
Optimization based on adaptive hinging hyperplanes and genetic
algorithm

Jun Xu, Xiangming Xi and Shuning Wang

Abstract— This paper describes an optimization strategy
based on the model of adaptive hinging hyperplanes (AHH) and
genetic algorithm (GA). The sample points of physical model
are approximated by the AHH model, and the resulting model
is minimized using a modified GA. In the modified GA, each
chromosome corresponds to a local optimum. A criterion based
on γ-valid cut is used to judge whether the global optimum is
reached. Simulation results show that if the parameters are
carefully chosen, the global optimum of AHH minimization is
close to the optimum of the original function.

I. INTRODUCTION

In industry optimization, usually high-fidelity models are
hard to derive, or the evaluation of the model requires long
running time and intensive computation. Hence, direct opti-
mization of these models is not easy. Thus, the optimization
strategy based on the surrogate model describing the high-
fidelity model is attractive, which is applied in the area of
aerospace design [1], [2], [3], distillation process [4], [5], air
conditioning system [6], [7], and so on.

There are many kinds of surrogate models describing the
physical system, such as neural network [6], [8], polynomial
regression model [9], Kriging model [10], [11] and contin-
uous piecewise affine (CPWA) model [7], [5]. To optimize
these surrogate models, two kinds of optimization methods
are employed. The first one is the conventional gradient-
based optimization, including steepest descent and conjugate-
gradient algorithms, the second one is derivative-free method,
such as simulated annealing (SA) and evolutionary algorithm
(GA). If local optimum is satisfactory, then fast gradient-
based method can be used, however, if one wants to derive
the global optimum, in general, the derivative-free method
should be applied.

In this paper, we consider a CPWA model called adaptive
hinging hyperplanes (AHH), which is proposed as a method
for function approximation and dynamic system identifi-
cation [12]. It is based on the well-known multivariable
regression splines (MARS) [13], and inherits the way of
constructing the model, i.e., recursive partitioning of domain.
MARS is piecewise polynomial, i.e., the whole domain is
partitioned into convex polyhedron, and in each one, the

Jun Xu is with the Research Institute of Automation, China University
of Petroleum, Beijing, China, and also with Delft Center for System and
Control, Delft University and Technology, The Netherlands, Xiangming Xi
and Shuning Wang are with the Department of Automation, Tsinghua Uni-
versity, Beijing, China (email: {yun-xu05, xxm10}@mails.tsinghua.edu.cn,
swang@mail.tsinghua.edu.cn).

This work was supported by National Natural Science Foundation of
China(21006127; 61104218), the National Basic Research Program of China
(973 program: 2012CB720500), and the Science Foundation of China
University of Petroleum(YJRC-2013-12)

relationship is polynomial. In contrast, the AHH model
admits a linear relationship in each subregion. The AHH
model can be seen as a special form of previously proposed
generalized hinging hyperplanes (GHH) model [14], which
has the ability of representing any CPWA function in any
dimension. AHH performs well in approximating continuous
functions, especially for CPWA functions.

Now that the high-fidelity model is modeled as an AHH
function, if the constraints are linear, the resulting optimiza-
tion problem is a continuous piecewise linear programming
(CPWLP). For this kind of problem, analog to the simplex
algorithm in linear programming, a modified simplex algo-
rithm is developed for CPWLP with a separable objective
function [15], [16], [17]. An alternative solution is to derive
an equivalent mixed-integer linear programming formulation
of the CPWLP, such as [18], [19] and [20], of which the
former two are for separable CPWA objective functions, and
the last one is for a more general class, non-separable CPWA
objective functions.

In this paper, we adapt the GA in this special situation
to give a global optimal solution. Using GA, abundant local
optima are provided and thanks to the CPWA property of the
optimization problem, the criterion based on γ-valid cut can
be used to judge whether the global optimum is reached. As
is known to all, GA is a stochastic algorithm mimicking the
natural evolution among generations, after the evaluation of
GA, superior offsprings (solutions) are left, while inferior
ones are deleted. [21] proves that if the parameters are
properly selected, the GA can converges to a quite good
solution.

