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Abstract—The Integrated Yard Truck Scheduling and 
Storage Allocation Problem (YTS-SAP) is one of the major 
optimization problems in container port which minimizes the 
total delay for all containers. To deal with this NP-hard 
scheduling problem, standard particle swarm optimization 
(SPSO) and a local version PSO (LPSO) are developed to 
obtain the optimal solutions. In addition, a simple and effective 
‘problem mapping’ mechanism is used to convert particle 
position vector into scheduling solution. To evaluate the 
performance of the proposed approaches, experiments are 
conducted on different scale instances to compare the results 
obtained by GA. The experimental studies show that PSOs 
outperform GA in terms of computation time and solution 
quality. 

Keywords—Yard truck scheduling; Storage allocation; 
Container terminal; Particle Swarm Optimization (PSO) 

I. INTRODUCTION  
As crucial interfaces between land and sea transportation 

modes, container terminals have been increasingly important 
and this trend is expected to continue. Therefore, the 
manager of container terminal should guarantee that the 
terminal system can handle the containers cost-effectively to 
meet the increased volume of container traffic. Operations in 
the field of container terminal involves Berth Allocation, 
Quay Crane (QC) Scheduling, Yard Crane (YC) Scheduling, 
Yard Truck (YT) Scheduling, Container Storage Allocation, 
etc. As we know, the YT connects the two ends, i.e., the QC 
and YC, therefore the YT scheduling is an important 
component of container terminal operations that needs to be 
addressed. In addition, the allocating strategies of storage 
space will greatly affect the efficiency on discharging 
operation. Hence, in this paper, the integrated Yard Truck 
Scheduling and Storage Allocation Problem (YTS-SAP) is 
considered.  

The YTS-SAP problem has attracted many attentions by 
researchers in the last decade. Bish et al. [1] firstly 
considered the two problems as a whole by formulating an 
assignment model and subsequently solving it via a heuristic 
algorithm. Bish [2] extended the problem to a more complex 
situation, which not only consider the yard location 
assignment and the vehicle dispatching, but also include the 
scheduling of loading and discharging operations at QC. 
Bish et al. [3] further solved the problem via new heuristic 
algorithms which the asymptotic and absolute worst-case 

performance ratios were identified. Lee et al. [4] developed a 
mixed integer programming model considered the yard truck 
scheduling and the storage allocation at the same time to 
minimize the weighted average of total requests delay and 
total trucks travel time. A hybrid insertion algorithm was 
proposed to solve the model. Xue et al. [5] studied the 
integration of YT scheduling, the QC scheduling and the 
yard location assignment for the discharging containers. A 
two-stage heuristic algorithm was developed for solving it.     

To the best of our knowledge, litter attention has been 
made to use PSO-based approach to solve YTS-SAP so far. 
Therefore,  based on our previous study of PSO-based 
approach for trucking scheduling in container terminals[6],  a 
PSO-based approach is proposed for YTS-SAP task in this 
paper. 

 Followed by the introduction is the mathematical model 
of the YTS-SAP in Section 2, A PSO algorithm with two 
types of mapping mechanisms are proposed to solve the 
YTS-SAP in Section 3. Computational experiments 
compared with GA are reported in Section 4. Finally, 
conclusions are summarized in Section 5. 

II. PROBLEM DESCRIPTION 
The YTS-SAP model used in this paper is the same as 

that used in literature [4] and the notations and mathematical 
model are given as follows. 

