
Particle Swarm Optimization for Integrated Yard
Truck Scheduling and Storage Allocation Problem

B. Niu1,2,3, T. Xie1
1College of Management

Shenzhen University, Shenzhen, China
2Hefei Institute of Intelligent Machine

Chinese Academy of Science, Hefei, China
ben.niu@polyu.edu.hk

Q.Q Duan1, L.J. Tan4
3Department of Industrial and Systems Engineering

The Hong Kong Polytechnic University, Hong Kong
4Management School

Jinan University Guangzhou, China
 mstlj@163.com

Abstract—The Integrated Yard Truck Scheduling and
Storage Allocation Problem (YTS-SAP) is one of the major
optimization problems in container port which minimizes the
total delay for all containers. To deal with this NP-hard
scheduling problem, standard particle swarm optimization
(SPSO) and a local version PSO (LPSO) are developed to
obtain the optimal solutions. In addition, a simple and effective
‘problem mapping’ mechanism is used to convert particle
position vector into scheduling solution. To evaluate the
performance of the proposed approaches, experiments are
conducted on different scale instances to compare the results
obtained by GA. The experimental studies show that PSOs
outperform GA in terms of computation time and solution
quality.

Keywords—Yard truck scheduling; Storage allocation;
Container terminal; Particle Swarm Optimization (PSO)

I. INTRODUCTION
As crucial interfaces between land and sea transportation

modes, container terminals have been increasingly important
and this trend is expected to continue. Therefore, the
manager of container terminal should guarantee that the
terminal system can handle the containers cost-effectively to
meet the increased volume of container traffic. Operations in
the field of container terminal involves Berth Allocation,
Quay Crane (QC) Scheduling, Yard Crane (YC) Scheduling,
Yard Truck (YT) Scheduling, Container Storage Allocation,
etc. As we know, the YT connects the two ends, i.e., the QC
and YC, therefore the YT scheduling is an important
component of container terminal operations that needs to be
addressed. In addition, the allocating strategies of storage
space will greatly affect the efficiency on discharging
operation. Hence, in this paper, the integrated Yard Truck
Scheduling and Storage Allocation Problem (YTS-SAP) is
considered.

The YTS-SAP problem has attracted many attentions by
researchers in the last decade. Bish et al. [1] firstly
considered the two problems as a whole by formulating an
assignment model and subsequently solving it via a heuristic
algorithm. Bish [2] extended the problem to a more complex
situation, which not only consider the yard location
assignment and the vehicle dispatching, but also include the
scheduling of loading and discharging operations at QC.
Bish et al. [3] further solved the problem via new heuristic
algorithms which the asymptotic and absolute worst-case

performance ratios were identified. Lee et al. [4] developed a
mixed integer programming model considered the yard truck
scheduling and the storage allocation at the same time to
minimize the weighted average of total requests delay and
total trucks travel time. A hybrid insertion algorithm was
proposed to solve the model. Xue et al. [5] studied the
integration of YT scheduling, the QC scheduling and the
yard location assignment for the discharging containers. A
two-stage heuristic algorithm was developed for solving it.

To the best of our knowledge, litter attention has been
made to use PSO-based approach to solve YTS-SAP so far.
Therefore, based on our previous study of PSO-based
approach for trucking scheduling in container terminals[6], a
PSO-based approach is proposed for YTS-SAP task in this
paper.

 Followed by the introduction is the mathematical model
of the YTS-SAP in Section 2, A PSO algorithm with two
types of mapping mechanisms are proposed to solve the
YTS-SAP in Section 3. Computational experiments
compared with GA are reported in Section 4. Finally,
conclusions are summarized in Section 5.

II. PROBLEM DESCRIPTION
The YTS-SAP model used in this paper is the same as

that used in literature [4] and the notations and mathematical
model are given as follows.

Let us assume that a certain number of YTs are
dispatched to handle containers, each of which is assigned
to one route. Let R be the set of all routes indexed by r ,
where | |R m= . To simplify notation, we define job to be
the movement of a container between its pick-up location
and drop-off location denoted by i and j . For the loading
job, the container is moved from the yard location where it
is stored to the QC location where the container will be
loaded for shipment. For the unloading job, the origin is the
QC location where the container is discharged, and the
destination is a yard location which is a decision variable.
The set of all containers is denoted by J where | | nJ = ,

including the set J + of loading containers and the set J −
of unloading containers. For each job, a soft time window
[,)i ia b will be given to it. ia is the starting time of job i ,