The paper is organized as follows. Section 2 introduces the
model of AHH. The minimization of AHH is formulated in
Section 3 as a concave programming. Section 4 proposes a
descent algorithm to search vertices which is locally optimal
for the concave programming. To fasten the process of
finding global optimum, Section 5 proposes a modified GA.
Simulation study is done in Section 6, and the paper ends in
Section 7 with conclusion.

II. AHH MODELING

The AHH model f : Rn → R can be seen as a linear
combination of different basis functions,

f = a0 + am

M
∑

m=1

Bm, (1)

where Bm(·) and am, 0 ≤ m ≤ M are the basis function
and correponding linear coefficient. Apparently, B0 = 1. The

2040

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

m-th basis function is defined as,

Bm(x) = max
k∈{1,...,Km}

{min{0, skm(xυkm
− βkm)}}, (2)

in which skm = ±1, Km is the number of “min” terms in
the “max” bracket, xυkm

is the υkm-th variable and βkm

is a splitting point in that dimension. The corresponding
subregion where Bm is nonzero is,

skm(xυkm
− βkm) < 0, ∀k ∈ {1, . . . ,Km}. (3)

Assume Bm is nonzero in some cube subregion (3), then
in the cube, the basis Bm further introduces at most Km

subregions where Bm is affine. Therefore, there are at most
M
∏

m=1
Km subregions in which f is affine, we call these

subregions linear subregions. In each basis, the variables
xυkm

must be different, thus there are no more than n “min”
items, therefore, the largest number of linear subregions is
nM , which may be large when n and M is large.

In order to approximate the sample data (x(t), y(t))Nt=1,
the parameters in f should be chosen carefully to ensure
a small approximation error. In fact, the parameters of
the basis functions as well as the linear coefficients are
obtained via the recursive partitioning of the domain, i.e., f
is obtained similar to the growth of a tree. In the forward
procedure, first, the domain relates to the constant basis
function B0 = 1 is fixed, besides, the number of basis
functions needed, denoted by M , as well as the candidate
splitting points Nsplit in each dimension, is preset. Then
in each step, a parent basis (subregion) is chosen from all
existed basis functions, say Bi, and a split is performed at
some candidate point xj = βj , which together results in
the new born basis functions max{Bi(x),min{0, xj − βj}}
and max{Bi(x),min{0,−(xj − βj)}}, i.e., new subregions
(branches) are generated. By searching through all avail-
able parent basis functions, splitting variables and candidate
points, a greedy strategy, i.e., doing so will cause the largest
decrease in the approximation error, is employed to choose
Bi and xj , βj . It is noted that here the approximation error
is measured by the sum of square, hence the least square
technique is used to fix the linear coefficients. The new born
basis are added to the pool of the available parent bases,
and the next step repeats until the number of basis functions
is M . It is noted that in this forward stepwise growth, the
parent basis (subregion) is not removed after splitting, which
makes AHH adjustable to model both additive functions
(always having B0 = 1 as the parent basis) and relationships
involving interactions among variables.

Once the AHH model with the needed number of basis
functions is generated, a backward procedure is performed
to remove redundant splits in order to avoid over-fitting,
i.e., delete subregions (branches). In the backward stepwise
deletion, one basis function is deleted in each iteration, again
adopting the greedy strategy, then a sequence of AHH models
are obtained, each one having one less basis functions than
the previous one. The model in the sequence which fits the
best is chosen as the final model.

The detailed approximation algorithm of AHH can be seen
in [12]. It is proved in [12] that for a continuous function
in a compact set, AHH can approximate it with arbitrary
precision.

III. FORMULATION OF THE AHH MINIMIZATION

Once the unknown relationship is modeled as an AHH
function, we optimize the AHH function with polyhedral
constraints. The problem can be expressed as follows,

min f(x) = a0

+
M
∑

m=1
am max

1≤k≤Km

{min{0, skm(xυkm
− βkm)}}

s.t. Ax ≤ b.
(4)

Obviously, the basis Bm(x) in the cost function can be
written as,

Bm(x) = max
m∈{1,...,Km}

{min{0, skm(xυkm
− βkm)}}

= max
m∈{1,...,Km}

{skm(xυkm
− βkm)}

− max
m∈{1,...,Km}

{0, skm(xυkm
− βkm)}.