Let us assume that a certain number of YTs are 
dispatched to handle containers, each of which is assigned 
to one route. Let R  be the set of all routes indexed by r , 
where | |R m= . To simplify notation, we define job to be 
the movement of a container between its pick-up location 
and drop-off location denoted by i  and j . For the loading 
job, the container is moved from the yard location where it 
is stored to the QC location where the container will be 
loaded for shipment. For the unloading job, the origin is the 
QC location where the container is discharged, and the 
destination is a yard location which is a decision variable. 
The set of all containers is denoted by J where | | nJ = , 

including the set J + of loading containers and the set J −  
of unloading containers. For each job, a soft time window 
[ , )i ia b  will be given to it. ia  is the starting time of job i , 
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that is, job i   should be processed at or after ia  . The due 

time of job i , ib  can be violated with a penalty. The 

processing time it of job i  may encounter two conditions. If 

job i  is a loading job, it is known in advanced since the 
origin and destination of job i  is predetermined. On the 
other hand, if job i  is a unloading job, it  is determined by 
which storage location is allocated to job i . Let job i  start 
to be serviced at starting time iw , which is a decision 
variable, then the completion time of service is: 

i i ic w t= +                                                                        (1) 
The delay of job i  is: 

max{0, }i i id c b= −                                                       (2) 
If job j  is processed immediately after job i  by the same 

YT, the relation between iw  and jw  is: 

max{ , }j i i ij jw w t s a= + +                                           (3) 

where ijs  is the travel time (setup time) of empty trip 

between destination of job i  and origin of job j , which is 
also a decision variable.  

For each route, we add two dummy jobs rι  and rκ  to 
denote the initial and final location of each YT. Let 'J  be 
the set of { }r r RJ ι ∈∪  and ''J  be the set of { }r r RJ κ ∈∪ , 

denoting the origin of job i , io  and destination of job i , id , 
respectively. The set of all yard locations for all loading and 
discharging jobs is denoted by L  with indices p and q . 
We also denotes the travel time of YT along the shortest 
route between yard location p  and q   by pqτ . Let kζ , 

where k K∈  be the index for the storage location (SL) k , 
where K  is the set of all SLs. The followings is the 
processing time of job i  and the setup time from the drop-
off  location of job i  to the pick-up location of job j : 

k

,

,

if Request i is a loading request

if Request i is a discharging request and allocated to SLk

i i

i

o d

o ξ

τ

τ
（4）=it

k

,

,

if Request i is a loading request

if Request i is a discharging request and allocated to SLk

i j

j

d o

oξ

τ

τ
（5）=ijs

The followings are additional notations used in model 
description: 

ikx  1= ,if  job i  is allocated to SL k . 
0= ,otherwise. 

ijy  1= ,if job i  is connected to job j  in the 
same route. 

0= ,otherwise. 
Mathematical model: 

i
i J

Minimize d
∈
∑

Subject to  

1,ik
i J

x k K
−∈

= ∀ ∈∑                                                          (6) 

1,ik
k K

x i J −

∈

= ∀ ∈∑                                                          (7) 

''

1, 'ij
j J

y i J
∈

= ∀ ∈∑                                                           (8) 

'

1, ''ij
i J

y j J
∈

= ∀ ∈∑                                                                   (9) 

, ' ''i iw a i J J≥ ∀ ∈ ∪                                                     (10) 

i it b , ' ''i id w i J J≥ + − ∀ ∈ ∪                                      (11) 

i ij(1 ) t s , ' and ''j ij iw M y w i J J J+ − ≥ + + ∀ ∈ ∈  (12) 

, ,
i ii o dt i Jτ += ∀ ∈                                                           (13) 

k, ,
ii o ik

k K
t x i Jξτ −

∈

= ∀ ∈∑                                                     (14) 

, ,
i iij d os i J and j Jτ += ∀ ∈ ∈                                     (15) 

k , ,
jij o ik

k K

s x i J and j Jξτ −

∈

= ∀ ∈ ∈∑                          (16) 

, {0,1}, ', ''ik ijx y i J j J and k K∈ ∀ ∈ ∈ ∈               (17) 

, ' ''iw i J J∈ℜ ∀ ∈ ∪                                                     (18) 

,it i J −∈ℜ ∀ ∈                                                               (19) 

,ijs i J and j J−∈ℜ ∀ ∈ ∈                                         (20) 
 