634

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

that is, job i should be processed at or after ia . The due

time of job i , ib can be violated with a penalty. The

processing time it of job i may encounter two conditions. If

job i is a loading job, it is known in advanced since the
origin and destination of job i is predetermined. On the
other hand, if job i is a unloading job, it is determined by
which storage location is allocated to job i . Let job i start
to be serviced at starting time iw , which is a decision
variable, then the completion time of service is:

i i ic w t= + (1)
The delay of job i is:

max{0, }i i id c b= − (2)
If job j is processed immediately after job i by the same

YT, the relation between iw and jw is:

max{ , }j i i ij jw w t s a= + + (3)

where ijs is the travel time (setup time) of empty trip

between destination of job i and origin of job j , which is
also a decision variable.

For each route, we add two dummy jobs rι and rκ to
denote the initial and final location of each YT. Let 'J be
the set of { }r r RJ ι ∈∪ and ''J be the set of { }r r RJ κ ∈∪ ,

denoting the origin of job i , io and destination of job i , id ,
respectively. The set of all yard locations for all loading and
discharging jobs is denoted by L with indices p and q .
We also denotes the travel time of YT along the shortest
route between yard location p and q by pqτ . Let kζ ,

where k K∈ be the index for the storage location (SL) k ,
where K is the set of all SLs. The followings is the
processing time of job i and the setup time from the drop-
off location of job i to the pick-up location of job j :

k

,

,

if Request i is a loading request

if Request i is a discharging request and allocated to SLk

i i

i

o d

o ξ

τ

τ
（4）=it

k

,

,

if Request i is a loading request

if Request i is a discharging request and allocated to SLk

i j

j

d o

oξ

τ

τ
（5）=ijs

The followings are additional notations used in model
description:

ikx 1= ,if job i is allocated to SL k .
0= ,otherwise.

ijy 1= ,if job i is connected to job j in the
same route.

0= ,otherwise.
Mathematical model:

i
i J

Minimize d
∈
∑

Subject to

1,ik
i J

x k K
−∈

= ∀ ∈∑ (6)

1,ik
k K

x i J −

∈

= ∀ ∈∑ (7)

''

1, 'ij
j J

y i J
∈

= ∀ ∈∑ (8)

'

1, ''ij
i J

y j J
∈

= ∀ ∈∑ (9)

, ' ''i iw a i J J≥ ∀ ∈ ∪ (10)

i it b , ' ''i id w i J J≥ + − ∀ ∈ ∪ (11)

i ij(1) t s , ' and ''j ij iw M y w i J J J+ − ≥ + + ∀ ∈ ∈ (12)

, ,
i ii o dt i Jτ += ∀ ∈ (13)

k, ,
ii o ik

k K
t x i Jξτ −

∈

= ∀ ∈∑ (14)

, ,
i iij d os i J and j Jτ += ∀ ∈ ∈ (15)

k , ,
jij o ik

k K

s x i J and j Jξτ −

∈

= ∀ ∈ ∈∑ (16)

, {0,1}, ', ''ik ijx y i J j J and k K∈ ∀ ∈ ∈ ∈ (17)

, ' ''iw i J J∈ℜ ∀ ∈ ∪ (18)

,it i J −∈ℜ ∀ ∈ (19)

,ijs i J and j J−∈ℜ ∀ ∈ ∈ (20)

III. METHODOLOGY

A. The background of particle swarm optimization
In 1995, Kennedy et al. [7] designed a population-based

evolutionary computation technique named Particle swarm
optimization (PSO) by drawing inspiration from the group
foraging behavior of animals such as bird flocking, fish
schooling. At the beginning of the evolutionary process, the
system is initialized with random particles. Each particle flies
in the searching space according to the experience of its own
and its companions’. Therefore, particles are inclined to
search for optima by updating generations. Let

1 2(, , ,)i i i inV v v v be the ith particle’s velocity vector, and

1 2(x , x , , x)i i i inX be the ith particle’s position vector,
respectively. The two following equations are applied to
update each particle's velocity and position:

1 2 j* * ()*() * ()*(G)ij ij ij ij ijv w v c rand P x c Rand x← + − + − (21)

ij ij ijx x v← + (22)

 Where (1,2, ,)j j D= represents the jth dimension
of the search space. The inertia weight w was designed by
Shi et al. [8], and it is applied to control the magnitude of the

635

previous velocities. The best previous position of particle
(1,2,)i i N= is denoted by 1 2(, , ,)i i i inP p p p , while the

historically best solution of the neighborhood is represented
by

1 2(g ,g , ,g)nG . In global version of PSO, this
neighborhood is the entire swarm, while in local one, this
neighborhood is a subset of the particles. 1c is the self

learning factor and 2c is the social learning factor. ()rand
and ()Rand are uniformly distributed random variables in
[0,1] .

