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Abstract— Group Counseling Optimizer (GCO) is a recently
proposed population-based metaheuristics that simulates the
ability of human beings to solve problems through counseling
within a group. It is motivated by the fact that the human
thinking ability is often predicted to be the most rational.
This research article examines the performance of GCO on
the benchmark test suite designed for the CEC 2014 Competi-
tion for Computational Expensive Optimization. Experimental
results on 24 black-box optimization problems (8 test problems
with 10, 20 and 30 dimensions) have been tabulated along with
the algorithm complexity metrics. Additionally we investigate
the parametric behavior of GCO based on these test instances.

I. INTRODUCTION

DRAWBACKS of the existing derivative-based numeri-
cal methods for solving difficult computational prob-

lems have led scientists to be on the constant lookout for
natural phenomenon that serves as a source of inspiration.
The evolutionary computation (EC) paradigm developed as
an intermediate field in relation to biological evolution serv-
ing as the model for optimizing problem domain. This has
led researchers to rely on metaheuristic algorithms founded
on simulations to solve engineering optimization problems.
A common factor shared by these algorithms is that they
combine rules and randomness to imitate some natural phe-
nomena. Last few decades have seen an incredible growth in
the field of nature-inspired metaheuristics. Two families of
algorithms that primarily constitute this field today are the
Evolutionary Algorithms (EAs) [1]-[3] and the algorithms
based on Swarm Intelligence (SI) [4]-[7]. While the EAs
involve change in distribution of the trial solutions over a
search space following genetic operations like mutation, re-
combination, and natural selection principles from Darwinian
evolution theory, SI algorithms mostly simulate the dynamics
of an intelligent group of social beings to converge to the
promising regions of the search space. The two families
can very well complement each other and already there has
been a good trend of hybridizing the algorithms from both
domains.
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However majority of works involving SI have focused
on insect colonies, fish schools, bird flocks, etc. Instead of
focusing on such living organisms, we focus our attention
on the behavior of human beings in problem solving through
counseling within a group [8], [9]. The field of counseling
occupies a pivotal role in sciences like psychology and
sociology, but may appear rather obscure in relation to
computational optimization. We would like to point out that
there have been hardly any work applying the concept of
counseling to optimization except in [10], where it was
proposed for the first time by Eita and Fahmy. A recently
proposed multiobjective variant of GCO [11] gave promising
results in multi-objective optimization problems.

In this paper a connection is established between counsel-
ing and population-based algorithms through items of anal-
ogy based on which GCO is developed. Thus, we investigate
some of the basic counseling concepts and procedures in an
attempt to present counseling as an appealing metaphor for
computational optimization. In this conceptual framework,
we identify twenty striking items of significant analogy and
utilize these metaphoric items to develop what we call a
Group Counseling Optimizer and test it on recently proposed
test problems and thus analyze the parameters involved.

The organization of the remainder of the paper is as
follows: in Section II analogy has been drawn between
group counseling and the optimization based on population-
based metaheuristics. In Section III, we lay down the steps
for the proposed algorithm and explain them in details. In
Section IV, the details and results of experimentation have
been analyzed. Finally Section V concludes the paper with
discussions on future work.

II. ANALOGY BETWEEN GROUP COUNSELING AND
POPULATION-BASED OPTIMIZATION

In our day to day life, when faced with problems, we
often approach other people: someone with whom we can
discuss our problems, get various solutions suggested by
them, experiment with those solutions and ultimately arrive
at a resolution. Such instances can be seen when people are
faced with relationship difficulties or wish to switch jobs or
alter place of residence. The person, for instance, who is
willing to change his or her job seek help of another person
and may be advised by someone who has experience of job
opportunities that exist in related careers [12].