III. METHODOLOGY 

A. The background of particle swarm optimization 
In 1995, Kennedy et al. [7] designed a population-based 

evolutionary computation technique named Particle swarm 
optimization (PSO) by drawing inspiration from the group 
foraging behavior of animals such as bird flocking, fish 
schooling. At the beginning of the evolutionary process, the 
system is initialized with random particles. Each particle flies 
in the searching space according to the experience of its own 
and its companions’. Therefore, particles are inclined to 
search for optima by updating generations. Let 

1 2( , , , )i i i inV v v v be the ith  particle’s velocity vector, and 

1 2(x , x , , x )i i i inX be the ith  particle’s position vector, 
respectively. The two following equations are applied to 
update each particle's velocity and position: 

1 2 j* * ()*( ) * ()*(G )ij ij ij ij ijv w v c rand P x c Rand x← + − + −    (21) 

ij ij ijx x v← +                                                                     (22) 

 Where ( 1,2, , )j j D=  represents the jth  dimension 
of the search space. The inertia weight w  was designed by 
Shi et al. [8], and it is applied to control the magnitude of the 
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previous velocities. The best previous position of particle 
( 1,2, )i i N= is denoted by 1 2( , , , )i i i inP p p p , while the 

historically best solution of the neighborhood is  represented 
by 

1 2(g ,g , ,g )nG . In global version of PSO, this 
neighborhood is the entire swarm, while in local one, this 
neighborhood is a subset of the particles. 1c  is the self 

learning factor and 2c  is the social learning factor. ()rand  
and ()Rand  are uniformly distributed random variables in 
[0,1] . 

      The scheduling problem in this paper consists of the 
containers scheduling sequence problem, trucks allocation 
problem, and storage space allocation problem, each of 
which is discrete combinatorial optimization problem. 
Hence, we need to find a suitable mapping method to apply 
PSO to discrete combinatorial optimization. 

B. Mapping mechanism 
The (n n l )m+ −+ + + dimensional 

particle
1 2 (n n l )

[ , , , ]i i i i m
π π π π + −+ + +

=  is used to map 

N + loading containers and N − discharging containers with 
L potential locations transported by M  trucks. The first 
n n+ −+ dimensions

1 2 ( )
[ , , , ]J

i i i i n n
π π π π + −+

=  denote the job 

permutation. The second 
l dimensions

( 1) ( 2) ( )
[ , , , ]L

i i n n i n n i n n l
π π π π+ − + − + −+ + + + + +

=  related to 

potential locations denote the index of locations available to 
the discharging containers which are negative integers from 
-1 to L− . The last 
m dimensions

( 1) ( 2) ( )
[ , , , ]T

i i n n l i n n l i n n l m
π π π π+ − + − + −+ + + + + + + + +

=  

denote the assignment method of the M trucks. The 
number of jobs assigned to these trucks must be m positive 
integers whose sum is equivalent to the number N  of jobs.  

Fig. 1 gives an example of a particle encoding schema , 
in which for dispatching two trucks (M 2)= will be 
designated to handle three discharging jobs ( 3)N − = and 
three loading jobs ( 3)N + = with three potential locations 
( 3)L = available to the discharging jobs (assume that the 
first three jobs are discharging jobs). The first truck is 
assigned to sequentially handle jobs 4, 1, 6, and the second 
truck is asked to sequentially handle jobs 3,2,and 5. The 
corresponding discharging job is located in 2ς , 1ς  and 3ς , 
respectively (see Fig. 2). 

  

  
 

Fig. 1. An example for encoding scheme of YTS-SAP 

11: 4 1 6Route L → → → 22 : 3 2 5Route L → → →

2ς 1ς 3ς

   

 

Fig. 2. Decoding of encoding scheme illustrated in Fig. 1 

TABLE I.  REPRESENTATION OF THE JOB PERMUTATION 
AND     CORRESPONDING POSITION VALUES 

Dimension, j 1 2 3 4 5 6 
Position value, J

iX  -0.87 -9.62 6.42 -1.10 2.30 5.83 

Job permutation, J
iπ  3 1 6 2 4 5 

 