 The scheduling problem in this paper consists of the
containers scheduling sequence problem, trucks allocation
problem, and storage space allocation problem, each of
which is discrete combinatorial optimization problem.
Hence, we need to find a suitable mapping method to apply
PSO to discrete combinatorial optimization.

B. Mapping mechanism
The (n n l)m+ −+ + + dimensional

particle
1 2 (n n l)

[, , ,]i i i i m
π π π π + −+ + +

= is used to map

N + loading containers and N − discharging containers with
L potential locations transported by M trucks. The first
n n+ −+ dimensions

1 2 ()
[, , ,]J

i i i i n n
π π π π + −+

= denote the job

permutation. The second
l dimensions

(1) (2) ()
[, , ,]L

i i n n i n n i n n l
π π π π+ − + − + −+ + + + + +

= related to

potential locations denote the index of locations available to
the discharging containers which are negative integers from
-1 to L− . The last
m dimensions

(1) (2) ()
[, , ,]T

i i n n l i n n l i n n l m
π π π π+ − + − + −+ + + + + + + + +

=

denote the assignment method of the M trucks. The
number of jobs assigned to these trucks must be m positive
integers whose sum is equivalent to the number N of jobs.

Fig. 1 gives an example of a particle encoding schema ,
in which for dispatching two trucks (M 2)= will be
designated to handle three discharging jobs (3)N − = and
three loading jobs (3)N + = with three potential locations
(3)L = available to the discharging jobs (assume that the
first three jobs are discharging jobs). The first truck is
assigned to sequentially handle jobs 4, 1, 6, and the second
truck is asked to sequentially handle jobs 3,2,and 5. The
corresponding discharging job is located in 2ς , 1ς and 3ς ,
respectively (see Fig. 2).

Fig. 1. An example for encoding scheme of YTS-SAP

11: 4 1 6Route L → → → 22 : 3 2 5Route L → → →

2ς 1ς 3ς

Fig. 2. Decoding of encoding scheme illustrated in Fig. 1

TABLE I. REPRESENTATION OF THE JOB PERMUTATION
AND CORRESPONDING POSITION VALUES

Dimension, j 1 2 3 4 5 6
Position value, J

iX -0.87 -9.62 6.42 -1.10 2.30 5.83

Job permutation, J
iπ 3 1 6 2 4 5

In order to convert continuous position of particles
1 2 ()

[x , x , , x]i i i i n n
X + −+

= into job sequence

1 2 ()
[, , ,]J

i i i i n n
π π π π + −+

= in PSO, we introduced Smallest

Position Value (SPV) rule to realize the mapping
mechanism [9]. Based on the SPV rule, firstly, the particle
value of each dimension in ascending order is sorted, and
then the smallest floating value is placed as the smallest
integer. The next smallest floating value is put by the next
smallest integer until that a complete job permutation is
constructed. An example of the excitation mode using SPV
rule is presented in TABLE I.

In the truck solution representation part, we should
guarantee that

ij (1,2, ,)T j mπ = is positive integers whose

sum is equivalent to the number N of jobs
ij

1
(x)

n m

j n
n

+

= +

=∑ . The

assignment algorithm for this mapping schema is presented
as follows. Schematic example of the encoding procedure of
the truck solution representation is shown in TABLE II,
where 3 trucks are assigned to hand 9 jobs.
Step 1. Replace (1) (2) ()[x , x , , x]T

i i n l i n l i n l mX + + + + + += by its

absolute value | |T
iX ;

Step 2. Set T
i ij

1

S x
n l m

j n l

+ +

= + +

= ∑ to obtain sum of each dimensions

of T
iX ;

Step 3. Set / *T T
ij ij ix S nπ = , where n is the total number

of jobs;
Step 4. Replace T

ijπ by its rounded value;

Step 5. If 0T
ijπ = ,replace it by 1;

Step 6. If
1

m
T

ij
j

n or nπ
=

> <∑ , find the set of

maximum(minimum) numbers of

1 2[, , ,]T T T T
i i i imπ π π π= and let first number in the set

minus (plus) 1;
Step 7.If

1

m
T

ij
j

nπ
=

=∑ ,then stop; otherwise return to step 6.

