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Abstract—Evolutionary clustering is a hot research topic
that clusters the time-stamped data and it is essential to some
important applications such as data streams clustering and social
network analysis. An evolutionary clustering should accurately
reflect the current data at any time step while simultaneously
not deviate too drastically from the recent past. In this paper, the
differential evolution (DE) is applied to deal with the evolutionary
clustering problem. Comparing with the typical k-means, evolu-
tionary clustering based on DE (deEC) could perform a global
search in the solution space. Experimental results over synthetic
and real-world data sets demonstrate that the deEC provides
robust and adaptive solutions.

I. INTRODUCTION

Clustering is a task which aims to partition an unlabeled
data set into groups according to the similarities among its
objects [1], [2]. In the past decades, clustering has played an
important role in many applications ranging from text mining,
social web analysis, information discovery, bio-informatics
and image segmentation. The traditional clustering algorithms,
such as k-means [3] , are based on the assumption that all the
samples are extracted from the same probability distribution
and they keep static as the time goes by [4]. However,
in typical large data mining problems, such as social web
analysis, data are time-evolving [5]–[7] . In these cases, data
not only change over a series of time steps, but their structures
are various at different time steps. Usually, we expect the
results obtained by the clustering algorithm should reflect the
corresponding change of data in time. Moreover, the result
should also not deviate too much from the recent past. This
expectation is reasonable because a user is more willing to
find a familiar clustering result at each time step rather than
learn an entirely new way to segment data. Unfortunately, the
traditional clustering algorithms in the literature fail to address
these problems since they are inadequate to deal with time-
evolving data.

One of the feasible clustering paradigms is evolutionary
clustering which processes time-evolving data to produce a
sequence of clusterings [8]. Here we should distinguish the
concept of evolutionary clustering from the evolutionary
algorithms for clustering. The ”evolutionary” means the evo-
lutionary process of clusters in time-evolving data. In evo-
lutionary clustering, a clustering result should achieve the
two potentially conflicting criteria simultaneously: first, the
clustering should accurately reflect the current data as much as
possible; second, the clustering should not deviate drastically
from one time step to the next. For example, in clustering
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of MicroBlog users for recommending topics, it is natural
to expect that, the particular kinds of topics a user may
be probably interested in change over time. However, it is
important that the clustering result should not drift too much
from one time step to the next. If the true relationships among
data points change drastically, evolutionary clustering does not
re-cluster the accumulated history data points, but integrate the
history information to keep a smooth transition from the recent
past. These two criteria also hold true to cluster large-scale
evolving data because in many cases, it is time-consuming even
computationally infeasible to re-cluster as the data evolves.
Evolutionary clustering is essential to potential and existing
applications like social network analysis to observe the change
of community, blogs analysis to identify the new and hot
topics.

In this paper, the differential evolution (DE) is applied to
deal with the evolutionary clustering problem. Evolutionary
algorithms (EAs) are wildly used to deal with the nonlinear
optimization problems. Comparing to the classical techniques
(gradient descent, deterministic hill climbing et al.), EAs are
robust and adaptive search techniques which perform a global
search in the solution space. In evolutionary clustering based
on DE, two objective functions, the snapshot cost and the
history cost, are defined corresponding to the two criteria,
respectively. Formally, let Xt,i be an individual at time step
t. The snapshot cost is used as the objective function to
measure the quality of clustering of Xt,i at time step t.
A higher snapshot cost means the worse snapshot quality.
The history cost of the clustering is a measure of the
temporal smoothness of Xt,i in the old environment. A
higher history cost means the worse temporal smoothness
in the transition from time step t−1 to t. These two objective
functions are combined into one with different weights to
guide the population evolving toward the global optima. The
weights is adaptive as the algorithm progresses. In addition,
we consider evolutionary clustering as a particular kind of
dynamic optimization problems [9]–[12]. The situation where
there are new data arriving or old data disappearing is treated
as a change of the environment. The algorithm is capable to
respond to this change and find the global near-optimal at any
time step.

