolution algo-
rithm,” Congress on Evolutionary Computation 2002, vol. 1, pp. 831–
836, 2002.

[12] ——, “A memetic pareto evolutionary approach to artificial neural
networks,” The Australian Joint Conference on Artificial Intelligence,
vol. 2256, pp. 1–12, 2001.

[13] L. V. Santana-Quintero and C. A. C. Coello, “An algorithm based
on differential evolution for multi-objective problems,” International
Journal of Computational Intelligence Research, vol. 1(2), pp. 151–169,
2005.

[14] N. K. Madavan, “Multiobjective optimization using apareto differ-
ential evolution approach,” Congress on Evolutionary Computation
(CEC’2002), vol. 2, pp. 1145–1150, 2002.

[15] A. W. Iorio and X. Li, “Solving rotated multi-objective optimization
problems using differential evolution.” Advances in Artificial Intelli-
gence, Proceedings, vol. 3339, pp. 861–872, 2004.

[16] T. Robic and B. Filipic, “DEMO: Differential evolution for multiob-
jective optimization,” Evolutionary Multi-Criterion Optimization. Third
International Conference, EMO, vol. 3410, pp. 520–533, 2005.

[17] H. Li and Q. Zhang, “Multiobjective optimization problems with compli-
cated pareto sets, MOEA/D and NSGA-II,” Evolutionary Computation,
IEEE Transactions on, vol. 13, no. 2, pp. 284–302, 2009.

[18] S. Das, A. Abraham, U. Chakraborty, and A. Konar, “Differential
evolution using a neighborhood-based mutation operator,” Evolutionary
Computation, IEEE Transactions on, vol. 13, no. 3, pp. 526 –553, june
2009.

[19] S. Kukkonen and J. Lampinen, “Ranking-dominance and many-objective
optimization,” in Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, Sept 2007, pp. 3983–3990.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” Evolutionary Computation,
IEEE Transactions on, vol. 6, no. 2, pp. 182–197, 2002.

[21] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, and S. Tiwari,
“Multiobjective optimization test instances for the CEC 2009 special
session and competition,” Technical Report, 2008.

[22] L. Bradstreet, L. Barone, L. While, S. Huband, and P. Hingston,
“Use of the WFG toolkit and PISA for comparison of MOEAs,” in
Computational Intelligence in Multicriteria Decision Making, IEEE
Symposium on, 2007, pp. 382–389.

[23] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” Evolutionary Computation, IEEE Transactions
on, vol. 11, no. 6, pp. 712–731, 2007.

[24] C. Goh, K. Tan, D. Liu, and S. Chiam, “A competitive and cooperative
co-evolutionary approach to multi-objective particle swarm optimization
algorithm design,” European Journal of Operational Research, vol. 202,
no. 1, pp. 42–54, 2010.

[25] C. Goh, Y. Ong, K. Tan, and E. Teoh, “An investigation on evolutionary
gradient search for multi-objective optimization,” in Evolutionary Com-
putation, 2008. CEC 2008. (IEEE World Congress on Computational
Intelligence). IEEE Congress on, 2008, pp. 3741–3746.

[26] E. Ziztler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization,”
Evolutionary Methods for Design, Optimization, and Control, pp. 95–
100, 2002.

[27] S. B. Gee, X. Qiu, and K. C. Tan, “A novel diversity maintenance
scheme for evolutionary multi-objective optimization,” Intelligent Data
Engineering and Automated Learning IDEAL 2013, Lecture Notes in
Computer Science, vol. 8206, pp. 270–277, 2013.

[28] C. A. C. Coello and N. C. Cortes, “Solving multiobjective optimization
problems using an artificial immune system,” Genetic Programming and
Evolvable Machines, vol. 6, no. 2, pp. 163–190, 2005.

2396