Hence, the problem (4) can be rewritten as,

min
M
∑

m=1
am

(

max
k∈{1,...,Km}

{skm(xυkm
− βkm)}

− max
k∈{1,...,Km}

{0, skm(xυkm
− βkm)}

)

s.t. Ax ≤ b.

(5)

Introduce the auxiliary variable y = [y1, . . . , ym, . . . ,
yM]T in which

ym =

⎧

⎨

⎩

max
k∈{1,...,Km}

{skm(xυkm
− βkm)} if am > 0

max
k∈{1,...,Km}

{0, skm(xυkm
− βkm)} if am < 0,

then we can reconstruct the problem (5) as

min
∑

m:am>0
|am| (ym −max{0, ym})

+
∑

m:am<0
|am|

(

ym − max
k∈{1,...,Km}

{skm(xυkm
− βkm)}

)

s.t. skm(xυkm
− βkm) ≤ ym, ∀m

0 ≤ ym, ∀m : am < 0
Ax ≤ b.

(6)
Suppose z = [x, y1, . . . , ym]T , denote nz = n+M , then

z is an nz-dimensional optimized variable, define M+ =
{m|am > 0} and M− = {m|am < 0}, the above
problem can be cast as a concave programming of which the
objective is CPWA and the constraints are linear inequalities
(equalities),

min J = θT0 z −
∑

m∈M+

max{0, θTmz}
− ∑

m∈M−
max

k∈{1,...,Km}
{θTkmz + ϕkm}

s.t. Āz ≤ b̄,

(7)

2041

where the parameters θm, θkm, ϕkm and Ā, b̄ can be
determined from the problem (6).

For the above concave programming, denote the feasible
region as D, it is demonstrated in [22] that the global
minimum is always obtained in some vertex of D, if D
has vertices. Therefore, traversing of all vertices will give
the minimum, which becomes intractable when the number
of vertices is large. Actually, we can apply a cutting plane
method for possible early termination of the traversal, of
which the cut adopted is the γ-valid cut.
Definition 1: [23] Given a vertex z0 which is a strict local
minimum of J over the feasible polyhedron, assume γ =
J(z0), the hyperplane

πT (z − z0) ≥ 1 (8)

is called a γ-valid cut for the problem (7) if the following
holds,

{z ∈ D|J(z) < γ} ⊂ {z ∈ D|πT (z − z0) ≥ 1}. (9)
Suppose that we have obtained N vertices z1, . . . , zN , then

the following lemma gives a sufficient condition for global
optimality [22].
Lemma 1: The global minimum of problem (7) can be cho-
sen as the one giving the least cost value among z1, . . . , zN ,
if there exists,

N
⋂

i=1

{z ∈ D|πT
i (z − zi) ≥ 1} = ∅, (10)

in which the hyperplane πT
i (z − zi) ≥ 1 is the γ-valid cut

stemmed from zi.

IV. VERTEX SEARCHING VIA LINEAR PROGRAMMING

Then what we interested in is finding the vertex globally
optimal. Traditional ways of finding vertex is listing all
combinations of constraints. In the following, we find a
vertex which is a local minimum of the optimization problem
(7), and in the next section, the global optimum is chosen
among those local minuma. Given a vertex ẑ, we can fix
the corresponding linear subregions ẑ lying in, deonted by
Dẑ . Denote the affine functions in Dẑ as lẑ , there may be
multiple lẑ(z) for a point ẑ, and share a common function
value at ẑ. Denote the affine function pool of lẑ(z) as L(ẑ),
then the following lemma gives the conditions for the local
optimality of ẑ.
Lemma 2: A vertex ẑ is locally optimal if and only if ∀ lẑ ∈
L(ẑ), ẑ minimizes the following linear programming (LP),

min lẑ(z)
s.t. z ∈ D. (11)

Proof: It is clear that the optimal solution of (11) is a
vertex of D.