Up to now, the work that clusters time-evolving data
sets based on an evolutionary algorithm is little. To our
best knowledge, there is only one paper that is related to
evolutionary clustering and evolutionary algorithms. That is,
Ma et al. [13] use a multi-objective evolutionary algorithm to
optimize the two conflicting functions in evolutionary k-means
algorithm (EKM). However, in this paper, we still consider
the evolutionary clustering as an single-objective optimization
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problem. We believe that there are at least the following
advantage to utilize an evolutionary algorithm. On one hand,
a DE is easy to implement and requires a few amount of
parameters tuning to achieve a promising search result. On
the other hand, based on DE, the algorithm could perform a
global search in the solution space and provides robust and
adaptive solutions.

The rest of this paper is organized as follow. We review
the related works in section II. An evolutionary clustering
algorithm based on DE is presented in details in section III.
Extensive experimental results on both synthetic and real data
sets are given in section IV. Finally, we conclude the whole
paper in section V.

II. RELATED WORK

In this section, we provide some significant background
on evolutionary clustering, evolutionary algorithms (EAs) for
clustering and review the related work.

A. Evolutionary Clustering

Evolutionary clustering is a hot topic and is first formu-
lated by Chakrabarti and his colleagues [8]. In their work,
a general framework is presented and two instantiations of
the framework are described: an evolutionary version of the
traditional k-means and an evolutionary version of the bottom-
up agglomerative hierarchical clustering algorithm. In order to
ensure the temporal smoothness, the framework adds a history
cost to the original cost in the two clustering algorithms. The
history cost penalizes the deviation of current cluster solution
from the previous. In general, the evolutionary clustering will
present the user a sequence of clusterings. Each clustering in
the sequence is consistent with the clustering in the recent past.
And if true clusters shift drastically over time, the algorithm
will present a smooth view of the transition [8]. In addition,
their work mainly focused on solving the online problem
because they consider the online setting is arguably more
important for real-world applications. Here, it is often said
that an evolutionary clustering algorithm is online if it can only
utilize the data during and before time step t. If the algorithm
has access to all data beforehand, then it is offline.

Several research topics in the literature are close to evolu-
tionary clustering, such as online document clustering, incre-
mental clustering, clustering data streams and so on. However,
they are essentially different. The task of online document
clustering is to partition the documents as long as they arrive
in a temporal sequence [14]. The temporal properties are also
considered in online document clustering, however, which is
to capture novelty in the form of some types of outliers, not
to incorporate history cost into clustering objective. Typically,
the issue of incremental clustering [15] is to update the cluster
centers [16] or hierarchical trees [17] as new data arrive. Con-
trasted to evolutionary clustering, incremental clustering does
not concern about the relationships between the current data
and historical data, and the updating process is primarily to
avoid storing all historical similarities. Clustering data stream
[18] addresses the problem to cluster data that are generated
continuously and frequently in a very wide range of fields.
The early works have focused on analytically clustering data
streams using K-median technique. The proposed algorithm

makes a single pass over the data stream and uses small space.
The recently works, however, turn to use a pyramidal time
frame [5]. Clustering data streams ignores the smoothness of
the clustering results in the series of time steps while it is an
important objective in evolutionary clustering.

Although there is not enough literature about evolutionary
clustering up to now, two categories could be roughly classi-
fied. Some researchers developed statistical models to describe
the evolutionary data based on the assumption that the data
are subject to stochastic process. These methods are the first
category. In the second category, a smoothness property is
incorporated into the clustering algorithms and their goal is
to improve the quality of the result at each time step and the
temporal smoothness between time steps. Some recent works
on evolutionary clustering are presented as follows. Xu and
Zhang et al. [19] built Hidden Markov Model combined with
Hierarchical Dirichlet Process to describe the correlation of
clustering results among the different time steps. Their method
is non-parametric but the model is too complicated. Later, the
same authors simplified their method. They directly utilized
Dirichlet Process to build an infinite mixture model to describe
the evolutionary change of the clusters over the time [20]. In
their work, the cluster numbers could be automatically learnt
during the evolution. The methods above are the first category,
and the methods listed below are belong to the second one.
Chi et al. [21] extended Chakrabarti’s work and proposed
two algorithms that incorporated temporal smoothness into the
overall measure of clustering quality. Ma et al. [13] proposed
to use a multi-objective evolutionary algorithm to optimize the
two conflicting functions in evolutionary k-means algorithm
(EKM). Wang et al. [22] proposed a general framework, which
is based on low-rank kernel matrix factorization, to deal with
evolutionary clustering problem.