Fundamentally we can think of counseling as a method
of solving a problem [8]. Individual counseling involves a
counselor who helps another person, called counselee, to find
solution to the problem in order to resolve it [12]. But from
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TABLE I: Analogy between Group Counseling and Population-based Optimization

Item Group counseling Population-based optimization
(1) Problem solv-
ing. A life problem is to be solved. A computational problem is to be solved

(2) Purpose of solu-
tion. The most appropriate way out of a difficulty is sought. The optimum value of an objective function is sought.

(3) Method of solu-
tion.

There is no one specific method for doing counseling. The
approach varies from one situation to another.

There is no one specific method for achieving optimality. The
approach is problem-dependent.

(4) Increments of
solution.

Counseling is affected in increments through a number of
successive counseling sessions.

Optimization is effected in increments through a number of
successive computational iterations.

(5) Work-force. Counseling is carried out by a group of participating mem-
bers, a mini-society.

Optimization is carried out by a population of candidate vectors,
a subspace of the real vector space.

(6) Role of partici-
pants.

Group members act as counselor at times and as counselee
at other times.

Candidate vectors contribute to the improvement of a solution
at times and receive improving contributions at other times.

(7) Best possible
participation.

Group members use their best possible experiences in doing
counseling.

Candidate vectors use their best possible positions in solution
improvement.

(8) Equal chances. All group members are eligible to give and receive help.
All candidate vectors are eligible to give and receive contribu-
tions. Contributing vectors are chosen according to a uniform
distribution probability measure.

(9) Active members.

Not every group member necessarily participates in doing
counseling - only verbally active members. Also, partici-
pating members vary with the variation of problems being
discussed.

Not every candidate vector necessarily contributes to the im-
provement of vectors - only a subset of vectors chosen accord-
ing to a probability measure. Also, contributing vectors vary
with the variation of vector components being improved.

(10) Brainstorming. Good ideas provided by counselors may be combined
together to form a better idea.

Good contributions from candidate vectors may be added
together in specific proportions to form a better contribution.

(11) From general
terms to details.

Life problems are first discussed in general terms and then
fine details are dealt with.

The search technique proceeds first in relatively large steps in
an exploration stage, and then in small steps in an exploitation
stage.

(12) Thorough in-
vestigation. Immature solutions are to be avoided. Local optima should not be trapped in; premature convergence

is to be avoided.
(13) Problem com-
plication.

Multidimensional life problems need a compromise between
conflicting solutions.

Multi-objective function optimization needs a compromise be-
tween conflicting solutions.

(14) Inferior solu-
tion.

Counseling, in the domain of support, can only help to
contain the counselee’s distress.

A suboptimal solution can, in certain cases, be all what is
obtainable.

(15) Dependence on
other members.

A group member can solve his problem after receiving help
from other members.

A candidate vector component can be improved through con-
tributions from other vectors.

(16) Self-
dependence.

Sometimes, a group member can solve his problem without
receiving explicit help from other members through self-
counseling, after self-discovery.

Sometimes, a candidate vector component can improve itself
without receiving contributions from other vectors through
self-improvement, according to a probability measure.

(17) Remaining un-
changed.

Sometimes, a group member is persuaded to stay where he
is; otherwise, things will worsen.

Sometimes, a candidate vector is kept unchanged; otherwise,
the objective function will take on worse values.

(18) Standardiza-
tion.

Counseling approaches and counselor’s competencies con-
form to standard norms for a trustworthy counseling job.

Optimization approaches are tested using benchmark functions,
and rotated benchmark functions, to demonstrate efficiency and
robustness.

(19) Judgment. The group progress is evaluated to check that the counseling
job has been satisfactorily done.

The objective function is evaluated to check that convergence
to the global optimum has successfully occurred.

(20) Termination. The counseling process terminates at the end of sessions. A
termination policy is followed.

The optimization process terminates at the end of iterations. A
stopping criterion is used.

our daily experience, we can say that we spend majority
of our time in the vicinity of more than one individual, or
in groups. So there is another kind of counseling known
as group counseling [9]. The unique advantage here is that
group members get to know that their peers also have
problems, and can advise on new ways of resolving problems
by observing other group members deal with those problems
over time. Contrary to individual counseling, a group enables
each individual in availing assistance from others as well as
in providing the same.

