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Abstract—Opposition-based Learning (OBL) has been 
reported with an increased performance in enhancing various 
optimization approaches. Instead of investigating the opposite 
point of a candidate in OBL, this study proposed a partial 
opposition-based learning (POBL) schema that focuses a set of 
partial opposite points (or partial opposite population) of an 
estimate. Furthermore, a POBL-based adaptive differential 
evolution algorithm (POBL-ADE) is proposed to improve the 
effectiveness of ADE. The proposed algorithm is evaluated on 
the CEC2014’s test suite in the special session and competition 
for real parameter single objective optimization in IEEE CEC 
2014. Simulation results over the benchmark functions 
demonstrate the effectiveness and improvement of the POBL-
ADE compared with ADE.  

Keywords—opposition-based learning; differential evolution; 
real parameter;  optimization. 

I. INTRODUCTION 
Opposition-based learning (OBL), originally introduced 

by Tizhoosh [1], tries to find a better candidate solution by 
simultaneously considering an estimate point and its 
corresponding opposite estimate. It has been proved that an 
opposite candidate solution can provide a higher chance of 
finding solutions that are closer to the global optimum one 
[2][3]. The concept of OBL has been applied to improve the 
performance meta-heuristic algorithms and machine learning 
algorithms [4], [5]. 

In [6], the convergence speed of evolutionary algorithm 
is accelerated by replacing the random initialization with the 
opposition-based population initialization. Further, [2] 
mathematically and experimentally proves this advantage 
when there is no prior knowledge about the solution. The 
benefits of the opposite of a candidate solution over  random 
solutions is also shown intuitively based on an Euclidean 
distance-to-optimal solution proof in [7]. Recently, by 
considering the opposite individuals in the population 
initialization stage and generation jumping stage, OBL has 
been recently applied to accelerate various meta-heuristic 
algorithms, such as Differential Evolution (DE)[8]–[10], 
Particle Swarm Optimization (PSO) [11], [12], 
Biogeography-Based Optimization (BBO) [13]–[15], 

teaching and learning algorithm [16], gravitational search 
algorithm [17], Harmony Search (HS) [18], and Artificial 
Bee Colony (ABC)[19]. OBL are also employed to 
accelerate machine learning algorithms including 
reinforcement learning and backpropagation learning in 
neural networks, and Estimation of Distribution Algorithm 
(EDA). Opposition-based reinforcement learning (ORL) 
were proposed by considering opposite states and opposite 
actions[20]–[22]. The results demonstrate that ORL 
outperforms the reinforcement learning. Similarly, by 
considering the opposite transfer functions and opposite 
weights, the opposition-based neural networks were also 
proposed to improve their learning speed and accuracy [23]–
[25]. 

Motivated by the idea of OBL, this study presents an 
improved OBL, namely partial opposition-based learning 
(POBL). Rather than only examining the opposite point of a 
candidate, the POBL is devised to compute partial opposite 
points (or partial opposite population) of an estimate. 
Further, a POBL-based adaptive DE algorithm is proposed to 
solve the numerical optimization problems in “CEC2014 
Special Session and Competition on real parameter single 
objective optimization”[26]. In the proposed POBL-based 
adaptive DE, the Adaptive Differential Evolution (ADE) [27] 
that needs no parameters to be tuned is improved by POBL 
during the population initialization and generation jumping. 
Experimental simulations on benchmark functions show that 
POBL-ADE obtains better performance on the majority of 
the test problems compared with basic ADE and OBL-ADE. 

The rest of the paper is structured as follows. Section II 
provides the overview of the ADE and the Opposition-based 
learning. Section III describes the proposed Partial 
opposition based learning and the POBL-based ADE. The 
experimental setting is depicted in Section IV. Section V 
reports the experimental results with discussions. Finally, 
Section V concludes this study with comments toward future 
research directions. 
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II. BACKGROUND 
This section gives an overview of the Opposition-based 

Learning and Population’s Variance-Based Adaptive 
Differential Evolution (ADE). 

A. Opposition-Based Learning 
Opposition-based learning (OBL) introduced by 

Tizhoosh [1] is a new concept in computational intelligence. 
When evaluating a solution to a given problem, 
simultaneously computing its opposite solution will provide 
another chance for finding a candidate solution which is 
closer to the global optimum. 

The following shows the basic concepts of opposition-
based learning, including opposite and quasi-opposite 
numbers and points. 

Opposite number: given a real number x, with its range 
from a to b. The opposite number of x is defined by 
: ox a b x= + − . 

By extending the definition of opposite to the higher 
dimensions, we can obtain the definition of opposite point: 

Opposite point: given 1 2( , , , )DX x x x=  is a point in a 
D dimensional space, where 

, [ , ], 1, 2,...,i i i ix R and x a b i D∈ ∈ = . Then, the opposite 
point 1 2( , , , )o o o o

DX x x x=  is defined as follows: 
o
i i i iX a b x= + − . 