In order to convert continuous position of particles 
1 2 ( )

[x , x , , x ]i i i i n n
X + −+

=  into job sequence 

1 2 ( )
[ , , , ]J

i i i i n n
π π π π + −+

=  in PSO, we introduced Smallest 

Position Value (SPV) rule to realize the mapping 
mechanism [9]. Based on the SPV rule, firstly, the particle 
value of each dimension in ascending order is sorted, and 
then the smallest floating value is placed as the smallest 
integer.  The next smallest floating value is put by the next 
smallest integer until that a complete job permutation is 
constructed. An example of the excitation mode using SPV 
rule is presented in TABLE I. 

In the truck solution representation part, we should 
guarantee that 

ij ( 1,2, , )T j mπ =  is positive integers whose 

sum is equivalent to the number N  of jobs
ij

1
( x )

n m

j n
n

+

= +

=∑ . The 

assignment algorithm for this mapping schema is presented 
as follows. Schematic example of the encoding procedure of 
the truck solution representation is shown in TABLE II, 
where 3 trucks are assigned to hand 9 jobs.  
Step 1. Replace ( 1) ( 2) ( )[x , x , , x ]T

i i n l i n l i n l mX + + + + + +=  by its 

absolute value | |T
iX ; 

Step 2. Set T
i ij

1

S x
n l m

j n l

+ +

= + +

= ∑ to obtain sum of each dimensions 

of T
iX ; 

Step 3. Set / *T T
ij ij ix S nπ =  , where n  is the total number 

of jobs; 
Step 4. Replace T

ijπ  by its rounded value; 

Step 5.  If 0T
ijπ = ,replace it by 1; 

Step 6. If 
1

m
T

ij
j

n or nπ
=

> <∑ , find the set of 

maximum(minimum) numbers of 

1 2[ , , , ]T T T T
i i i imπ π π π= and let first number in the set 

minus (plus) 1; 
Step 7.If 

1

m
T

ij
j

nπ
=

=∑ ,then stop; otherwise return to step 6. 
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TABLE II.  ENCODING PROCEDURE ILLUSTRATED IN 

ASSIGNMENT ALGORITHM( 9n = ) 

Value -1.41 -0.03 -2.92 
Step 1 1.41 0.03 2.92 
Step 2-3 2.88 0.09 6.03 
Step 4 3 0 6 
Step 5 3 1 6 
Step 6-7 3 1 5 

  

 As shown in Fig. 1, the second 
l dimensions

( 1) ( 2) ( )
[ , , , ]L

i i n n i n n i n n l
π π π π+ − + − + −+ + + + + +

= are also the 

permutation of the integers from -1 to L− (The minus here 
is used to  differentiate them from the job permutation part). 
Therefore, the SPV rule is introduced again to formulate the 
permutation of storage locations. A simple example is 
provided in TABLE III to illustrate the encoding procedure. 

TABLE III.   REPRESENTATION OF THE STORAGE 
PERMUTATION AND CORRESPONDING POSITION VALUES 

Dimension, j 1 2 3 4 5 6 
Position value, L

iX  2.89 6.35 3.20 -3.16 -4.20 -3.17
Storage permutation L

iπ  -4 -6 -5 -3 -1 -2 
 

C. Initial population 
Each particle’s positions and velocities are updated using 

the following equations: 
1

min max min 1( )*ijx x x x r= + −                                                 
(23) 

1
min max min 2(v )*ijv v v r= + −                                                 

(24 ) 
where min 0x = , max 10x = , min 1v = − , and max 1v = . 

1r and 2r  represent  random values uniformly distributed in 
interval [0, 1]. 

 

D. Fitness computation 
In YTS-SAP, the delay of job k  processed by truck m  

implied by particle i , imd ( )k  equal to 

immax{0, ( ) b (k)}imC k − ,where ( )imC k is the completion 
time and imb (k) is the due time of job k . Let ( )mo i be the 
summation of delay generated by jobs assigned to truck 

( 1,2, , )m m M= based on the schedule iπ  implied by 
particle i , the objective of YTS-SAP is to minimize the total 
delay of jobs, i.e.       