In a group, the members develop a sense of mutual co-
operation so that they can understand and help their peers
towards the betterment of life. The emerging trust in self
and others allows the sharing of ideas and behaviors in a
safe testing ground before applying them in relationships
outside the group. Group members come to function not
merely as counselees, but they practically act as counselees

at certain times in the sessions to resolve their problems and
as counselors to advice on such problems likewise. Unlike
individual counseling, where unidirectional information and
care flow occurs, it is multi-directional in a group, where
each member participates in giving and receiving of advice.

Population-based optimization algorithms have been ap-
plied to a plethora of practical applications by designing
an objective function that characterizes our main goal. It
is mostly complex and is computed by a solution vector of
parameters that can scale across varying range of dimension-
ality. Considering the nature and procedural phases of coun-
seling among people, we opine that there exist many highly
interesting aspects of correlation between a group counseling
process and a population-based optimization process, in spite
of both being in completely different settings. We bring out
the resemblance through items of analogy between the two
processes in Table I that well justifies the adoption of group
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counseling as a metaphor for population-based optimization.
This is an important contribution of this article.

III. THE GCO ALGORITHM

GCO is a population-based, derivative-free, optimization
algorithm designed for detecting the global optimum. As
stated earlier, our work is inspired from the problem solving
ability of humans through counseling within a group. The
various points of analogy between the group counseling
process and a population-based optimization process, consol-
idated and itemized in Table I, pave way for a novel optimiza-
tion approach with group counseling being the metaphor.
Reference to the items of Table I will be made whenever
the need arises. When we say, for instance, cf. Item 1
(problem solving), we refer to Item 1, entitled ’problem
solving’ in Table I, for comparison of a certain computational
aspect with a resembling group-counseling aspect in relation
to problem solving. The functioning of the computational
scheme involved in the proposed algorithm is as follows.

The problem under investigation is a single-objective, mul-
tivariate, unconstrained, continuous optimization problem.
Given a scalar objective function f( �X), the task here is to
obtain a solution vector �X∗, which optimizes f( �X)(f : Ω ⊆
�n → �) such that f( �X∗) ≤ f( �X)∀ �X ∈ Ω, where Ω is the
search space domain.

Population-based metaheuristics rely on parallel search by
instantiating a trial population of, say m individuals, each of
which can be represented as

�Xi = [x1, ....xj , ....xn−1, xn]; i = 1, 2, .....m; j = 1, 2...n
(1)

where m is the population size and n is the dimensionality
of the problem (function) in hand.

Each component xj has its own bounded interval of values

�xmin = [x1,min, x2,min, ...., xn,min]
�xmax = [x1,max, x2,max, ...., xn,max]

(2)

which is considered the search range of xj and is expressed
as [xj,min, xj,max]. This means that the length of the range
of variation of xj is

rangej = xj,max − xj,min (3)

The problem at hand is to be computationally solved in
the conceptual framework of the solution of a life problem
through group counseling; cf. Item 1 (problem solving). The
solution vector �X∗ and the corresponding global optimum
f( �X∗) are obtained as the most appropriate way out of a
difficulty found in group counseling; cf. Item 2 (purpose
of solution). As said, there is no one unique method for
achieving optimality. The parameters of the approach taken
are somewhat problem-dependent, in both optimization and
group counseling; cf. Item 3 (method of solution).