636

TABLE II. ENCODING PROCEDURE ILLUSTRATED IN

ASSIGNMENT ALGORITHM(9n =)

Value -1.41 -0.03 -2.92
Step 1 1.41 0.03 2.92
Step 2-3 2.88 0.09 6.03
Step 4 3 0 6
Step 5 3 1 6
Step 6-7 3 1 5

 As shown in Fig. 1, the second
l dimensions

(1) (2) ()
[, , ,]L

i i n n i n n i n n l
π π π π+ − + − + −+ + + + + +

= are also the

permutation of the integers from -1 to L− (The minus here
is used to differentiate them from the job permutation part).
Therefore, the SPV rule is introduced again to formulate the
permutation of storage locations. A simple example is
provided in TABLE III to illustrate the encoding procedure.

TABLE III. REPRESENTATION OF THE STORAGE
PERMUTATION AND CORRESPONDING POSITION VALUES

Dimension, j 1 2 3 4 5 6
Position value, L

iX 2.89 6.35 3.20 -3.16 -4.20 -3.17
Storage permutation L

iπ -4 -6 -5 -3 -1 -2

C. Initial population
Each particle’s positions and velocities are updated using

the following equations:
1

min max min 1()*ijx x x x r= + −
(23)

1
min max min 2(v)*ijv v v r= + −

(24)
where min 0x = , max 10x = , min 1v = − , and max 1v = .

1r and 2r represent random values uniformly distributed in
interval [0, 1].

D. Fitness computation
In YTS-SAP, the delay of job k processed by truck m

implied by particle i , imd ()k equal to

immax{0, () b (k)}imC k − ,where ()imC k is the completion
time and imb (k) is the due time of job k . Let ()mo i be the
summation of delay generated by jobs assigned to truck

(1,2, ,)m m M= based on the schedule iπ implied by
particle i , the objective of YTS-SAP is to minimize the total
delay of jobs, i.e.

1

() () m (1,2, ,)
M

m
m

O i o i M
=

= =∑

(25)

E. Computational procedure

The whole computation procedure of the PSO for the
YTS-SAP is described as follows:

Step 1: Set the parameter’s values;
 Set the population size (denoted by Ps);
 Set the maximum iteration (denoted by MaxGen),

startw , endw , 1c , 2c ;
 Set Dim as the number of dimensions to represent

N + loading jobs, N − discharging jobs, M trucks and

L storage locations, which equal to (n n l)m+ −+ + + .
Step 2: Initialization;

 Set iteration 1t = ;
 Initialize Ps particles stochastically using Equation

(23), 1{ , 1, 2, , }iX i Ps= ,where
1 1 1 1

1 2 (n n l)
[, , ,]i i i i m

X x x x + −+ + +
= ;

 Initialize the initial velocities for particle i
stochastically using Equation (24),

1{V , 1,2, , }i i Ps= ,where
1 1 1 1

1 2 (n n l)
[v , v , , v]i i i i m

V + −+ + +
= ;

 Convert current particle 1(1,2, ,)Xi i Ps= to the

schedule 1 1 1 1
1 2 (n n l)

[, , ,]i i i i m
π π π π + −+ + +

= according to
the SPV rule and Algorithm 1;

 Evaluate schedule 1
iπ of each particle i in the swarm

by the objective function 1()O i for 1,2, ,i Ps= ;
 Set the personal best position with a copy of particle

itself, i.e. 1 1
i iP X= , together with its best fitness

value, 1()pb
if O i= for 1,2, ,i Ps= ;

 Find the lowest fitness value in the swarm,
i.e. 1min{ }l if f= for 1,2, ,i Ps= with its

corresponding positions 1
lX .Set the global best

to 1 1
lG X= , with its fitness value gb lf f= .

Step 3: Update iteration counter;
 1t t= + .

Step 4: Update inertia weight;
 () / *t

start start endw w w w MaxGen t= − − .
Step 5: Update velocity and position

 Use Equation (21) and Equation (22) to update
velocity and position, respectively.

Step 6: Find schedule;
 Apply the SPV rule and the Assignment Algorithm to

find the schedule 1 2 (n n l)
[, , ,]t t t t

i i i i m
π π π π + −+ + +

= for
1,2, ,i Ps= .

Step 7: Update the personal best;
 Use the schedule t

iπ to evaluate each particle again.