B. Evolutionary Algorithms for Clustering

There are a number of literature on evolutionary algorithms
for clustering [23]–[26]. However, the same as the traditional
clustering algorithms, up to now the evolutionary algorithms
for clustering only consider that the data are static. Noted that
the techniques used in these algorithms are relevant to the
proposed method, we would like to describe them concisely.
To deal with the clustering problems, evolutionary algorithms
basically evolve the initial candidates sampled from the search
space through a sort of operators that use probabilistic rules
[27]. Usually, the evolutionary algorithms are based on the
optimizations of some objective functions. The solutions that
more fitted the objective functions have higher probabilities
to be sampled. The algorithms iterate the evolving process-
es and as a result, the more promising clustering solutions
are survived. Generally speaking, the evolutionary algorithms
could provide solutions of better quality than those found by
traditional algorithms.

In evolutionary algorithms for clustering, the cluster num-
ber k is usually fixed in advance by the user. However, in some
cases, it could be determined automatically by the clustering
algorithm. If the cluster number k is fixed before running, we
call the algorithm is parametric method; otherwise it is non-
parametric method. Krishna and Murty [23] used a genetic
algorithm to address the clustering problem. In their work, the
cluster number k is set before running. While in Das’s work
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[24], an improved DE is proposed to automatically cluster the
large-scale unlabeled data set. The proposed algorithm tries to
determine the optimal number of partitions of the data during
the running of the algorithm. The non-parametric method is
more important to the real-world applications because in many
cases, we do not have the prior knowledge on the data sets.
In some applications such as image processing, evolutionary
algorithms for clustering are mainly used to divide images into
disjoint homogeneous regions which usually contain similar
objects of particular interest. And the algorithms are required
to automatically determine the cluster numbers. Bandyopad-
hyay et al. applied evolutionary algorithms for clustering [25],
[26] to distinguish landscape regions like mountains, rivers,
vegetation areas and habitations in satellite images.

III. EVOLUTIONARY CLUSTERING BASED ON DE

In this section, an evolutionary clustering based on DE
(we called deEC in the rest of the paper for convenience) is
presented and the implementation details will be discussed as
well.

A. Chromosome Representation

In the deEC, a chromosome is represented as a vector of
real numbers of K∗d dimensions. K is a user specified cluster
number and d is the dimension of the data points. The first d
positions represent the d dimensions of the first cluster center,
the next d positions represent those of the second cluster center,
and so forth. For example, a probable chromosome in the two
dimension space can be represented as the following vector.

X = 1.5 2.0 5.5 5.0 2.5 3.0

It indicates that there are 3 cluster centers encoded in the
chromosome, (1.5 , 2.0), (5.5 , 5.0) and (2.5 , 3.0), respectively.
Given a chromosome like this, a cluster solution can be
recovered according to the nearest prototype rule. That is,
assigning each data object to its nearest cluster. It is noted
that such an chromosome representation has been wildly used
in evolutionary algorithms for static clustering [24], [26].

B. Fitness Function

Chakrabarti et al. [8] first addressed the evolutionary
clustering problem and proposed a general framework. The
framework focused on the online setting and tried to optimize
the incremental quality of cluster at each time step t:

sq(Ct,Mt)− cp ∗ hc(Ct, Ct−1) (1)

where the first term is the snapshot cost which measures the
quality of the clustering at time step t. Ct is the partitioning
for the data at time step t and Mt are the input matrix at time
step t. The second term is the history cost which measures
the distance between Ct−1 and Ct.