This vector subspace corresponds to the mini-society of
participating members (persons) in group counseling; cf.
Item 5 (work-force). The population is gradually improved
upon in increments through successive iterations just as

counseling is incrementally affected through sequential coun-
seling sessions; cf. Item 4 (increments of solution). Thus,
an iteration with the m solution vectors, is analogous to
an ongoing session of group counseling with m members
participating in it. Member i is represented by a vector
�Xi, which is composed of n components (xi,j), designating
what we consider the best experiences (so far) gained by
the member (selection mechanism, detailed later). Candidate
vectors contribute towards solution improvement by using
their best possible positional values similar to group members
using their best possible experiences in doing counseling; cf.
Item 7 (best possible participation). Also note that candidate
vectors, at times, help in solution betterment of other mem-
bers (act as counselors) and at other times receive improving
contributions (act as counselees) likewise; cf. Item 6 (role
of participants). Thus every member (candidate vector) is
eligible to give and receive information; cf. Item 8 (equal
chances).

The representation of a specific member usually varies
from one iteration to other [experiences vary (presumably
improve) from session to session]. The components of can-
didate vector is updated (hopefully improve) by invoking
contributions (experiences) of the corresponding components
in some (not necessarily all) other vectors, or by directly
altering the current value of the component itself. Hence
there are two strategies at work, each with their distinct
properties. The situation can be compared to what happens in
group counseling, where a person – in solving his problem –
asks other people for help; cf. Item 15 (dependence on other
members) or, sometimes, he depends on himself only after
self-discovery; cf. Item 16 (self-dependence).

Maintaining close resemblance to group counseling, where
life problems are first discussed generally and then fine
details are dealt with, the search for optimal solution in
the GCO algorithm proceeds first in relatively large steps
(exploration stage), and then in small steps (exploitation
stage); cf. Item 11 (from general terms to details). The search
is terminated when a stopping criterion is met identical to the
ending of a group counseling session following a termination
policy; cf. Item 20 (termination). Although there are many
stopping criterion proposed in literature, we prefer to employ
a certain maximum number of function evaluations (FEs) of
the objective function which is closely followed in practical
applications (offline) with a fixed FEs budget.

The proposed GCO algorithm employs four algorithmic
parameters as given below:
• Number of group members acting as counselors (c)

generally c ≤ m− 1 .
• Counseling probability cp, set in the range [0, 1].
• Search range reduction coefficient, red ∈ [0, 1].
• Transition rate from the stage of exploration to that of

exploitation tr.
The role of these parameters will become apparent as we

proceed. To prevent repetition, we would like to define few
notations that have been constantly maintained throughout.
m : Number of search agents (population members) used.

1078



n : Dimensionality of the input vector to objective function
f( �X∗).
i ∈ {1, 2, ...m} : Refers to the ith member.
j ∈ {1, 2, ...n} : Refers to the jth component of a vector.
xi,j : Refers to the jth component of member i i.e. �Xi.
�X ′i : Modified solution corresponding to �Xi.
itr ∈ {1, 2, ...itr max} : Refers to the present iteration

number with maximum being itr max.
rand(L, U) : An uniform random number in the contin-

uous range (L, U) unless otherwise mentioned.
The algorithm starts with the initialization of the vector

components xi,j being placed randomly in the search space.
This is done in accordance with a beta probability distribution
[13], [14],

β(x) =
xa−1 (1− x)b−1

B(a, b)
, 0 < x < 1 (4)

where the function in the denominator is a beta function
defined as

B(a, b) =

1
∫

0

ta−1 (1− t)b−1 dt (5)

Here we have set both the shaping parameters a and b
to 0.1, such that they satisfy the condition a = b < 1. In
such a case, a symmetric U-shape of the density function
is obtained. This affects the candidate solutions by, most
probably, locating them near the boundaries of the search
space such that the global optimum is assumed to be well
within this candidate solution set. This is followed by the
evaluation of the trial population.

The iterative steps are concerned with the sequential
solution improvement. For each solution �Xi, we produce
a modified solution �X ′i on a component basis involving
a decision making process. This is implemented by
instantiating a counseling decisive coefficient such that
cdc ∈ rand(0, 1) and comparing its value to the counseling
probability cp. We choose to do other-members counseling
when cdc is less than or equal to cp. Otherwise self-
counseling is implemented. We explain how to calculate
x′i,j for a given xi, j in each of these strategies.