In [28], quasi-OBL is introduced and proved that the 
quasi-opposite point is more likely to closer than the 
opposite point to the solution. The Quasi-opposite number 

qox  is defined as the random number between the opposite 
number ox  and the center c of the search space. 
Mathematically, qox  is expressed as: 

 ( )( )qo o2,x rand a b x= +  (1) 

And the quasi-opposite point in a d-dimensional space is 
given by: 

 ( )( )qo 2 , , 1,2,...,o
i i i iX rand a b x i D= + =  (2) 

In the opposition-based learning (OBL), both the point 
and its opposite point (or quasi-opposite point) are evaluated 
simultaneously, and the better one is selected to continue the 
evolution. 

B. Population’s Variance-Based Adaptive Differential 
Evolution (PVADE) 
Differential Evolution (DE), first proposed by Storn and 

Price [29], is a branch of evolutionary algorithm (EA). 
Different from other EAs, DE perturb the mutation by 
considering the difference of two individuals. It has shown 
better performance in terms of convergence speed, 
computation complexity, and robustness, than many other 
meta-heuristic methods such as genetic algorithm (GA) 

particle swarm optimization (PSO) [30]. Unfortunately, the 
success of DE is crucially depends on appropriately selecting 
the control parameters such as population size NP, crossover 
rate (CR) , and scaling factor F[31], [32].  

Instead of performing a time-consuming trial-and-error 
tuning for these control parameters involved in DE, [27] 
proposed an adaptive differential evolution (ADE). In the 
ADE, the related parameters including scaling factor, 
crossover rate and quasi-oppositional probability are 
adaptively changed based on population’s variance 
information. Besides, different scaling factors for each 
dimension is employed in the ADE instead of only one 
scaling factors as in classical DE. The performance of the 
ADE is validated on the test suite for real parameter single 
objective optimization which is specially designed in IEEE 
CEC2013. Considering its adaptive mechanism and 
performance reported in CEC2013, it is employed in this 
study. 

We refer to [27] for a detailed statement of the main 
concepts of population variance based adaptive DE. 

III. PARTIAL OPPOSITION-BASED LEARNING AND 
POBL-BASED ADE 

This section proposes the partial opposition-based 
learning (POBL) and the POBL based ADE. 

A. Partial Opposition-based Learning (POBL) 
For OBL in multi-dimensional space, only the complete 

opposite point 1 2(x , x , , x )o o o o
DX = , in which each 

dimension is opposite to the original value is considered. 
Inspired by the opposition concept and to enhance the 
exploration of the algorithm, the partial opposite point and 
partial opposition-based learning is proposed. 

In a multi-dimensional space, the partial opposite point is 
1 2( , , , )po o o

Dx x x x= ,where only some dimensions are 
opposite to the original dimension. So, we can define the 
partial opposite population { }poX  as follows: 

 { }
1 2 3

1 2 3
1 2

2 2 3

)
( )

, ,...,

( )

o o o
D

o o o
po po po po D

D

o o o
D

x x x x
x x x x

X X X X

x x x x

⎧ ⎫
⎪ ⎪
⎪ ⎪= = ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

(

 (3) 

where, o
ix is the opposition value of ix . In (3), for each 

partial opposite point po
iX , only one dimension stay the 

same with original value, so it can be named as the 1st-
degree partial opposition. Based on the partial opposite 
population, we proposed the partial opposition-based 
learning (POBL) as follows.  

Given 1 2( , , , )DX x x x=  is a point in D dimensional 
space, and (.)f  is the fitness function used to evaluate the 
candidate solution. The opposite point 

1 2( , , , )o o o o
DX x x x= and some randomly selected partial 
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opposite points are examined. The best point is selected to 
compare with the original point. Only if its fitness value is 
better than the original point X, it is applied to replace with 
original point. Otherwise, we continue with X. In the 
proposed POBL, both the original point, the opposite point 
and some partial opposite points are evaluated 
simultaneously in order to get the better solution. 

B. POBL-based ADE 
Based on proposed POBL and adaptive DE, this 

subsection states the POBL-based ADE as follows. 

Step 1. Population initialization: randomly initialize all 
the individuals within the range of lower and upper bounds 
of the problem.  

Step 2. Calculate the adaptive scaling factors: , jFm is 
defined as follows in (4): 

 ,
max

( ), rand(0,1) 0.2
0.7*( / ) 0.2,j

Fscaling j
Fm

t t otherwise
>⎧

= ⎨ +⎩
  (4) 

where, 

i

( ) max{min(0.6,1 ),0.3}
=(D/20)* ( )/

( ) (x (t))
max( )

Fscaling j pop_diversity
pop_diversity pop_var t max_var
pop_var t var
max_var pop_var

= −

=
=

.  

As shown in (4), the scaling factors in ADE is different in 
each dimension. And their values are generated by using the 
population diversity for each dimension based on population 
variance.  

Step 3. Mutation operation: based on three randomly 
selected individuals, the mutate vector is generated with 
adaptive scaling factors according to the following equation: 

 ( ), 1, 2 3,( 1) ( ) * ( ) ( )i j r j j r j r jz t x t Fm x t x t+ = + −  (5) 

Step 4. Calculate the adaptive crossover rate (CR) and 
opposition probability: crossover rate and the probability of 
quasi-opposition (prob_qop) in ADE are also tuned 
adaptively based on the population variance, by (6): 

 

0.1*max(1 ), 90
max(1 ), otherwise

( / 60)* , 90
_

( / 33.33)* , otherwise

pop_diversity WI
CR

pop_diversity

D pop_diversity WI
prob qop

D pop_diversity

− >⎧
= ⎨ −⎩

>⎧
= ⎨
⎩

 (6) 

where WI counts the number of generations without any 
improvement of the best solution in ADE. 