Many clustering validity indexes can be used in deEC to
assess the snapshot quality. For the parametric setting, the
cluster number K is set beforehand at each time step, we can
use the validity index J [28] outlined as:

J =

K∑
j=1

∑
st,i∈ct,j

||st,i − zt,j || (2)

where Ct = {ct,1, ct,2, ct,3, ..., ct,K} is the set of K clusters
encoded into a genotype (also called chromosome), st,i is a
data object, and zt,j is the mean vector of cluster ct,j . There
are many other clustering validity indexes. For crisp clustering,
the well-known indexes like the Dunn’s index (DI) [29], the
DB index [30], can also be used in our work. Usually, different
clustering validity indexes lead to different cluster quality. For
example, they could lead to different cluster numbers and the
corresponding best partition. We do not discuss this issue in
this paper.

The temporal smoothness is expressed as the adaptability
of an individual (genotype or chromosome) in the old envi-
ronment. Suppose there are two individuals Xt,i and Xt,j ,
performing equally well in the environment at time step t
(having equal snapshot quality). However, Xt,i performs better
than Xt,j (the fitness value of Xt,i is better) when they are
put into old environment at time step t− 1. Then we consider
Xt,i is better than Xt,j because cluster solution carried by
Xt,i is more consistent with historical data. In the deEC, each
of the individuals in the population at time step t is put into
the old environment at time step t−1 and the so-called history
cost is obtained. The higher history cost (fitness value) of a
individual has worse temporal smoothness. The history cost is
given as follows by using the validity index in equation (2):

HC =
K∑
j=1

∑
st−1,i∈ct,j

||st−1,i − zt,j || (3)

where Ct = {ct,1, ct,2, ct,3, ..., ct,K} is the set of K clusters
encoded into a genotype (also called chromosome), st,i is a
data object, and zt,j is the mean vector of cluster ct,j .

In deEC, the objective function (also called fitness func-
tion) is defined as the overall cost of the clustering at each
time step, which consists of the snapshot cost and the history
cost. The overall cost by using the equations (1)-(3) can be
outlined as:

F (t) = α ∗
k∑

j=1

∑
st,i∈ct,j

‖ st,i − zt,j ‖+

β ∗
k∑

j=1

∑
st−1,i∈ct,j

‖ st−1,i − zt,j ‖

(4)

where the first term is snapshot cost and the second term is
history cost. The parameters α and β are the weights and
β = 1 − α. In this paper, the weight α is adaptive as the
algorithm progresses. At the beginning, the value of α is small
(the value is 0.3) and therefore more the weight is assigned
to the temporal smoothness. Then the value of α is linearly
increased to the maximum value (the maximum value is set
0.9). The adaptive weight α can be expressed in the following
equation:

α = 0.3 +
0.6 ∗ g
G

(5)

where G is the maximum number of generations and g is the
current generation number. By this way, the algorithm at the
beginning focuses on the search in the solution space near
the historical solutions but gradually adjusts the movements
of the solutions during the later stages of search, so that they
can reflect the current data as well as possible.
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Alternatively, if the algorithm focuses on the snapshot
quality at the beginning but gradually increases the weight
of the history cost to ensure the temporal smoothness, we can
use the equation outlined as:

α = 1− 0.1 ∗ g
G

(6)

where the G and g are the same as before.

Mathematically, the expression of total cost in equation (4)
is essentially equivalent to the expression of PCQ in [21].
The history cost is produced by using the cluster solution
at time step t to cluster data points at time step t − 1, the
same as PCQ. However, we still use the mean vectors Zt

encoded in the individual as the mean vectors at time step
t− 1. Because it seems more conform to the definition of the
history cost and we believe it embodies the concept that an
optimal individual is the result of combined influence between
the current environment and the past ones. Additionally, we
used the adaptive parameters. The algorithm with different
definitions of α outlined in equations (5) and (6) is named
deEC1 and deEC2, respectively.