Other-members counseling (cdc ≤ cp)

In this strategy, �X ′i is regarded as the counselee and
asks for counseling of c other members (counselors), chosen
randomly out of the population, so that a modified component
x′i,j is obtained; cf. Item 9 (active members). The value of
x′i,j is calculated by summing weighted values of the cor-
responding jth component (best experiences) of the c coun-
selors. These are the contributions of the relevant counselors,
in a brainstorming process; cf. Item 10 (brainstorming). The
form of x′i,j is expressed as

x′i,j =

c
∑

q=1

wq.xcq,j (6)

where wq ∈ rand[0, 1] is the weight factor of component
j in counselor q (q ∈ {1, 2....c}) and they add up to unity
c
∑

q=1
wq = 1, cq is a random integer in the range [1, m] with

a uniform distribution. Note that, according to Eq. 6, we
generate c such random numbers for each component xi,j .
The component denoted by xcq,j is the value of component
j of counselor q (which is member cq). It should be evident
that the set of c counselors in general varies from component
to component (as j varies from 1 to n).

Self-counseling (cdc > cp)

Here, x′i,j is obtained through modification of the current
component xi,j . Thus x′i,j depends on the best experience
xi,j of member i with a specific modification. In the problem
statement, each component in �Xi is assigned an overall
bounded range. Let the length of this range for component j
be denoted by rangej as in Eq. 3. We choose to search for
a modification value of the component in a reduced range
with length red × rangej , where red is the search range
reduction coefficient. The value of red ∈ [0, 1] is fixed for
all components throughout the simulation.

Component j is updated iteratively in a maximum range
[−mdf maxitrj ,mdf maxitrj

]

about the current component,
where

mdf maxj =
1

2
× red× rangej . (7)

The above equation implies that the maximum modifi-
cation range is divided into two halves about the current
component. This results from adding the current component
to the modification range. The maximum modification value
in a certain iteration, is estimated from the relation

mdf maxitrj = mdf maxj

(

1− itr

itr max

)tr

. (8)

The exponent tr above refers to the rate at which the
search method undergoes transition from exploration to ex-
ploitation. Relation 8 is a rule of thumb, supported by the
mathematical illustration of Fig. 1, which shows the variation
of mdf maxitrj from mdf maxj (at the very beginning of
iterations) to 0 (at itr max) for different values of tr.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

Iteration

tr: 5
tr: 3
tr: 1

Fig. 1: Effect of transition rate tr on mdf maxitrj .

It is seen that at a certain iteration, the value of
mdf maxitrj decreases as tr increases. In other words, as
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tr increases, the transition from exploration to exploitation
occurs in a smaller number of iterations. Here the value
of mdf maxitrj determines whether the algorithm performs
exploration or exploitation in a certain stage. This is in accor-
dance with the well-accepted principle that all optimization
algorithms have to attain a tradeoff between exploration and
exploitation so that the global optimum is eventually attained.
For each component xi,j , we generate a random number in
the range

[−mdf maxitrj ,mdf maxitrj

]

and this is added to
xi,j to obtain the modified value of the form

x′i,j = xi,j + rand
(−mdf maxiterj ,mdf maxiterj

)

. (9)

For solutions exceeding the bounds, they are reset using
a repair operator as

if x′
i,j > xj,max

then x′
i,j = xi,j + rand(0, xj,max − xi,j)

if x′
i,j < xj,min

then x′
i,j = xi,j + rand(xj,min − xi,j , 0)

(10)

Following the generation of �X ′i , its fitness is evaluated as
f( �X ′i); cf. Item 19 (judgment). A one to one comparison
takes place between �X ′i and �Xi. If f( �X ′i) is better (less
for minimization or greater for maximization) than f( �Xi),
then �X ′i replaces �Xi; otherwise, �Xi is kept unchanged for
subsequent improvement; cf. Item 17 (remaining unchanged).
The steps are repeated till a termination criterion is met.
Finally, out of the m solutions, the best solution is taken as
the optimum solution �X∗. The outline of the GCO algorithm
is presented in the form of pseudocode in Algorithm 1.