1

( ) ( ) m (1,2, , )
M

m
m

O i o i M
=

= =∑                        

(25) 

E. Computational procedure 

The whole computation procedure of the PSO for the 
YTS-SAP  is described as follows: 

Step 1: Set the parameter’s values; 
 Set the population size (denoted by Ps ); 
 Set the maximum iteration (denoted by MaxGen ), 

startw , endw , 1c , 2c ; 
 Set Dim  as the number of dimensions to represent 

N + loading jobs, N − discharging jobs, M trucks and 

L  storage locations, which equal to (n n l )m+ −+ + + . 
Step 2: Initialization; 

 Set iteration 1t = ; 
 Initialize Ps  particles stochastically using Equation 

(23), 1{ , 1, 2, , }iX i Ps= ,where 
1 1 1 1

1 2 (n n l )
[ , , , ]i i i i m

X x x x + −+ + +
= ; 

 Initialize the initial velocities for particle i  
stochastically using Equation (24), 

1{V , 1,2, , }i i Ps= ,where 
1 1 1 1

1 2 (n n l )
[v , v , , v ]i i i i m

V + −+ + +
= ; 

 Convert current particle 1( 1,2, , )Xi i Ps=  to the 

schedule 1 1 1 1
1 2 (n n l )

[ , , , ]i i i i m
π π π π + −+ + +

=  according to 
the SPV rule and Algorithm 1; 

 Evaluate schedule 1
iπ  of each particle i  in the swarm 

by the objective function 1( )O i  for 1,2, ,i Ps= ; 
 Set the personal best position with a copy of particle 

itself, i.e. 1 1
i iP X= , together with its best fitness 

value, 1( )pb
if O i= for 1,2, ,i Ps= ; 

 Find the lowest fitness value in the swarm, 
i.e. 1min{ }l if f=  for 1,2, ,i Ps= with its 

corresponding positions 1
lX .Set the global best 

to 1 1
lG X= , with its fitness value gb lf f= . 

Step 3: Update iteration counter; 
 1t t= + . 

Step 4: Update inertia weight; 
 ( ) / *t

start start endw w w w MaxGen t= − − . 
Step 5: Update velocity and position 

 Use Equation (21) and Equation (22) to update 
velocity and position, respectively. 

Step 6: Find schedule; 
 Apply the SPV rule and the Assignment Algorithm to 

find the schedule 1 2 (n n l )
[ , , , ]t t t t

i i i i m
π π π π + −+ + +

= for 
1,2, ,i Ps= . 

Step 7: Update the personal best; 
 Use the schedule t

iπ  to evaluate each particle again. 

That is, the personal best is updated as t t
i iP X= and 

pb t
i if f=  if t pb

i if f< for 1,2, ,i Ps= . 
Step 8: Update the global best; 

 Set min{ }t pb
l if f= ( { , 1,2, , })l i i Ps∈ = to obtain 

the minimum value of the personal best, the global best 
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is updated as t t
lG X= and gb t

lf f=  if t gb
lf f< . 

Step 9: Stopping criterion. 
 If the current iterations exceeds MaxGen, stop and 

output computational results. Otherwise, return to step 
3. 
 

IV. COMPUTATIONAL EXPERIMENTS 
In the experimental study, standard PSO (SPSO) and 

local PSO (LPSO) are tested compared with the real-coded 
genetic algorithm (GA) on YTS-SAP. The neighbor 
topology of LPSO is von Neumann configuration [10]. 
Based on the results of test runs, we set the parameters of 
PSOs as: 0.9startw = , 0.4endw = , 1 2 2c c= = . A real-coded 
genetic algorithm with Gaussian mutation and intermediate 
crossover is employed in our experiment and the involved 
parameters are set the same as that used in literature [11]. 