C. Algorithm Description

Algorithm 1 deEC
Input:

data set St−1, St, cluster number k(t−1), k(t)
the size of the population NP
the maximum number of generation G

Output:
the best individual Xt,best

1: Randomly initialize a population of NP individuals, each
individual contains k(t) number of randomly selected
cluster centers;

2: for g = 1 to G do
3: for each individual Xt,i do
4: calculate the distance of each data vector st,i from all

cluster centers of Xt,i by the Euclidean distance:

d(st,i, zt,i) =

√√√√ d∑
p

(st,i,p − zt,i,p)2

5: assign each data vector st,i to its nearest cluster
center

6: process a one step k-means algorithm as a local
search operation;

7: process the DE operations according to the DE algo-
rithm outlined in equations (8)-(12). Use the fitness
function outlined in equations (4)-(6) to guide the
evolution.

8: end for
9: end for

10: report the best individual Xt,best and the cluster centers
as well as the partition obtained by Xt,best.

1) Classical DE: The classical DE [31] is an effective
meta-heuristic, global optimization algorithm which uses real-
coded representation. After the initialization, it works by
iterating several operators including mutation, crossover and
selection. In the initialization process, an initial population is

randomly generated. The ith individual vector (genotype or
chromosome) of the population at time step t and generation
g has K · d components (dimensions),i.e.,

Xt,i(g) = [xt,i,1(g), xt,i,2(g), xt,i,3(g), ..., xt,i,Kd(g)] (7)

In the course of mutation, DE creates a donor vector Vt,i(g)
corresponding to each target vector Xt,i(g). The classical
strategy is to randomly samples three other individuals, i.e.,
Xt,k(g),Xt,m(g),Xt,n(g), from the same generation (for
distinct k,m, n, and i). The difference of any two of these
three vectors is scaled by a scale factor F (typically lies in
[0.4,1]). Then the donor vector Vt,i(g) is obtained by adding
the third sample to the scaled difference:

Vt,i(g) = Xt,k(g) + F (Xt,m(g)−Xt,n(g)) (8)

The trial vector Ut,i(g) is created by crossing the components
of target vector and donor vector whenever a randomly gener-
ated number (in [0,1]) is less than or equal to the Cr value:

Ut,i,n(g + 1) =

{
Vt,i,n(g), if rand(0, 1) < Cr

Xt,i,n(g). otherwise
(9)

The selection operator determines whether the trial vector or
the target vector survives to the next generation. If the trial
vector yields a better value of the objective function, it replaces
the target vector in the next generation; otherwise the target
vector is retained in the population. That is to say,

Xi(g + 1) =

{
Ui(g + 1), if F(Ui(g + 1)) < F(Xi(g))

Xi(g). otherwise
(10)

2) Parameters F and Cr: To improve the convergence rate
of DE, we adopt the methods proposed in [24] to modify the
parameters F and Cr. We vary the scale factor F in a random
manner ranged 0.5 to 1 outlined as:

F = 0.5 ∗ (1 + rand(0, 1)) (11)

where rand(0, 1) is a function generating uniformly distribut-
ed number within the range [0,1]. The mean value of F is
0.75 and it is believed that this helps the algorithm to retain
the population diversity as the search progresses.

In addition, we decrease the crossover rate Cr linearly [24]:

Cr =
0.5 ∗ (G-g)

G
(12)

where G is the maximum number of generations and g is the
current generation number. By this way, it is believed that it
can help thoroughly explore the search space at the beginning
but convergent into a small space where the global optimum
lies during the latter stages of search.

3) Local Search by K-means: Many hybrid or memetic
evolutionary algorithms for clustering are usually endowed
with mechanisms to globally explore and locally exploit the
search space. In general, a local exploitation of the search
space can sometimes avoid expensive computation and help
the algorithm quickly converge to the global optimum [23]. In
deEC, the global search may take a long time to iterate the DE
operators described in equations (8)-(10). Hence a one step k-
means algorithm, named as the k-means operator, is used in
deEC. Let Xt,i be a genotype. As the work in [23], we use
the following two steps:
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1) recalculate each cluster center by the equation:

zt,i,j =

∑ni

i=1(xt,i,j)

ni
(13)

where xt,i represents a data point and ni is the
number of data points in the ith cluster.