Step 5. Crossover operation: based on the mutant vector 
and adaptive CR, a trial individual is generated. 

Step 6. Partial opposition-based Learning: the POBL is 
executed with the probability prob_qop for the each 

solutions. In the each solution’s POBL, each partial opposite 
point is selected with a probability prob_POBL. The 
prob_POBL is experimentally set as a random value between 
0.1 and 0.3. 

Step 7. repeat the loop from Step 2 until the termination 
condition is satisfied. 

IV. EXPERIMENTAL SETUP 
The performance of the proposed algorithm was 

examined using CEC’14 test suite in the special session and 
competition on the single objective real-parameter numerical 
optimization(http://www.ntu.edu.sg/home/EPNSugan/index_
files/CEC2014/CEC2014.htm). The CEC’14 test suite 
consists of 30 benchmark functions, which comprise three 
unimodal functions (f1-f3), thirteen simple multimodal 
functions (f4-f16), six hybrid functions (f17-f22), and eight 
composition functions (f23-f30). These benchmark problems 
are specially designed with several novel features such as 
novel basic problems, composing test problems by extracting 
features dimension-wise from several problems, graded level 
of linkages, rotated trap problems, etc.. 

As asked by the organizer, experiments were carried out 
for all these functions with dimension (D) equals to 10, 30, 
50, and 100. For each function, the maximum number of 
function evaluations (MaxFES) is set to 10000*D. Search 
space for each function was [ 100,100]D− . Each experiment 
terminates when the MaxFES is reached or the error value is 
smaller than 1E-08. Detail descriptions of the CEC14’ test 
suite and evaluation criteria in this special session is 
provided in [26]. 

In the proposed POBL-based ADE, parameters including 
scaling factors (F) and crossover rate (CR) in ADE is 
adaptively tuned based on population variance. The 
probability of quasi-opposition (prob_qop) is also adaptively 
tuned. The population size is set with the same to [27], that 
is, population size equals to 50, 100, 150, and 200 for each 
function with the dimension of 10, 30, 50, and 100, 
respectively. The only free parameter in POBL-ADE is the 
selective probability (prob_POBL) of each partial opposite 
point. Extensive experiments are conducted and finally, a 
random value between 0.1 and 0.3 is applied for 
prob_POBL. 

All experiments were executed in Matlab 2012a on an 
Intel® Core 2 Duo CPU, 2.33GHZ, with the 3GB RAM, 32-
bit Windows 7 system.  

V. RESULTS AND DISCUSSIONS 
The complexity of the proposed algorithm is presented in 

Table I. It is easy to conclude that more computational cost is 
required with the increasing number of dimensions for the 
test suite.  

Median convergence characteristic of the proposed 
POBL_ADE on some selected functions for dimensionality 
100 are shown in Fig.1 to 6. The y-axis gives the median 
functions error value. The x-axis shows 14 specified 
functions evaluation checkpoint at (0.01, 0.02, 0.03, 0.05, 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.8, 1.0)*MaxFES. The 
figures show that the proposed approach has been convergent 
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in most functions. The details convergence data for other 
dimension functions are given in the technical report. 

TABLE I.  COMPUTATIONAL COMPLEXITY OF THE PROPOSED 
ALGORITHM  

Dimension 0T  1T  ˆ2T  ˆ( 2 1) / 0T T T−  

D=10 

0.1917 

2.4049 2.4674 0.3260 

D=30 3.6987 3.9641 1.3845 
D=50 5. 1978 5.4766 1.4862 

D=100 10.9471 11.2991 1.8362 
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Fig. 1. Median convergence characteristic for 100D 
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Fig. 2. Median convergence characteristic for 100D 
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Fig. 3. Median convergence characteristic for 100D 
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Fig. 4. Median convergence characteristic for 100D 
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Fig. 5. Median convergence characteristic for 100D 
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Fig. 6. Median convergence characteristic for 100D 

Table II, III, IV,V show the error values obtained by 
POBL-ADE in 51 independent runs for each function for 
dimension 10, 30, 50, and 100. For the purpose of the 
competition, the error values in the table including the best, 
worst, median, mean, and the standard deviation values. As 
the organizers noticed, the error values smaller than 1.00E-
08 can be set as zero, we labeled these values in Bold. While 
the values that is a little large (larger than 1.00E+03) is 
labeled with underline. 