The following proof employs the necessary and sufficient
conditions proposed in [24] for local optimality of CPWLP,
i.e., ẑ is the local optimum if and only if it minimizes the
following LP,

min lẑ(z)
s.t. z ∈ D

lẑ(z) = J(z).
(12)

Compared with LP (11), the above problem has an additional
constraint that the optimization is confined within the linear
subregion {z|lẑ(z) = J(z)}. In this proof, we state that for
locally optimal vertex, the linear subregion constraint in (12)
can be removed.

(i) Necessity. We complete this part of proof by contradic-
tion. As ẑ is locally optimal, and with conclusions in [24], it
is optimal for LP (12). Suppose there exists another vertex
z̃ ∈ D such that lẑ(z̃) < lẑ(ẑ). Apparently, z̃ is not feasible
for the problem (12), i.e., z̃ /∈ (D⋂{z|lẑ(z) = J(z)}). From
the convexity of D, we can construct one

z = ηẑ + (1− η)z̃

such that z is a feasible point for (12). Then we have,

lẑ(z) = ηlẑ(ẑ) + (1− η)lẑ(z̃) < lẑ(ẑ),

which contradicts that ẑ is optimal for the problem (12).
(ii) Sufficiency. As ẑ is optimal for LP (11) and feasible for

LP (12), it is optimal for LP (12). According to conclusions
in [24], ẑ is locally optimal.

Based on Lemma 2, starting from a feasible point z0,
evaluating the following algorithm will yield vertex which
is locally optimal.

Algorithm 1: Local optimum searching algorithm.
Initialize
• Initial feasible point z0.

repeat
• Construct the linear programming

min lz0(z)
s.t. z ∈ D, (13)

the optimum is denoted as z∗.
• z0 = z∗

until z0 is locally optimal;
• Algorithm ends and return the local optimum.

The convergency of Algorithm 1 is proved in the following
theorem.
Theorem 1: Algorithm 1 is a descent algorithm, i.e.,

J(z∗) ≤ J(z0), (14)

it can converge to a locally optimal vertex within finite steps.
Proof: First we prove the validity of the equation (14).

Denote Φ0 as

Φ0 = {z|lz0(z) = J(z)}, (15)

of which lz0 is one of the affine functions in L(z0).
If z∗ ∈ Φ0, then

J(z∗) = lz0(z
∗) ≤ lz0(z0) = J(z0).

If z∗ /∈ Φ0, randomly choose a z̃ ∈ o

Φ0 (
o

Φ0 indicates the
interior of Φ0).

From the concavity of J , there exists 0 < δ < 1 such that
zδ = δz̃ + (1− δ)z∗ ∈ Φ0 and

J(zδ) > δJ(z̃) + (1− δ)J(z∗). (16)

2042

As zδ ∈ Φ0, we have,

J(zδ) = lz0(zδ) = δlz0(z̃) + (1 − δ)lz0(z
∗). (17)

From the equations (16) and (17), we have

(1 − δ)J(z∗) < (1− δ)lz0(z
∗).

Since δ 	= 1 (which comes from the fact that z̃ ∈ o

Φ0), the
following holds,

J(z∗) < lz0(z
∗) < lz0(z0) = J(z0), (18)

confirming that Algorithm 1 is a descent algorithm.
Then, as the optimum of LP (13) is always obtained as

the vertex of D, and the number of vertices is finite, the
algorithm converges to some vertex of D which is locally
optimal.

It is noted that when using Algorithm 1, the linear pro-
gramming is done in the domain D, which is actually the
feasible domain for the concave programming. This greatly
facilitates the evaluation of the algorithm. Then, the local
optimum is always the vertex of D, which makes the use of
γ-valid cut convenient.

Starting from different initial points z0, a series of vertices
which are locally optimal can be obtained and Lemma 1 can
be used to test whether we reach the global optimum. In
order to generate enough vertices locally optimal, the next
section employs a modified GA.