2) reassign each data point to the cluster with the nearest
cluster center.

Actually, the k-means operator locally exploits the search space
for fine-tuning partitions found by deEC. And we believed it
can improve the convergence properties.

The pseudo-code for deEC is given in Algorithm1.

IV. EXPERIMENTS

In this section, we report the experimental results of deEC
on synthetic and real-world data sets. The evolutionary version
of traditional k-means [8] is implemented as comparison with
deEC1 and deEC2. And a baseline called INST was designed,
which employs k-means algorithm to independently cluster the
data at only time step t and ignoring all historical data before
t. We mainly observe these three methods and compare their
snapshot cost, history cost and overall cost at each time step.
For all the costs, the lower value is better. Besides, we utilize
the NMI metric [32] to evaluate the cluster performance. NMI
ranges in [0,1]. A high NMI value indicates that the cluster
solution matches the ground truth well.

A. Synthetic Data

We use two experiments on synthetic data to illustrate the
good performance of the deEC algorithm in different situation.
In the first experiment, We add a Gaussian noise following N(0,
0.25) to the initial data set to simulate a situation where the
data evolve smoothly. In the second experiment, besides adding
a Gaussian noise following N(0, 0.5), we rotate all the data
points by a small random angle to simulate another situation
where the relationship among data points drifts significantly.
Through these two experiments, we demonstrate the deEC is
capable to adapt itself in different situation.

We modify the Iris data sets to meet the need of the ex-
periments. The Iris data sets consists of three different species
of iris flower (3 classes). For each species, 50 samples with
4 features were collected (each cluster contains 50 objects).
In the first experiment, for each time step, we perturb the
initial data by adding a Gaussian noise with different random
seeds to each data point. In the second experiment, besides
adding a Gaussian noise, we rotate all the data points by a
small random angle, so that the relative positions among data
points drift. For parameter setting, the population size is set
40, namely 10 times the number of features of the data set.
The maximum number of generation is set 15. The scale factor
F and mutation rate Cr has been described in equations (11)
and (12), respectively. Unless stated otherwise, all experiments
are run 30 times independently and the average performances
are given.

In the first experiment, A Gaussian noise following N(0,
0.25) is added to the initial data set for each time step. By this
way, we simulate a stationary situation in which data evolve
smoothly and do not drift too much. Table I to Table III show

the performance of the three methods. For all the costs, a lower
value is better. As shown in these tables, the proposed methods
deEC1 and deEC2 are better than the other two. On the whole,
INST has a lower snapshot cost than kmEC while its history
cost is higher than kmEC. This is because INST only considers
the current data. However, their difference is unremarkable for
the data drift smoothly. It surprises us that both the deEC1
and deEC2 have lower snapshot cost than INST. Since deEC1
and deEC2 take the smoothness property into account and they
must trade off the accuracy of clustering the current data with
consistence over the time. We try to make an explanation from
the global optimization perspectives. The deEC1 and deEC2
can thoroughly explore the search space and avoid stuck at the
local optima, so they can stably provide a global optimum. This
may be one of the reason why the snapshot quality of deEC1
and deEC2 are better than INST on the average. It is interesting
that deEC1 has lower history cost than deEC2, while deEC2
has lower snapshot cost than deEC1. This is because deEC1
focuses more on smoothness property, while deEC2 focuses
more on snapshot quality. From Table IV, we can observe that
deEC1 and deEC2 have the better NMI values, which means
they have the better cluster performance.