Algorithm 1: Group Counseling Optimizer
input : i) Control parameters: c, cp, red, tr.

ii) Objective function f( �Xi).
iii) Dimensionality n and population size m.

output: Solution �X∗ and functional value f( �X∗).
1 begin
2 Initialize trial population X using Eq. (4) and (5). ;
3 Evaluate the candidate solutions using f( �X);
4 Compute itr max and set itr ←− 0;
5 while termination criteria is not met do
6 Update mdf maxitr

j ∀j ∈ 1, 2, ...n ;
7 Set X′ ←− ∅;
8 for 1x ∈ X do
9 Instantiate cdc. 2cdc ←− rand(0, 1);

10 if cdc ≤ cp then
11 Generate x′ using other-members counseling.
12 else
13 Generate x′ using self counseling;
14 Apply repair operator using Eq. (10);
15 end
16 X′ ←− X′ ∪ x′;
17 Evaluate x′;
18 end
19 for x ∈ X do
20 if f(x′) ≤ f(x) then
21 Replace x by x′ and f(x) by f(x′) ;
22 end
23 end
24 itr ←− itr + 1;
25 end
26 end

1x here actually represents �Xi.
2 This action is instantiated n times for each component.

IV. EXPERIMENTATION

The performance of GCO is evaluated on the benchmark
set proposed in the Technical Report titled Problem Defini-
tions and Evaluation Criteria for Computational Expensive
Optimization [15]. The test suite, cf. Item 18 (standard-
ization), is composed of 24 benchmark functions (8 test
problems spanning across 10, 20 and 30 dimensions) and
are treated as black-box optimization problems.

A. Simulation Environment

The experimentation has been performed under the fol-
lowing system configuration:
• Windows 7 Home Premium SP1
• Processor: Intel(R) Core(TM) i5-2450 @ 2.5 GHz
• RAM: 4.00 GB (usable 3.90 GB)
• Language: MATLAB R2010a

B. Parametric settings

The issue of control parameters has been an area of
active research in optimization algorithms and is usually
problem dependent. Although different problems require
varying parametric setting, it is preferable for an algorithm
to use a common parametric setting. Our aim here is not
to fine tune the parameters for each problem of varying
dimensionality but to select a general setting. As stated
above, GCO algorithm makes use of 4 control parameters :
number of counselors (c), counseling probability (cp), search
range reduction coefficient (red) and transition rate (tr).

We would like to state that, other member counseling
permits exchange of information among the members and
leads to diversity determined by the value of number of
counselors (c). A high value of c and cp means a high
probability of information sharing among a greater group
leading to slow convergence and is preferable for multimodal
landscapes. Whereas low value of c and cp ensures local
search and enhances convergence rate (unimodal landscape
preferred). Likewise population size (m) is another factor.
Although a high value of m ensures good exploration but
considering the serious limitation of FEs here, we need a
tradeoff between exploration and exploitation (even though
tr also controls this rate through nonlinear variation).

Based on these limitations and considerations, we set the
control parameters to the following setting.

Population size (m) : 25
Number of counsellors (c) : 2
Counselling Probability (cp) : 0.7
Reduction co-efficient (red) : 0.4
Transition Rate (tr) : 2.

C. Performance

The experimental setting used here is according to the
guidelines established in [15]. The FEs budget (MaxFES) has
been fixed at 50× n where n is the problem dimensionality
and take values 10, 20 and 30. The error value has been
recorded for 20 independent sample runs. The runs are
terminated on expending MaxFEs and the final error value
obtained is presented for 8 test problems categorized as 10D,
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20D and 30D functions and enlisted in Table II, III and
IV respectively. Additionally, we have plotted the best-of-
the-run error values in Fig. 2 and showed the variation in
obtained error with the increasing iterations.