V. GLOBAL MINIMUM SEARCHING VIA GA

GA is basically a stochastic optimization algorithm. Com-
pared with deterministic optimization, the stochastic version
intends to visit the candidate solution randomly, thus re-
sulting in a widespread searching, and may converge to the
global optimum more efficiently. GA is evolved generation
by generation, and each generation consists of a number
of strings, also known as chromosomes. Through selection,
crossover and mutation of the chromosomes of the previous
generation, the next generation comes out. The evolution is
repeated until some criterion of termination is satisfied.

A. Encoding

We relate each local optimal vertex to a chromosome in
GA, and the operations crossover and mutation give rise to
other chromosomes, which are also vertices locally optimal.
And how is the relationship built?

Thanks to the CPWA property of the optimization prob-
lem, for a vertex z which is locally optimal, the chromosome
is encoded in according to that whether the affine functions
θTmz, θTkmz + ϕkm take effects in (7), i.e., max{0, θTmz} =
θTmz or max

j∈{1,...,Km}
{θTjm+ϕjm} = θTkmz+ϕkm. Specifically,

we stipulate a string C with M characters, say C = c1 · cM ,
then

cm ∈ {0, 1}, if m ∈M+

cm ∈ {1, . . . ,Km}, if m ∈M− (19)

It is noted that Km ≤ n, hence when m ∈M−, the number
of possible values of cm does not exceed n.

For the local optimum z, we can obtain the value of cm
as follows,

cm = 0 ⇐⇒ θ+mz0 < 0
cm = 1 ⇐⇒ θ+mz0 ≥ 0

, ∀m ∈M+ (20)

and ∀m ∈M−, we have

cm = k ⇐⇒ θTkmz0 + ϕkm ≥ θTjmz0 + ϕjm,
∀j ∈ {1, . . . ,Km}, j 	= k

(21)

There may be more than one chromosomes corresponding to
a vertex locally optimal, we randomly choose one of those.

The number of chromosomes in one generation is decided
according to the problem and the performance of a chromo-
some C (vertex z) is evaluated through a fitness function
[25],

FIT(z) = exp{−αf(z)}
in which α is a positive scalar, and we choose appropriate α
to make FIT(z) in the range of (0, 1].

B. Selection, Mutation, and Crossover

Next, we demonstrate how we obtain offsprings from a
parent population through mutation and crossover.

To do the mutation operation, we randomly select chro-
mosome in the present generation, and preset a mutation
probability p0. Then we generate a probability vector p =
[p1, . . . , pM]T , and each pm ∈ [0, 1], (1 ≤ m ≤ M).
If pm ≤ p0, the m-th bit will mutate. For this problem,
the mutation means that if m ∈ M+, cm = 1 − cm,
and if m ∈ M−, cm = mod (cm + 1,Km), in which
mod (cm + 1,Km) represents the remainder of division
of cm + 1 by Km. The resulting chromosome can fix a
linear programming and result in a vertex. If the resulting
optimum is not locally optimal, we employ Algorithm 1 to
find a vertex locally optimal. The chromosome relating to the
locally optimal vertex is added to the offspring population.

For the crossover operation, we utilize the property of the
concave programming (7) to select candidate local optimal
vertices far away from each other. This is straightforward, as
we want to escape from the current local optima and generate
abundant local optima. Here we again use the information
contained in the γ-valid cut, suppose we have obtained N
vertices locally optimal, we attempt to construct a structure
matrix LN×N to approximately reflect the location of these
vertices.
Definition 2: Suppose we have obtained N local optimal
vertices z1, . . . , zN , and their γ-valid cut are πT

i (z−zi) ≥ 1,
define Hi(z) = πT

i (z − zi) − 1, the elements of matrix L
are,

L(i, j) = Hi(zj), i, j = 1, . . . , N.
Obviously, the diagonal element satisfies L(i, i) =

Hi(zi) ≤ 0. And if J(zi) > J(zj), we have L(i, j) =
Hi(zj) > 0.

In fact, if the point zi and zj are far away from each
other, they may remain feasible after doing the γ-valid cut
of each other, thus both L(i, j) and L(j, i) may be positive.
Conversely, if the two points are close to each other, it is

2043

likely that one point is cut off by the γ-valid cut of the
other point. Hence, we give the following rules for crossover
operation.