In the seconde experiment, from each time step, besides
adding a Gaussian noise following N(0, 0.5), we rotate each
data point by a π/6 degree angle. By this way, we simulate
a non-stationary situation in which the relationships among
data points drift over time. The results given in Table V to
Table VII illustrate both deEC1 and deEC2 are still better than
the other two. It can be observed that, due to the data drift
significantly, the temporal smoothness of INST becomes poor.
This is because the true cluster may have been deviate from
the recent past significantly. Table VI reports that both deEC1
and deEC2 can provide low history cost at all the time steps.
The NMI values reported in Table VIII demonstrate the cluster
performance of both deEC1 and deEC2 are better than the
other two. The second experimental results demonstrate that,
if the data set drift significantly over time, incorporating the
smoothness property in the algorithm can produce a smooth
result from one time step to the next.

B. Real Data

To demonstrate the performance of the proposed method on
real data set, we choose pendigits data set which is publicly
available in UCI repository. Pendigits data set is created to
classify human being’s handwriting. The data set consists of
ten classes. Each samples contains 16 features. There are
totally 7500 samples including 6 ones are originally used for
testing. We divide the data set into 10 groups to simulate
the corresponding 10 time steps, each of which has 750
samples randomly selected from each cluster. By this way,
each group still consists of ten classes. For parameter setting,
the population size is set 160, namely 10 times the number
of features. The generation number is set 20. The α and F as
well as Cr remain the same as before.

All the performance comparisons among the three methods
are reported in Table IX - Table XII. Contrary to the exper-
iments on synthetic data, the difference between deEC and
the other two methods is remarkable. Clearly, the proposed
methods deEC1 and deEC2 outperform the other two. Figure
IX shows that the snapshot cost of both deEC1 and deEC2 are
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TABLE I. SNAPSHOT COST IN STATIONARY SITUATION WITH GAUSSIAN NOISE (0, 0.25)

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

deEC1 117.530 117.529 117.682 123.580 119.731 121.214 119.391 120.997 117.639 126.346
deEC2 117.530 117.519 117.656 123.236 119.669 120.748 119.359 120.899 117.608 125.241
INST 122.869 119.399 123.940 128.469 124.743 126.810 124.715 125.380 121.395 129.231
kmEC 122.863 122.803 122.264 127.746 126.158 128.243 123.251 121.121 121.440 128.522

TABLE II. HISTORY COST IN STATIONARY SITUATION WITH GAUSSIAN NOISE (0, 0.25)

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

deEC1 0 118.642 118.313 118.039 124.282 120.288 122.427 119.519 121.838 118.423
deEC2 0 118.645 118.476 118.490 124.382 122.121 122.633 119.509 121.974 120.093
INST 0 120.845 124.880 123.785 130.083 126.037 128.665 124.244 125.483 124.059
kmEC 0 124.393 122.863 122.894 131.448 127.548 127.147 119.785 125.551 123.426

TABLE III. OVERALL COST IN STATIONARY SITUATION WITH GAUSSIAN NOISE (0, 0.25)

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

deEC1 117.530 117.682 117.785 119.756 120.291 120.596 119.768 119.993 118.155 120.862
deEC2 117.530 117.534 117.678 122.785 119.700 120.768 119.388 120.770 117.631 124.751
INST 122.869 119.543 124.034 128 125.277 126.733 125.110 125.266 121.804 128.713
kmEC 110.577 122.962 122.324 127.260 126.687 128.174 123.640 120.988 121.851 128.012

TABLE IV. THE NMI IN STATIONARY SITUATION WITH GAUSSIAN NOISE (0, 0.25)

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

deEC1 0.729 0.766 0.722 0.721 0.733 0.716 0.787 0.770 0.721 0.811
deEC2 0.729 0.767 0.722 0.729 0.732 0.719 0.763 0.773 0.72 0.823
INST 0.698 0.727 0.699 0.699 0.704 0.666 0.716 0.729 0.719 0.745
kmEC 0.705 0.742 0.696 0.697 0.698 0.708 0.678 0.747 0.720 0.695