As shown in Table II, the POBL-ADE succeeded in 
finding the true optimum value at least one time for only 
unimodal functions f1. While for unimodal functions f1,f2, 
and simple multimodal function f6, the best error value of 
the algorithm is very close to zero, they are all smaller than 
1.00E-03.  At the same time, the algorithm has the ability in 
obtaining the reasonable error value (i.e., best error is smaller 
than 1.00E+01) for almost all the unimodal functions, simple 
multimodal functions, and hybrid functions, except f10 and 
f17. While for all the composition functions, the best error 
value is still larger than 1.00E+02.  From the comparisons in 
terms of best error value, we can conclude that the 
composition functions are more difficult to solve.  However, 
it is worth noting that, for unimodal functions f1 and f2, they 
are, to some extent, more instable compared with simple 
multimodal functions, hybrid functions, and even 
composition functions. While unimodal functions f1, f2, and  
composition functions f29 have the biggest values (larger 
than 1.00E+03) than others in terms of std. values, the rest 
functions such as f10, f11, all hybrid functions (except f19), 
and composition functions (except f23 and f26) are larger 
than 1.00E+01. Overall, the proposed algorithm has obtained 
both good mean error value (smaller than 1.00E+00) and std. 
value (smaller than 1.00E-01) for unimodal functions f3, 
simple multimodal functions f7, and f12-f15. 

Similarly, Table III presents summarized results for 30-
dimention problem. The results are, to some extent, 
consistent with those obtained in 10-dimension cases. To be 
noticed, for 30-dimention problem in Table III,  POBL-ADE 
can find the true optimum value for unimodal functions f2, 
f3; and simple multimodal functions f7, at least one time. 
Meanwhile, for the unimodal function f3, the median error 
value is equal to 0, and the worst, mean, and std error values 

are all smaller than 1E-08, which indicates that POBL-ADE 
has been successful in solving the f3 in all 51 runs. As for the 
50D and 100D problems in Table IV and Table V, the mean 
errors for almost all functions are larger than1.00E+00. 

TABLE II.  RESULTS FOR 10D 

f. Best Worst Median Mean Std. 
1 3.34E-03 1.72E+05 5.55E+02 1.62E+04 3.75E+04 
2 1.84E-05 1.14E+04 5.45E+02 2.27E+03 3.27E+03 
3 0.00E+00 1.04E-02 4.84E-07 5.74E-04 1.91E-03 
4 2.83E-01 4.18E+01 3.48E+01 2.55E+01 1.41E+01 
5 3.57E+00 2.01E+01 2.01E+01 1.91E+01 3.60E+00 
6 6.48E-04 3.16E+00 8.95E-01 1.04E+00 7.83E-01 
7 1.72E-02 1.20E+00 1.06E-01 1.63E-01 1.94E-01 
8 2.98E+00 1.69E+01 5.99E+00 7.81E+00 3.87E+00 
9 9.95E-01 1.69E+01 6.96E+00 7.63E+00 4.07E+00 

10 2.19E+01 5.65E+02 1.59E+02 1.53E+02 1.16E+02 
11 3.60E+00 5.83E+02 1.58E+02 2.08E+02 1.43E+02 
12 1.27E-01 3.65E-01 2.80E-01 2.69E-01 5.85E-02 
13 5.73E-02 2.34E-01 1.21E-01 1.31E-01 4.69E-02 
14 5.49E-02 5.38E-01 2.35E-01 2.60E-01 1.27E-01 
15 1.71E-01 1.41E+00 6.87E-01 7.12E-01 2.41E-01 
16 4.00E-01 2.64E+00 1.43E+00 1.41E+00 5.21E-01 
17 2.03E+01 6.06E+02 2.17E+02 2.57E+02 1.63E+02 
18 1.34E+00 1.33E+02 2.11E+01 3.32E+01 3.36E+01 
19 1.93E-01 5.78E+00 1.81E+00 2.09E+00 1.09E+00 
20 1.44E+00 5.40E+01 7.93E+00 1.26E+01 1.18E+01 
21 2.21E-01 4.25E+02 7.55E+01 1.03E+02 1.13E+02 
22 4.95E-01 1.63E+02 2.07E+01 3.00E+01 3.38E+01 
23 3.29E+02 3.29E+02 3.29E+02 3.29E+02 2.62E-04 
24 1.06E+02 2.07E+02 1.17E+02 1.24E+02 2.41E+01 
25 1.21E+02 2.02E+02 2.01E+02 1.86E+02 2.66E+01 
26 1.00E+02 1.00E+02 1.00E+02 1.00E+02 4.96E-02 
27 1.60E+00 4.01E+02 3.25E+02 2.56E+02 1.68E+02 
28 3.57E+02 6.01E+02 4.04E+02 4.23E+02 5.58E+01 
29 2.22E+02 3.88E+06 2.42E+02 3.55E+05 9.40E+05 
30 4.74E+02 1.33E+03 5.99E+02 6.38E+02 1.64E+02 

TABLE III.  RESULTS FOR 30D 

f. Best Worst Median Mean Std. 
1 1.50E+03 6.38E+04 1.26E+04 1.60E+04 1.22E+04 
2 0.00E+00 3.15E+03 6.91E-01 3.14E+02 7.52E+02 
3 0.00E+00 3.28E-08 0.00E+00 6.43E-10 4.59E-09 
4 3.16E-03 9.95E+01 7.08E+01 6.34E+01 2.63E+01 
5 2.05E+01 2.07E+01 2.06E+01 2.06E+01 5.11E-02 
6 1.88E+00 8.50E+00 5.01E+00 5.19E+00 1.64E+00 
7 0.00E+00 8.10E-02 2.21E-02 2.37E-02 2.31E-02 
8 3.75E+01 9.30E+01 5.39E+01 5.59E+01 1.10E+01 
9 6.35E+01 1.06E+02 8.43E+01 8.46E+01 9.06E+00 