Rule 1: Given matrix L ∈ R
N×N , select the chromosomes

corresponding to zi and zj to do the crossover operation, if
both L(i, j) and L(j, i) are positive.

Rule 2: If there are no such zi and zj according to Rule
1, we adopt Roulette Wheel method to pick up chromosome
pair to apply crossover operation. For each pair the fitness
function is |α1L(i, j)+α2L(j, i)|, α1 and α2 are the weight-
ing factors and can be adjusted for specific problem.

C. Termination criterion

The GA terminates once (10) is fulfilled. Otherwise, if (10)
does not hold all the time, the GA terminates according to the
general terminate criteria of GA, i.e., if the performance of
the offspring gets no improved or the number of generations
reaches a maximum number. In this paper, we adopt the
latter one, the framework of the global optimum searching
algorithm is illustrated in the following Fig. 1.

?}0)(|{ zHz i
i

D

*
iz

)(*
izJ

N

Nzz ,,1

Fig. 1. Minimizing AHH through modified GA.

VI. SIMULATION RESULTS

Considering two nonlinear functions listed in [26] for com-
paring the performance of different approximating strategies,
assume we don’t know the specific relationship but only a
list of sample points drawn from them, we approximate those
sample points with the model of AHH, and then minimize
AHH.

A. Example 1: 2-dimensional optimization

y = 1.9[1.35(1− x1)
+ex1 · sin(13(x1 − 0.6)2) · e−x2 · (sin(7x2))]

(22)
in which x1, x2 ∈ [0, 1]. The plot of the function can be
seen in Fig. 2. The function (22) has three local optima,

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−3

−2

−1

0

1

2

3

4

Fig. 2. Plot of the 2-dimensional function in Example 1.

[1 0]T , [0.2965 0.6529]T , [0.9698 0.6529]T , and the corre-
sponding function values are 0, 0.5782, − 2.4496, we can
find that the point [0.9698 0.6529]T is the global optimum.

The data points (x(t), y(t))Nt=1 are uniformly generated in
[0, 1]2, assume N = 400, we approximate the 400 data
points (x(t), y(t)) with AHH models different in M and
Nsplit. For the parameters of the GA, the population size
is 8, the mutation probability is 0.001, and the maximum
number of iterations is 50. The optimum obtained is listed
in Table I, and in this situation, each experiment reaches a
global optimum. Also listed in the table is the approximation
error eapp, which can be expressed as,

eapp =

N
∑

t=1
(y(t)− ŷ(t))2

N
∑

t=1
(y(t)− ȳ)2

, (23)

where ŷ(t) is the AHH approximated output, and ȳ is the
mean of y(t) over the 400 samples. To make a comparison,
we also use SA, which is fulfilled through MATLAB. We use
the subscript “s” to denote the results for the SA method.

It can be seen from the table that when the number of basis
functions increases, the deviation between the approximated
AHH model and the original function is smaller, and the
resulting optimum may be closer to the true global optimum.
However, when we increase the number of candidate splitting
points, the global optimum obtained is not closer to the
true one, which is not as expected. This is because we aim
at minimizing eapp when approximating the sample points,
though overall precision is higher, the local precision around
the global optimum may not be improved. Therefore, in real
applications, the approximated model should be carefully
chosen, moreover, if necessary, local approximation around

2044

TABLE I
RESULTS OF MINIMIZING AHH MODELS WITH DIFFERENT M AND Nsplit .

M Nsplit eapp x∗ x∗
s f(x∗) fs(x

∗
s) t(s) ts(s)

15 20 0.1103 [0.925 0.625]T [0.926 0.626]T -2.3734 -2.3731 0.5303 0.8202
15 50 0.0769 [1 0.62]T [1 0.62]T -3.0142 -3.0142 0.5108 0.8966
40 20 0.0182 [0.95 0.65]T [0.9505 0.6496]T -2.5556 -2.5550 1.9307 0.6116
40 50 0.0088 [1 0.66]T [1 0.66]T -2.7270 -2.7270 1.7753 1.3178

those points with a large approximation error may be em-
ployed.