From the results obtained, we can see that the performance
of GCO mostly deteriorates with increasing dimensionality.
This is quite evident from the exponential rise in the search
space which makes it difficult for any Cartesian co-ordinate
based search process to detect optimum efficiently. But this
is not the case entirely; for Shifted Step function (F10 −
F12) and Shifted Griewank‘s function (F16−F18), the mean
error value remains constant approximately. The performance
fluctuates to some extent in Shifted and Rotated Rosenbrock‘s
functions which may be due to the presence of narrow valley.

TABLE II: Result table for 10D

Function Best Worst Median Mean Std

F1 3.2252e+0 2.9585e+1 1.0863e+1 1.2255e+1 6.3649e+0
F4 8.4590e+0 2.2170e+2 2.6284e+1 4.1351e+1 4.6139e+1
F7 1.5615e+1 2.0940e+2 8.4916e+1 8.8506e+1 5.5348e+1
F10 3.0000e+0 2.7000e+1 7.0000e+0 1.0095e+1 6.9347e+0
F13 3.9171e+0 9.9356e+0 5.9863e+0 6.3547e+0 1.7083e+0
F16 1.2409e+0 4.5086e+0 1.8906e+0 2.1126e+0 6.7736e-1
F19 4.4196e+1 1.7999e+2 8.6354e+1 9.2782e+1 3.2193e+1
F22 3.3953e+0 6.4780e+1 4.7905e+1 4.7361e+1 1.0320e+1

TABLE III: Result table for 20D

Function Best Worst Median Mean Std

F2 3.5974e+1 2.1703e+1 1.0735e+1 1.1871e+1 5.8804e+0
F5 7.7910e+1 1.7877e+2 6.8882e+1 9.3442e+1 4.7450e+1
F8 3.0000e+0 2.6173e+2 1.2994e+2 1.4443e+2 4.7573e+1
F11 3.3285e+0 1.4000e+1 9.0000e+0 8.4762e+0 3.0103e+0
F14 1.2826e+0 8.9372e+0 4.3345e+0 4.5777e+0 1.1552e+0
F17 4.9111e+1 2.8568e+0 1.7657e+0 1.8898e+0 4.9443e-1
F20 3.0956e+1 1.7232e+2 1.0844e+2 1.1264e+2 2.6665e+1
F23 3.3953e+0 1.2478e+2 8.5884e+1 7.9049e+1 2.2262e+1

TABLE IV: Result table for 30D

Function Best Worst Median Mean Std

F3 3.4771e+0 1.8021e+1 7.2885e+0 8.2618e+0 3.7792e+0
F6 6.6760e+1 3.0964e+2 1.6566e+2 1.7135e+2 5.6276e+1
F9 3.0804e+2 1.6252e+3 5.9978e+2 7.6153e+2 3.8806e+2
F12 2.0000e+0 1.6000e+1 6.0000e+0 7.7619e+0 3.8975e+0
F15 2.9418e+0 5.1773e+0 4.0533e+0 4.0955e+0 5.6399e-1
F18 1.2928e+0 2.7759e+0 1.8292e+0 1.8695e+0 3.9111e-1
F21 1.7427e+2 4.7116e+2 2.4427e+2 2.4857e+2 6.5074e+1
F24 1.0438e+2 2.4569e+2 1.8084e+2 1.8128e+2 3.5581e+1

But considering the small value of m, the performance of
GCO may be ideally suited to online problems where time
is a serious concern rather then the accuracy of solutions
obtained. The time complexity analysis is discussed next.