10 8.94E+02 3.35E+03 2.11E+03 2.17E+03 4.92E+02 
11 2.92E+03 4.56E+03 3.91E+03 3.86E+03 3.52E+02 
12 6.11E-01 1.25E+00 9.58E-01 9.51E-01 1.35E-01 
13 1.56E-01 4.16E-01 2.79E-01 2.86E-01 6.10E-02 
14 1.06E-01 3.08E-01 2.28E-01 2.26E-01 4.28E-02 
15 4.73E+00 9.45E+00 7.81E+00 7.73E+00 1.04E+00 
16 9.09E+00 1.11E+01 1.06E+01 1.04E+01 4.58E-01 
17 9.42E+01 2.41E+03 1.08E+03 1.10E+03 4.14E+02 
18 5.89E+01 2.12E+02 9.83E+01 1.10E+02 3.81E+01 
19 3.57E+00 6.88E+01 6.56E+00 8.88E+00 1.21E+01 
20 8.94E+00 1.06E+02 3.81E+01 3.89E+01 2.21E+01 
21 1.25E+02 9.00E+02 3.22E+02 3.86E+02 1.91E+02 
22 1.41E+02 4.11E+02 2.23E+02 2.31E+02 8.16E+01 
23 3.15E+02 3.15E+02 3.15E+02 3.15E+02 1.16E-07 
24 2.00E+02 2.36E+02 2.23E+02 2.22E+02 7.48E+00 
25 2.00E+02 2.09E+02 2.03E+02 2.04E+02 3.22E+00 
26 1.00E+02 2.00E+02 1.01E+02 1.39E+02 4.91E+01 
27 3.26E+02 5.34E+02 4.03E+02 4.21E+02 4.64E+01 
28 7.43E+02 1.92E+03 8.96E+02 9.16E+02 1.63E+02 
29 4.70E+02 1.72E+07 7.71E+02 3.39E+05 2.41E+06 
30 5.00E+02 3.35E+03 1.23E+03 1.29E+03 5.14E+02 
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TABLE IV.  RESULTS FOR 50D 

f. Best Worst Median Mean Std. 
1 1.45E+03 1.46E+04 6.08E+03 6.54E+03 2.95E+03 
2 4.13E-03 5.63E+01 8.91E+00 1.37E+01 1.41E+01 
3 3.68E-02 2.43E+00 3.16E-01 5.22E-01 5.40E-01 
4 1.32E-01 1.55E+02 1.07E+02 1.03E+02 3.97E+01 
5 2.09E+01 2.11E+01 2.10E+01 2.10E+01 4.13E-02 
6 1.25E+01 2.83E+01 1.88E+01 1.93E+01 3.62E+00 
7 3.39E-06 1.96E-01 1.48E-02 2.88E-02 4.11E-02 
8 5.57E-03 2.15E-02 1.55E-02 1.46E-02 4.15E-03 
9 6.47E+01 2.68E+02 2.16E+02 2.16E+02 2.90E+01 

10 2.36E+02 7.78E+02 5.12E+02 4.97E+02 1.59E+02 
11 5.27E+03 8.58E+03 7.20E+03 7.20E+03 6.09E+02 
12 1.43E+00 2.41E+00 1.90E+00 1.85E+00 2.00E-01 
13 3.19E-01 5.59E-01 4.17E-01 4.21E-01 5.68E-02 
14 2.12E-01 3.53E-01 2.82E-01 2.83E-01 3.37E-02 
15 1.64E+01 3.46E+01 2.29E+01 2.30E+01 3.07E+00 
16 1.89E+01 2.09E+01 2.00E+01 2.00E+01 4.11E-01 
17 1.45E+03 6.99E+03 2.82E+03 3.08E+03 1.22E+03 
18 7.53E+01 3.55E+03 1.59E+02 4.14E+02 8.36E+02 
19 1.09E+01 2.32E+01 1.67E+01 1.65E+01 3.20E+00 
20 1.06E+02 2.80E+02 1.79E+02 1.85E+02 4.20E+01 
21 4.76E+02 1.93E+03 1.45E+03 1.42E+03 2.86E+02 
22 2.64E+02 8.05E+02 5.18E+02 4.83E+02 1.38E+02 
23 3.44E+02 3.44E+02 3.44E+02 3.44E+02 1.16E-03 
24 2.47E+02 2.79E+02 2.57E+02 2.59E+02 6.47E+00 
25 2.00E+02 2.00E+02 2.00E+02 2.00E+02 1.40E-05 
26 1.01E+02 2.00E+02 2.00E+02 1.86E+02 3.45E+01 
27 6.52E+02 1.03E+03 8.56E+02 8.52E+02 9.67E+01 
28 1.17E+03 3.88E+03 2.11E+03 2.25E+03 6.53E+02 
29 2.07E+01 6.57E+06 2.79E+01 2.56E+05 1.28E+06 
30 9.94E+03 2.60E+04 1.12E+04 1.17E+04 2.31E+03 