We coded the three algorithms in matlab7.0 and 
implemented it on a Intel Core i5, 2.27 GHz, 4 GB PC, 
under the Windows 7 operation system. The population size 
and the maximum number of iterations of three algorithms 
are set as 200 and 80, respectively, for all the experiments. 
Each algorithm was simulated with 10 runs for every 
problem. 

We test the algorithms on randomly generated problems 
with their generating way the same as used in literature [4]. 
TABLE IV compares the SPSO, LPSO and GA for YTS-
SAP with six different size instances. In the table, 

, , ,N N M L+ −  are the numbers of loading jobs, 
discharging jobs, trucks and storage locations, respectively. 
The convergence rates of the three algorithms for the six 
problems are listed in Fig. 3. 

TABLE IV.   COMPARISON WITH DIFFERENT 
ALGORITHMS FOR SIX TEST INSTANCES 

No. ( , , , )N N M L+ −  Algorithm Mean Standard 
deviation

Aver 
time(s)

1 (4,4,3,8) GA 1.98e+002 0.00 4.7 
  SPSO 1.98e+002 0.00 1.4 
  LPSO 1.98e+002 0.00 1.1 

2 (8,7,5,14) GA 6.18e+002 257 9.0 
  SPSO 4.35e+002 167 1.4 
  LPSO 4.69e+002 65 1.5 

3 (15,15,10,30) GA 2.78e+003 686 21.4 
  SPSO 2.33e+003 733 2.2 
  LPSO 2.32e+003 464 2.3 

4 (25,25,15,50) GA 1.05e+004 1707 39.7 
  SPSO 1.00e+004 1702 3.6 
  LPSO 9.35e+003 1392 3.4 

5 (38,37,20,74) GA 2.50e+004 2740 66.6 
  SPSO 2.47e+004 1929 4.9 
  LPSO 2.29e+004 1690 4.6 

6 (50,50,30,100) GA 2.98e+004 3996 103 
  SPSO 3.08e+004 1345 6.5 
  LPSO 3.27e+004 1471 6.2 
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Fig. 3. The average evolution curve comparisons for different algorithms 

  From TABLE  IV, we can see that the LPSO performs 
best for three out of six problems. SPSO performs best for 
one out of six problems, while GA only dominates the other 
algorithms in one problem. In other words, the solution 
obtained by PSOs is better than that obtained by GA for four 
out of six problem instances. Furthermore, we can observe 
that the GA algorithm get the biggest computational time for 
each different scale instance and the LPSO algorithm get the 
smallest computational time for most different scale 
instances except for No.2 and No.3, on which the 
computational time obtained by SPSO algorithm is smaller. 
Besides, in the experimental study with almost the same 
computational time, LPSO generates better solution than the 
SPSO solution in most instances. Furthermore, SPSO and 
LPSO converge faster than GA in almost all the cases, which 
is demonstrated in  Fig. 3.  

 Based on the above experimental results, it can be found 
that with smaller computational time, PSO-based approaches 
are able to use its local search ability to explore good 
solutions, especially for LPSO approach. 

V. CONCLUSION 
In this article, we describe the global version PSO 

(SPSO) and local version PSO (LPSO) to tackle the 
integrated Yard Truck Scheduling and Storage Allocation 
Problem (YTS-SAP). Most published PSO applications are 
designed to solve continuous optimization problems, but 
litter work has been done to solve this kind of discrete 
optimization problems (YTS-SAP). Hence, we focus on the 
use of PSO to find the optimal solution of YTS-SAP. In the 
experimental studies, SPSO (global version of PSO) is 
proved to have a fast convergence rate, while with a 
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potential to converge to local minima.  To deal with this 
issue, LPSO (local version of PSO) with neighbor 
communication strategy is used to solve YTS-SAP. We 
evaluated the performance of the three algorithms using six 
different scale instances. The mean objective value curves, 
together with computational results and time demonstrate 
the superiority of the PSO-based approaches compared with 
GA-based approach. In particular, we can highlight the 
ability of the LPSO of generating excellent average results, 
as well as small computational time. 
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