D. Complexity analysis

The algorithmic complexity of GCO has been computed
as per [15] and the data has been tabulated in Table V.
The value reported for 10D functions are roughly 0.5 and it

TABLE V: Computational Complexity

Function �
T 1/T0

F1 0.452
F2 0.954
F3 1.52
F4 0.457
F5 0.988
F6 1.47
F7 0.516
F8 1.04
F9 1.53
F10 0.471
F11 0.976
F12 1.55
F13 0.477
F14 1
F15 1.54
F16 0.485
F17 1.01
F18 1.58
F19 0.492
F20 1.01
F21 1.61
F22 0.481
F23 1.03
F24 1.58

rises to around 1.0 and 1.5 when the problem dimensionality
n scales up by 2 and 3 respectively. There is a strong
uniformity in the values reported which represents a roughly
linear dependence on n. This is indicative of the fact that no
serious computational overhead is incurred during internal
evaluations as a result of rising n.

E. Discussions

To understand the effect of control parameters on the
performance of GCO, we selected an intermediate n equal
to 20 and observed the performance by varying a single
control parameter while fixing the others. Note that pop-
ulation size m has not been studied here. We are more
interested in red, tr, cp and c. For analysis, we used red ∈
[0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95],
tr ∈ [2, 5, 7, 10, 15, 20, 25, 30],
cp ∈ [0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9],
and c ∈ [2, 3, 4].

From the experimentation, we opine that the value of cp is
crucial to the performance of the algorithm. This stems from
the fact that the value of cdc is checked with cp before the
effect of c (in other-members counseling), or of red and tr
(in self-counseling) is felt. It acts as a control mechanism.
It also affects the computational complexity. A high value
of cp 1 can be approximated as n.m.c calls to the random
number generator in a single iteration. Although this effect
is not felt in the problems considered here, it can become a
significant overload when n >> 1. Then comes the mutual
role of red and tr in deciding the search range at disposal
and also the transition in phase. The value of tr 2 is ideal
since the curve depicted in Fig. 1 approaches a linear shape
representing a controlled transition. This method is preferable
since the a−priori knowledge about the nature of landscape
(modality) remains unavailable in most practical problems.
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(a) Shifted Sphere function F1 − F3
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(b) Shifted Ellipsoid function F4 − F6
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(c) Shifted and Rotated Ellipsoid function F7 − F9
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(d) Shifted Step function F10 − F12
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(e) Shifted Ackley’s function F13 − F15
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(f) Shifted Griewank’s function F16 − F18
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(g) Shifted Rotated Rosenbrock’s function F19 − F21
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(h) Shifted Rotated Rastrigin’s function F22 − F24

Fig. 2: Convergence graph F1 ∼ F24

It would not be wise to stress too much on either exploration
or exploitation. The value of tr around 2 seems optimal.

Although we arrived at the chosen settings through a bit of
both intuition and experimental verification, but this settings
is bound to show poor performance in another benchmark
set. This is in accordance with the No Free Lunch (NFL)
theorem [16] and is the primary motivation behind a great

deal of research. Recently there has been efforts to study the
effect of GCO in the light of an extended benchmark set
[17].

V. CONCLUSIONS

This research article dealt with a population-based meta-
heuristics called Group Counseling Optimizer. The contribu-
tion of this paper is therefore twofold. First, we investigate
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some of the basic counseling concepts and procedures and
identify twenty striking items of significant analogy. Second,
we develop the GCO algorithm from these items and the
proposed algorithm is evaluated on the test-suite for CEC–
2014 benchmark set for expensive optimization. This was
done through reporting of error values obtained for problems
of varying dimensions. Alongside, experimentally calculated
algorithmic complexity measurements have been reported as
well.

During the process of experimentation we noticed the
need for tuning of parameters in the basic GCO framework.
The adaptation of parameters and parameter ensembles being
highly promising areas of research, can as well be extended
to GCO. We also noticed that in spite of a very small
population size, GCO was able to maintain its performance
across changing dimensionality. Study of this area along
with real-life applications can also be undertaken by the
researchers in near future.
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