TABLE V.  RESULTS FOR 100D 

f. Best Worst Median Mean Std. 
1 1.43E+03 4.87E+03 2.91E+03 3.01E+03 8.10E+02 
2 4.61E-01 6.48E+01 1.34E+01 1.54E+01 1.10E+01 
3 3.44E+00 5.97E+01 1.54E+01 1.79E+01 1.17E+01 
4 2.34E+02 4.10E+02 3.20E+02 3.24E+02 4.62E+01 
5 2.12E+01 2.13E+01 2.13E+01 2.13E+01 2.49E-02 
6 7.42E+01 1.02E+02 8.60E+01 8.68E+01 6.57E+00 
7 6.04E-04 1.82E-01 5.46E-03 1.93E-02 3.06E-02 
8 3.74E-01 5.89E-01 5.02E-01 5.05E-01 4.20E-02 
9 1.43E+02 2.63E+02 1.97E+02 1.96E+02 2.59E+01 

10 1.20E+03 1.56E+03 1.36E+03 1.36E+03 7.47E+01 
11 8.11E+03 1.27E+04 1.04E+04 1.03E+04 1.02E+03 
12 7.80E-01 1.07E+00 9.59E-01 9.47E-01 6.68E-02 
13 4.19E-01 6.15E-01 5.22E-01 5.16E-01 5.01E-02 
14 1.09E-01 1.46E-01 1.27E-01 1.28E-01 9.01E-03 
15 2.18E+01 3.69E+01 2.94E+01 2.94E+01 2.98E+00 
16 4.35E+01 4.65E+01 4.51E+01 4.52E+01 6.02E-01 
17 3.49E+03 2.07E+04 9.61E+03 1.02E+04 3.69E+03 
18 1.89E+02 3.51E+03 5.62E+02 7.91E+02 6.56E+02 
19 3.87E+01 1.75E+02 1.02E+02 9.37E+01 2.72E+01 
20 2.15E+02 5.49E+02 3.17E+02 3.29E+02 6.89E+01 
21 1.83E+03 1.74E+04 4.63E+03 5.07E+03 2.63E+03 
22 7.82E+02 2.33E+03 1.35E+03 1.40E+03 3.76E+02 
23 2.00E+02 3.48E+02 2.00E+02 2.23E+02 5.44E+01 
24 2.01E+02 3.29E+02 3.03E+02 2.67E+02 5.43E+01 
25 2.00E+02 2.00E+02 2.00E+02 2.00E+02 6.69E-04 
26 2.00E+02 2.00E+02 2.00E+02 2.00E+02 1.69E-02 
27 1.54E+03 2.39E+03 1.92E+03 1.96E+03 2.01E+02 
28 4.81E+03 1.01E+04 7.48E+03 7.49E+03 1.30E+03 
29 2.71E+03 2.36E+05 6.64E+03 1.25E+04 3.22E+04 
30 4.97E+03 1.29E+04 7.58E+03 7.83E+03 1.65E+03 

 

Furthermore, to verify the performance of the proposed 
POBL in improving the ADE, basic ADE is also conducted 
in the test suite with the dimension of 50 and 100. The mean 
values of each algorithm are shown in Table VI. Better 

performance for each function is labeled in bold. It is shown 
that POBL-ADE gains better results than ADE in almost 2/3 
functions. It confirms the improvement obtained by the use 
of proposed POBL. 

TABLE VI.  COMPARISON RESULTS BETWEEN POBL-ADE AND ADE 
IN 50D AND 100D 

f. 50D 100D 
POBL-ADE ADE POBL-ADE ADE 

1 6.54E+03 7.95E+03 3.01E+03 3.87E+03 
2 1.37E+01 1.93E+01 1.54E+01 1.83E+01 
3 5.22E-01 5.20E-01 1.79E+01 2.33E+01 
4 1.03E+02 9.80E+01 3.24E+02 3.79E+02 
5 2.10E+01 2.50E+01 2.13E+01 2.71E+01 
6 1.93E+01 1.47E+01 8.68E+01 1.08E+02 
7 2.88E-02 2.47E-02 1.93E-02 1.90E-02 
8 1.46E-02 2.24E-02 5.05E-01 3.68E-01 
9 2.16E+02 1.82E+02 1.96E+02 2.37E+02 