TABLE V. SNAPSHOT COST IN NON-STATIONARY SITUATION WITH GAUSSIAN NOISE (0, 0.5) AND ROTATED BY A π/6 DEGREE ANGLE

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

deEC1 144.541 147.677 143.273 152.847 149.910 145.292 143.659 150.385 142.51 155.670
deEC2 144.541 146.816 143.174 152.440 149.800 145.236 143.581 149.758 142.398 154.432
INST 147.917 148.897 146.601 154.423 150.487 149.823 146.646 152.733 144.930 155.079
kmEC 148.699 149.776 146.537 154.676 151.466 149.018 145.514 150.969 144.467 155.647

TABLE VI. HISTORY COST IN NON-STATIONARY SITUATION WITH GAUSSIAN NOISE (0, 0.5) AND ROTATED BY A π/6 DEGREE ANGLE

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

deEC1 0 146.109 148.720 144.440 154.254 152.591 149.868 144.193 152.377 144.178
deEC2 0 148.177 149.489 145.127 156.202 152.951 150.487 145.217 152.834 145.855
INST 0 151.137 150.990 147.947 156.589 155.665 153.475 150.089 153.646 146.683
kmEC 0 152.665 150.712 148.693 157.136 155.069 152.142 147.556 153.139 147.002

TABLE VII. OVERALL COST IN NON-STATIONARY SITUATION WITH GAUSSIAN NOISE (0, 0.5) AND ROTATED BY A π/6 DEGREE ANGLE

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

deEC1 144.541 146.676 143.926 147.146 150.432 146.168 144.404 146.236 143.694 147.866
deEC2 144.541 146.838 143.203 151.748 149.883 145.295 143.630 149.325 142.468 153.602
INST 147.917 149.121 147.040 153.775 151.097 150.407 147.329 152.469 145.802 154.239
kmEC 133.829 150.065 146.954 154.078 152.033 149.623 146.177 150.627 145.335 154.782

TABLE VIII. THE NMI IN NON-STATIONARY SITUATION WITH GAUSSIAN NOISE (0, 0.5) AND ROTATED BY A π/6 DEGREE ANGLE

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

deEC1 0.694 0.692 0.665 0.684 0.669 0.667 0.616 0.613 0.708 0.706
deEC2 0.693 0.691 0.660 0.720 0.661 0.669 0.602 0.625 0.658 0.658
INST 0.645 0.678 0.647 0.650 0.656 0.621 0.599 0.601 0.635 0.663
kmEC 0.643 0.655 0.644 0.641 0.629 0.640 0.599 0.600 0.662 0.618
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significantly lower than INST and kmEC. It can be observe
that, the NMI values of deEC1 and deEC2 are relatively high
at almost all the time steps, while the history cost of deEC1
and deEC2 are lower than the other two. That means, to cluster
the real world time-evolving data set, both the deEC1 and
deEC2 can provide a faithful cluster solution at each time step,
meanwhile keep stable and consistent with the recent past.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we deal with evolutionary clustering problem.
An evolutionary clustering algorithm based on DE (deEC)
is developed. The deEC, which includes deEC1 and deEC2,
could perform a global search in the solution space. The deEC1
focuses on the search in the solution space near the historical
solutions at the beginning but gradually adjusts the movements
of the solutions during the later stages of search, so that they
can reflect the current data as well as possible. Contrary to
deEC1, the deEC2 focuses on the snapshot quality at the
beginning, but is gradually biased toward searching in the
history solution space to ensure the temporal smoothness. The
experimental results illustrate both the deEC1 and deEC2 can
provide robust and adaptive solutions. The deEC1 has lower
history cost than deEC2, while the deEC2 has better snapshot
quality than deEC1.

Considering that this is the tentative work, we assume the
cluster number K is known in advance at each time step.
Actually, based on DE, the evolutionary clustering algorithm
could automatically determines the cluster number at each
time step with the special modification of the chromosome
representation schemes. This will enables the algorithm to
respond to the more complicated situation in which the cluster
number is unknown in advance and it can be various at differ-
ent time steps. However, more issues have to be considered.
For example, the clustering validity index should be non-
monotonic with the number of clusters. And a new method to
measure the temporal smoothness is needed when the cluster
numbers varies. These will left for our future work.
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