That is, the personal best is updated as t t
i iP X= and

pb t
i if f= if t pb

i if f< for 1,2, ,i Ps= .
Step 8: Update the global best;

 Set min{ }t pb
l if f= ({ , 1,2, , })l i i Ps∈ = to obtain

the minimum value of the personal best, the global best

637

is updated as t t
lG X= and gb t

lf f= if t gb
lf f< .

Step 9: Stopping criterion.
 If the current iterations exceeds MaxGen, stop and

output computational results. Otherwise, return to step
3.

IV. COMPUTATIONAL EXPERIMENTS
In the experimental study, standard PSO (SPSO) and

local PSO (LPSO) are tested compared with the real-coded
genetic algorithm (GA) on YTS-SAP. The neighbor
topology of LPSO is von Neumann configuration [10].
Based on the results of test runs, we set the parameters of
PSOs as: 0.9startw = , 0.4endw = , 1 2 2c c= = . A real-coded
genetic algorithm with Gaussian mutation and intermediate
crossover is employed in our experiment and the involved
parameters are set the same as that used in literature [11].

We coded the three algorithms in matlab7.0 and
implemented it on a Intel Core i5, 2.27 GHz, 4 GB PC,
under the Windows 7 operation system. The population size
and the maximum number of iterations of three algorithms
are set as 200 and 80, respectively, for all the experiments.
Each algorithm was simulated with 10 runs for every
problem.

We test the algorithms on randomly generated problems
with their generating way the same as used in literature [4].
TABLE IV compares the SPSO, LPSO and GA for YTS-
SAP with six different size instances. In the table,

, , ,N N M L+ − are the numbers of loading jobs,
discharging jobs, trucks and storage locations, respectively.
The convergence rates of the three algorithms for the six
problems are listed in Fig. 3.

TABLE IV. COMPARISON WITH DIFFERENT
ALGORITHMS FOR SIX TEST INSTANCES

No. (, , ,)N N M L+ − Algorithm Mean Standard
deviation

Aver
time(s)

1 (4,4,3,8) GA 1.98e+002 0.00 4.7
 SPSO 1.98e+002 0.00 1.4
 LPSO 1.98e+002 0.00 1.1

2 (8,7,5,14) GA 6.18e+002 257 9.0
 SPSO 4.35e+002 167 1.4
 LPSO 4.69e+002 65 1.5

3 (15,15,10,30) GA 2.78e+003 686 21.4
 SPSO 2.33e+003 733 2.2
 LPSO 2.32e+003 464 2.3

4 (25,25,15,50) GA 1.05e+004 1707 39.7
 SPSO 1.00e+004 1702 3.6
 LPSO 9.35e+003 1392 3.4

5 (38,37,20,74) GA 2.50e+004 2740 66.6
 SPSO 2.47e+004 1929 4.9
 LPSO 2.29e+004 1690 4.6

6 (50,50,30,100) GA 2.98e+004 3996 103
 SPSO 3.08e+004 1345 6.5
 LPSO 3.27e+004 1471 6.2

0 50 100 150 200
0

500

1000

1500
(4,4,3,8)

Iteration

T
ot

al
 D

el
ay

SPSO

GA

LPSO

0 50 100 150 200
0

1000

2000

3000
(8,7,5,14)

Iteration

T
ot

al
 D

el
ay

SPSO

GA

LPSO

0 50 100 150 200
2000

4000

6000

8000

10000
(15,15,10,30)

Iteration

T
ot

al
 D

el
ay

SPSO

GA

LPSO

0 50 100 150 200
0.5

1

1.5

2

2.5
x 10

4 (25,25,15,50)

Iteration

T
ot

al
 D

el
ay

SPSO

GA

LPSO

0 50 100 150 200
2

3

4

5
x 10

4 (38,37,20,74)

Iteration

T
ot

al
 D

el
ay

SPSO

GA

LPSO

0 50 100 150 200
2

3

4

5

6
x 10

4 (50,50,30,100)

Iteration

T
ot

al
 D

el
ay

SPSO

GA

LPSO

Fig. 3. The average evolution curve comparisons for different algorithms

 From TABLE IV, we can see that the LPSO performs
best for three out of six problems. SPSO performs best for
one out of six problems, while GA only dominates the other
algorithms in one problem. In other words, the solution
obtained by PSOs is better than that obtained by GA for four
out of six problem instances. Furthermore, we can observe
that the GA algorithm get the biggest computational time for
each different scale instance and the LPSO algorithm get the
smallest computational time for most different scale
instances except for No.2 and No.3, on which the
computational time obtained by SPSO algorithm is smaller.
Besides, in the experimental study with almost the same
computational time, LPSO generates better solution than the
SPSO solution in most instances. Furthermore, SPSO and
LPSO converge faster than GA in almost all the cases, which
is demonstrated in Fig. 3.