For this problem, both the modified GA and SA method
perform well. Although the time needed for evaluating our
strategy is more than that of SA in some situations, the
possibility of gaining a global optimum is larger.

In order to obtain a precise approximation, the number
of M and Nsplit may be large. However, the computational
cost of approximation and optimzation also increase. Hence
we should carefully choose the value of the two parameters
to make a tradeoff between the precision and computational
complexity.

B. Example 2: 4-dimensional Optimization

y = e2x1 sin(πx4) + sin(x2x3) (24)

in which x ∈ [−0.25, 0.25]4.
We generate 1000 data points conforming to the uniform

distribution in [−0.25, 0.25]4. For this problem, the AHH
model with 40 basis functions is employed to approximate
the data, and the number of candidate splitting points in each
dimension, Nsplit, is set to 10. The parameters in GA is set
the same as the previous example.

For this example, the AHH approximation error is

eapp = 0.0249.

The global solution for the AHH minimization found by
the modified GA is

[−0.25 − 0.25 0.25 0.25]T .

It is actually a global optimum of the original function.
Hence in this example, the global optimum of AHH co-
incides with the original global optimum. Actually, there
are another three global optima of the original function,
[−0.25 0.25 −0.25 0.25], [0.25 −0.25 0.25 −0.25]T , and
[0.25 −0.25 0.25 −0.25]T .

The running time elapsed is 50.5s. Apparently, for problem
of higher dimension, the computational cost of searching for
global optimum is much more.

As is indicated in [12], the computational cost for AHH ap-
proximation increases abruptly with the problem dimension
n. Moreover, the optimization complexity is higher when
n increases, which can be seen from the running time for
the two examples. Hence, for high-dimensional problem, the
proposed strategy can only be done offline.

VII. CONCLUSIONS

In this paper, we propose the optimization based on
adaptive hinging hyperplanes and genetic algorithm, i.e., the
unknown or difficult obtaining relationship is approximated
by the AHH model through approximating sample points.
Then, a modified GA is evaluated to minimize AHH. Con-
sidering the optimization is a CPWLP, we transform it to a
concave programming in which the cost function is concave
piecewise affine and the feasible region is a polyhedron. Thus
in the modified GA, starting from a chromosome, we can get
a vertex that is locally optimal, then through selection, muta-
tion and crossover, we gain plenty of locally optimal vertices.
The termination of GA is judged by the criterion based on the
γ-valid cuts of all the vertices. Simulation results concerning
two functions show that if the approximated AHH model as
well as the parameters of the GA is carefully chosen, the
proposed strategy will yield a solution close to the original
global optimum.

REFERENCES

[1] K. S. Won and T. Ray, “A framework for design optimization using
surrogates,” Engineering Optimization, vol. 37, no. 7, pp. 685–703,
2005.

[2] A. Forrester and A. Keane, “Recent advances in surrogate-based
optimization,” Progress in Aerospace Sciences, vol. 45, pp. 50–79,
2009.

[3] N. Queipo, R. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. Kevin
Tucker, “Surrogate-based analysis and optimization,” Progress in
Aerospace Sciences, vol. 41, pp. 1–28, 2005.

[4] A. Safavi, A. Nooraii, and J. Romagnoli, “A hybrid model formulation
for a distillation column and the on-line optimisation study,” Journal
of Process Control, vol. 9, no. 2, pp. 125–134, 1999.

[5] W. Lv, Y. Zhu, D. Huang, Y. Jiang, and Y. Jin, “A new strategy of
integrated control and on-line optimization on high-purity distillation
process,” Chinese Journal of Chemical Engineering, vol. 18, no. 1,
pp. 66–79, 2010.

[6] T. Chow, G. Zhang, Z. Lin, and C. Song, “Global optimization of
absorption chiller system by genetic algorithm and neural network,”
Energy and buildings, vol. 34, no. 1, pp. 103–109, 2002.

[7] X. Huang, J. Xu, and S. Wang, “Operation optimization for centrifugal
chiller plants using continuous piecewise linear programming,” in 2010
IEEE International Conference on Systems, Man, and Cybernetics,
2010, pp. 1121–1126.