10 4.97E+02 6.61E+02 1.36E+03 1.45E+03 
11 7.20E+03 1.03E+04 1.03E+04 1.09E+04 
12 1.85E+00 1.78E+00 9.47E-01 9.15E-01 
13 4.21E-01 4.14E-01 5.16E-01 7.22E-01 
14 2.83E-01 2.54E-01 1.28E-01 1.15E-01 
15 2.30E+01 2.60E+01 2.94E+01 3.50E+01 
16 2.00E+01 2.52E+01 4.52E+01 3.99E+01 
17 3.08E+03 2.22E+03 1.02E+04 1.19E+04 
18 4.14E+02 3.43E+02 7.91E+02 8.36E+02 
19 1.65E+01 2.14E+01 9.37E+01 1.40E+02 
20 1.85E+02 1.81E+02 3.29E+02 2.52E+02 
21 1.42E+03 1.60E+03 5.07E+03 5.61E+03 
22 4.83E+02 6.70E+02 1.40E+03 1.00E+03 
23 3.44E+02 4.39E+02 2.23E+02 1.90E+02 
24 2.59E+02 3.90E+02 2.67E+02 1.95E+02 
25 2.00E+02 3.00E+02 2.00E+02 2.14E+02 
26 1.86E+02 2.33E+02 2.00E+02 2.32E+02 
27 8.52E+02 1.14E+03 1.96E+03 2.58E+03 
28 2.25E+03 3.72E+03 7.49E+03 6.39E+03 
29 2.56E+05 2.85E+05 1.25E+04 1.41E+04 
30 1.17E+04 8.97E+03 7.83E+03 6.96E+03 

 

VI. CONCLUSION 
The opposition-based learning has been recently applied 

to enhance many evolutionary algorithms and machine 
learning algorithms. Inspired by OBL, this study proposed a 
partial opposition-based learning that simultaneously 
considering the original point, the opposite point and some 
partial opposite points. POBL was then applied to an 
adaptive differential evolution algorithms. According to the 
reported results in 10D, 30D, 50D, and 100D problems in 
CEC14’s suite, the POBL was capable to enhance the 
performance of ADE compared with basic ADE. Besides, 
this study is just a preliminary study about POBL, more in-
depth theoretical and extensive empirical studies are required 
in the future. The selection probability of the partial opposite 
point and its influence also need further justification in the 
future study. 

ACKNOWLEDGMENT 
This work was supported in part by the Natural Science 

Foundation of China under Grant No. 70771042, the 
Fundamental Research Funds for the Central Universities 
(2012QN208-HUST), the MOE (Ministry of Education in 
China) Project of Humanities and Social Science (Project 
No.13YJA630002), and a grant from the Modern 

2264



 

Information Management Research Center at Huazhong 
University of Science and Technology. The authors would 
like to thank Leandro dos Santos Coelho, etc. for making 
publicly available of the population variance based adaptive 
Differential Evolution (ADE) implementation. 

REFERENCES 
[1] H. R. Tizhoosh, “Opposition-Based Learning: A New Scheme for 

Machine Intelligence,” in International Conference on 
Computational Intelligence for Modelling, Control and 
Automation, 2005 and International Conference on Intelligent 
Agents, Web Technologies and Internet Commerce, 2005, vol. 1, 
pp. 695–701. 

[2] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, 
“Opposition versus randomness in soft computing techniques,” 
Appl. Soft Comput., vol. 8, no. 2, pp. 906–918, Mar. 2008. 

[3] Mehmet Ergezer and Dan Simon, “Mathematical and Experimental 
Analyses of Oppositional Algorithms,” IEEE Trans. Cybern., in 
press. 

[4] Q. Xu, L. Wang, N. Wang, X. Hei, and L. Zhao, “A review of 
opposition-based learning from 2005 to 2012,” Eng. Appl. Artif. 
Intell., vol. 29, pp. 1–12, Mar. 2014. 

[5] F. S. Al-Qunaieer, H. R. Tizhoosh, and S. Rahnamayan, 
“Opposition based computing– A survey,” in The 2010 
International Joint Conference on Neural Networks (IJCNN), 2010, 
pp. 1–7. 

[6] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “A novel 
population initialization method for accelerating evolutionary 
algorithms,” Comput. Math. Appl., vol. 53, no. 10, pp. 1605–1614, 
May 2007. 

[7] S. Rahnamayan, G. G. Wang, and M. Ventresca, “An intuitive 
distance-based explanation of opposition-based sampling,” Appl. 
Soft Comput., vol. 12, no. 9, pp. 2828–2839, Sep. 2012. 

[8] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, 
“Opposition-Based Differential Evolution,” IEEE Trans. Evol. 
Comput., vol. 12, no. 1, pp. 64–79, 2008. 

[9] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, 
“Opposition-Based Differential Evolution Algorithms,” in IEEE 
Congress on Evolutionary Computation, 2006. CEC 2006, 2006, 
pp. 2010–2017. 

[10] H. Wang, Z. Wu, and S. Rahnamayan, “Enhanced opposition-based 
differential evolution for solving high-dimensional continuous 
optimization problems,” Soft Comput., vol. 15, no. 11, pp. 2127–
2140, Nov. 2011. 

[11] H. Wang, Z. Wu, S. Rahnamayan, Y. Liu, and M. Ventresca, 
“Enhancing particle swarm optimization using generalized 
opposition-based learning,” Inf. Sci., vol. 181, no. 20, pp. 4699–
4714, Oct. 2011. 

[12] H. Wang, “Opposition-Based Barebones Particle Swarm for 
Constrained Nonlinear Optimization Problems,” Math. Probl. Eng., 
vol. 2012, Aug. 2012. 

[13] M. Ergezer, D. Simon, and D. Du, “Oppositional biogeography-
based optimization,” in IEEE International Conference on Systems, 
Man and Cybernetics, 2009. SMC 2009, 2009, pp. 1009–1014. 