 Based on the above experimental results, it can be found
that with smaller computational time, PSO-based approaches
are able to use its local search ability to explore good
solutions, especially for LPSO approach.

V. CONCLUSION
In this article, we describe the global version PSO

(SPSO) and local version PSO (LPSO) to tackle the
integrated Yard Truck Scheduling and Storage Allocation
Problem (YTS-SAP). Most published PSO applications are
designed to solve continuous optimization problems, but
litter work has been done to solve this kind of discrete
optimization problems (YTS-SAP). Hence, we focus on the
use of PSO to find the optimal solution of YTS-SAP. In the
experimental studies, SPSO (global version of PSO) is
proved to have a fast convergence rate, while with a

638

potential to converge to local minima. To deal with this
issue, LPSO (local version of PSO) with neighbor
communication strategy is used to solve YTS-SAP. We
evaluated the performance of the three algorithms using six
different scale instances. The mean objective value curves,
together with computational results and time demonstrate
the superiority of the PSO-based approaches compared with
GA-based approach. In particular, we can highlight the
ability of the LPSO of generating excellent average results,
as well as small computational time.

ACKNOWLEDGMENT
This work is partially supported by The National Natural

Science Foundation of China (Grants nos. 71001072,
71271140, 60905039), The Hong Kong Scholars Program
2012 (Grant no. G-YZ24), China Postdoctoral Science
Foundation (Grant nos. 20100480705), Special Financial
Grant from the China Postdoctoral Science Foundation
(Grant nos. 2012T50584, 2012T50639) and the Natural
Science Foundation of Guangdong Province (Grant nos.
S2012010008668, S2012040007098, 9451806001002294).
The authors also would like to thank The Hong Kong
Polytechnic University Research Committee for financial
and technical support.

REFERENCES
[1] E. K. Bish, L. Thin-Yin, L. Chung-Lun, J. W. C. Ng, and D. Simchi-

Levi, "Analysis of a new vehicle scheduling and location problem,"
Naval Research Logistics, vol. 48, pp. 363-85, 2001.

[2] E. K. Bish, "A multiple-crane-constrained scheduling problem in a
container terminal," European Journal of Operational Research, vol.
144, pp. 83-107, 2003.

[3] E. Bish, F. Chen, Y. Leong, B. Nelson, J. Ng, and D. Simchi-Levi,
"Dispatching vehicles in a mega container terminal," OR Spectrum,
vol. 27, pp. 491-506, 2005.

[4] D.H. Lee, J. X. Cao, Q. Shi, and J. H. Chen, "A heuristic algorithm
for yard truck scheduling and storage allocation problems,"
Transportation Research Part E: Logistics and Transportation
Review, vol. 45, pp. 810-820, 2009.

[5] Z. Xue, C. Zhang, L. Miao, and W.-H. Lin, "An ant colony algorithm
for yard truck scheduling and yard location assignment problems with
precedence constraints," Journal of Systems Science and Systems
Engineering, vol. 22, pp. 21-37, 2013.

[6] B. Niu,T. Xie, F.T.S. Chan, L.J. Tan and Z.X. Wang, "Particle swarm
optimization for the truck scheduling in container terminals,”
accepted by 2014 International Conference on Information
Science,Electronics and Electrical Engineering, April 2014.

[7] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proc.
IEEE International Conf. Neural Networks, Perth, WA, Australia,
1995, pp. 1942-1948 vol.4.

[8] S. Yuhui and R. Eberhart, "A modified particle swarm optimizer," in
Proc. The 1998 IEEE International Conf. IEEE World Congress on
Computational Intelligence, 1998, pp. 69-73.

[9] M. Fatih Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencyilmaz,
"Particle swarm optimization and differential evolution for the single
machine total weighted tardiness problem," International Journal of
Production Research, vol. 44, pp. 4737-4754, 2006.

[10] J. Kennedy and R. Mendes, "Population structure and particle swarm
performance," in Proc. CEC '02. Proceedings of the 2002 Congress.
Evolutionary Computation, 2002, pp. 1671-1676.

[11] S. Sumathi, T. Hamsapriya, and P. Surekha, Evolutionary
Intelligence: An Introduction to Theory and Applications with
Matlab: Springer Publishing Company, Incorporated, 2008.

639