[8] D. Cook, C. Ragsdale, and R. Major, “Combining a neural network
with a genetic algorithm for process parameter optimization,” Engi-
neering Applications of Artificial Intelligence, vol. 13, no. 4, pp. 391–
396, 2000.

[9] R. Jin, W. Chen, and T. W. Simpson, “Comparative studies of meta-
modelling techniques under multiple modelling criteria,” Structural
and Multidisciplinary Optimization, vol. 23, no. 1, pp. 1–13, 2001.

[10] T. W. Simpson, T. M. Mauery, J. J. Korte, and F. Mistree, “Kriging
models for global approximation in simulation-based multidisciplinary
design optimization,” AIAA journal, vol. 39, no. 12, pp. 2233–2241,
2001.

2045

[11] K.-D. Lee and K.-Y. Kim, “Surrogate based optimization of a laidback
fan-shaped hole for film-cooling,” International Journal of Heat and
Fluid Flow, vol. 32, pp. 226–238, 2011.

[12] J. Xu, X. Huang, and S. Wang, “Adaptive hinging hyperplanes and its
applications in dynamic system identification,” Automatica, vol. 45,
no. 10, pp. 2325–2332, 2009.

[13] J. H. Friedman, “Multivariate adaptive regression splines,” The Annals
of Statistics, vol. 19, no. 1, pp. 1–67, 1991.

[14] S. Wang and X. Sun, “Generalization of hinging hyperplanes,” IEEE
Transactions on Information Theory, vol. 12, no. 51, pp. 4425–4431,
2005.

[15] R. Fourer, “A simplex algorithm for piecewise-linear programming i:
Derivation and proof,” Mathematical Programming, vol. 33, no. 2, pp.
204–233, 1985.

[16] ——, “A simplex algorithm for piecewise-linear programming ii:
Finiteness, feasibility and degeneracy,” Mathematical Programming,
vol. 41, no. 1, pp. 281–315, 1988.

[17] ——, “A simplex algorithm for piecewise-linear programming iii:
Computational analysis and applications,” Mathematical Program-
ming, vol. 53, no. 1, pp. 213–235, 1992.

[18] A. Keha, I. de Farias Jr, and G. Nemhauser, “A branch-and-cut
algorithm without binary variables for nonconvex piecewise linear
optimization,” Operations research, vol. 54, no. 5, pp. 847–858, 2006.

[19] H. Sherali, “On mixed-integer zero-one representations for sepa-
rable lower-semicontinuous piecewise-linear functions,” Operations
Research Letters, vol. 28, no. 4, pp. 155–160, 2001.

[20] J. Vielma, S. Ahmed, and G. Nemhauser, “Mixed-integer models for
nonseparable piecewise-linear optimization: Unifying framework and
extensions,” Operations research, vol. 58, no. 2, pp. 303–315, 2010.

[21] R. R. Sharapov and A. V. Lapshin, “Convergence of genetic algo-
rithms,” Pattern Recognition and Image Analysis, vol. 16, no. 3, pp.
392–397, 2006.

[22] R. Horst and T. Hoang, Global optimization: Deterministic ap-
proaches. Berlin : Springer Verlag, 1990.

[23] H. Benson, “Generalized γ-valid cut procedure for concave minimiza-
tion,” Journal of Optimization Theory and Applications, vol. 102, no. 2,
pp. 289–298, 1999.

[24] X. Huang, J. Xu, and S. Wang, “Exact penalty and optimality condition
for nonseparable continuous piecewise linear programming,” Journal
of Optimization Theory and Applications, vol. 155, pp. 145–164, 2012.

[25] A. Chipperfield, P. Fleming, H. Pohlheim, and C. Fonseca, “Genetic
algorithm toolbox for use with matlab,” Department of Automation
Control and System Engineering, University of Sheffield, Tech. Rep.,
1994.

[26] V. Cherkassky, D. Gehring, and F. Mulier, “Comparison of adaptive
methods for function estimation from samples,” IEEE Transactions on
Neural Networks, vol. 7, no. 4, pp. 969–984, 1996.

2046