[14] M. Ergezer and D. Simon, “Oppositional biogeography-based 
optimization for combinatorial problems,” in 2011 IEEE Congress 
on Evolutionary Computation (CEC), 2011, pp. 1496–1503. 

[15] P. K. Roy and D. Mandal, “Quasi-oppositional Biogeography-
based Optimization for Multi-objective Optimal Power Flow,” 
Electr. Power Compon. Syst., vol. 40, no. 2, pp. 236–256, 2011. 

[16] P. K. Roy and S. Bhui, “Multi-objective quasi-oppositional 
teaching learning based optimization for economic emission load 
dispatch problem,” Int. J. Electr. Power Energy Syst., vol. 53, pp. 
937–948, Dec. 2013. 

[17] B. Shaw, V. Mukherjee, and S. P. Ghoshal, “A novel opposition-
based gravitational search algorithm for combined economic and 

emission dispatch problems of power systems,” Int. J. Electr. 
Power Energy Syst., vol. 35, no. 1, pp. 21–33, Feb. 2012. 

[18] S. K. Saha, R. Dutta, R. Choudhury, R. Kar, D. Mandal, and S. P. 
Ghoshal, “Efficient and Accurate Optimal Linear Phase FIR Filter 
Design Using Opposition-Based Harmony Search Algorithm,” Sci. 
World J., vol. 2013, Jun. 2013. 

[19] M. El-Abd, “Generalized opposition-based artificial bee colony 
algorithm,” in 2012 IEEE Congress on Evolutionary Computation 
(CEC), 2012, pp. 1–4. 

[20] H.R. Tizhoosh, “Reinforcement Learning Based on Actions and 
Opposite Actions,” presented at the ICGST International 
Conference on Artificial Intelligence and Machine Learning 
(AIML-05), Cairo, Egypt, 2005. 

[21] F. Sahba, H. R. Tizhoosh, and M. M. M. A. Salama, “Application 
of Opposition-Based Reinforcement Learning in Image 
Segmentation,” in IEEE Symposium on Computational Intelligence 
in Image and Signal Processing, 2007. CIISP 2007, 2007, pp. 246–
251. 

[22] M. Shokri, H. R. Tizhoosh, and M. Kamel, “Opposition-Based 
Q(lambda) Algorithm,” in International Joint Conference on 
Neural Networks, 2006. IJCNN ’06, 2006, pp. 254–261. 

[23] M. Ventresca and H. R. Tizhoosh, “Improving the Convergence of 
Backpropagation by Opposite Transfer Functions,” in International 
Joint Conference on Neural Networks, 2006. IJCNN ’06, 2006, pp. 
4777–4784. 

[24] M. Ventresca and H. R. Tizhoosh, “Numerical condition of 
feedforward networks with opposite transfer functions,” in IEEE 
International Joint Conference on Neural Networks, 2008. IJCNN 
2008. (IEEE World Congress on Computational Intelligence), 
2008, pp. 3233–3240. 

[25] M. Ventresca and H. R. Tizhoosh, “Opposite Transfer Functions 
and Backpropagation Through Time,” in IEEE Symposium on 
Foundations of Computational Intelligence, 2007. FOCI 2007, 
2007, pp. 570–577. 

[26] J. J. Liang, B. Y. Qu, P. N. Suganthan, “Problem Definitions and 
Evaluation Criteria for the CEC 2014 Special Session and 
Competition on Single Objective Real-Parameter Numerical 
Optimization,” Technical Report 201311, Computational 
Intelligence Laboratory, Zhengzhou University, Zhengzhou China 
And Technical Report, Nanyang Technological University, 
Singapore, Technical Report, Dec. 2013. 

[27] Leandro dos Santos Coelho, Helon V. H. Ayala, Roberto Zanetti 
Freire, “Population’s Variance-Based Adaptive Differential 
Evolution for Real Parameter Optimization,” presented at the 2013 
IEEE Congress on Evolutionary Computation, Cancún, México, 
2013. 

[28] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Quasi-
oppositional Differential Evolution,” in IEEE Congress on 
Evolutionary Computation, 2007. CEC 2007, 2007, pp. 2229–2236. 

[29] R. Storn and K. Price, “Differential Evolution – A Simple and 
Efficient Heuristic for global Optimization over Continuous 
Spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341–359, Dec. 1997. 

[30] J. Vesterstrom and R. Thomsen, “A comparative study of 
differential evolution, particle swarm optimization, and 
evolutionary algorithms on numerical benchmark problems,” in 
Congress on Evolutionary Computation, 2004. CEC2004, 2004, 
vol. 2, pp. 1980–1987 Vol.2. 

[31] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
Adapting Control Parameters in Differential Evolution: A 
Comparative Study on Numerical Benchmark Problems,” IEEE 
Trans. Evol. Comput., vol. 10, no. 6, pp. 646–657, 2006. 

[32] K. Zielinski, P. Weitkemper, R. Laur, and K.-D. Kammeyer, 
“Parameter Study for Differential Evolution Using a Power 
Allocation Problem Including Interference Cancellation,” in IEEE 
Congress on Evolutionary Computation, 2006. CEC 2006, 2006, 
pp. 1857–1864. 

 

 

2265




