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Abstract— Evolutionary prototype generation techniques
have demonstrated their usefulness to improve the capabilities
of the nearest neighbor classifier. They act as data reduction
algorithms by generating representative points of a given
problem. Their main purposes are to speed up the classifi-
cation process and to reduce the storage requirements and
sensitivity to noise of the nearest neighbor rule. Nowadays,
with the increment of available data, the use of this kind
of reduction techniques becomes more important. However,
their applicability can be limited to problems with no more
than tens of thousands of instances. In order to address this
limitation, in this work we develop a two-level parallelization
scheme for evolutionary prototype generation methods. Firstly,
it distributes the functioning of these algorithms in several
tasks based on a MapReduce framework. Then, for each one of
these tasks (mappers), we accelerate the prototype generation
process by using a windowing approach. This model enables
evolutionary prototype generation algorithms to be applied over
large-scale classification problems without accuracy loss. Our
preliminary experiments using a dataset of 1 million instances
show that this proposal is an appropriate tool to improve the
performance of the nearest neighbor classifier with big data.

I. INTRODUCTION

EXTRACTING knowledge from large amounts of data

is currently a very challenging task. This problem is

termed as big data when the quantity of information over-

whelms the processing capacities of a system [1]. In a wide

variety of fields such as marketing, medicine or industry,

their researchers have collected a lot of raw data that could be

very valuable if they are properly processed. Analyzing these

data is a difficult assignment for most of the standard data

mining tools [2]. Nevertheless, with the availability of cloud

platforms and emerging technologies [3], these methods can

be adapted in order to be applied on big data.

The parallelization of data mining techniques should be

performed according to their specific requirements. In this

sense, the MapReduce framework [4] provides a simple

but robust environment to tackle the processing of large-

scale problems over a cluster of computers. The use of this

scheme for data mining is highly recommended, instead of
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other parallelization schemes such as MPI, because it in-

cludes a fault-tolerant mechanism (recommendable for time-

consuming tasks) and because of its ease of use. Several

data mining techniques have been implemented within this

paradigm with promising results [5], [6].

Data reduction techniques aim to represent original data in

such a way that data mining algorithms can be run faster and

more accurately. Most well-known data reduction methods

are feature selection and generation, instances selection and

generation, and the hybridization of them [7]. As such, they

should ease data mining algorithms to tackle big data prob-

lems. However, these methods also suffer several drawbacks

when the size of the data sets is increased, being unable to

provide a resulting set in a reasonable time.

This work is focused on Prototype Generation (PG) tech-

niques [8], which are instance generation methods designed

to enhance the performance of the Nearest Neighbor rule

(NN) [9]. These techniques generate a reduced set, by

selecting or building new prototypes, which better adjust

the decision boundaries between classes in NN. PG models

have proved to reduce the computational costs and high

storage requirements of NN. Among the existing proposals,

Evolutionary Prototype Generation (EPG) algorithms have

been highlighted as the best performing approaches [8], [10].

Dealing with large-scale data becomes impractical for

most of the PG techniques. This issue is more remarkable

in EPG approaches where an excessive increment of the

individual size can limit their practicality. Two different

solutions, based on partitioning the training set, can be used

to tackle this problem: stratification [11] and windowing

[12]. The former consists of a distributed partitioning that

preserves the class distribution. This splits the original data

into several parts that are individually addressed. Then,

it joins all solutions into a global one. The latter selects

a training subset during the learning process in order to

evaluate or refine solutions. For evolutionary algorithms,

windowing can be applied as an incremental learning with

alternating strata [12] in which each iteration the evolutionary

process uses a different subset for fitness computation.

In this work, we propose a two-level parallel scheme

for EPG that is based on both stratification and windowing

techniques. Our main objective is to offer a whole framework

to speed up EPG methods without accuracy losses. As first

parallelization level, we develop a MapReduce approach

that is based on our previous stratification model for PG

methods [13], aiming to overcome its main drawbacks (they

will be introduced in Section III). As second paralleliza-

tion component, the windowing procedure will be used
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to accelerate the processing without reducing the available

information for an EPG algorithm. Moreover, it does not

require more computing elements. We will name this method

as “MapReduce and Windowing for Evolutionary Prototype

Generation (MRW-EPG)”.

In our experiments we will use a recent EPG method,

called IPADECS [14], which is based on differential evo-

lution [15]. We will analyze its capabilities in terms of

accuracy, runtime, speed up and reduction rate. Several

variations of the proposed model will be investigated, varying

the number of used mappers and windows.

The paper is organized as follows. Section II provides

background information about PG and MapReduce. Section

III describes the proposal. Section IV analyzes the empirical

results. Finally, Section V summarizes the conclusions.

II. BACKGROUND

In this section we briefly describe the topics used in

this paper. Section II-A presents the PG problem and its

main drawbacks to tackle big data classification. Section II-B

introduces the MapReduce paradigm.

A. Prototype generation and big data

A formal notation for PG is the following: Let TR be a

training data set and TS a test set, they are formed by a

number n and t of samples, respectively. Each sample xp is

a tuple (xp1, xp2, ..., xpD, ω), where, xpf is the value of the

f -th feature of the p-th sample. This sample belongs to a

class ω, given by xpω , and a D-dimensional space. For the

TR set the class ω is known, while it is unknown for TS.

The purpose of PG is to provide a reduced set RS which

consists of rs (rs < n) prototypes, which are either selected

or generated from the examples of TR. The prototypes of RS

should be calculated to efficiently represent the distributions

of the classes and to discern well when they are used to

classify the training objects. The size of RS should be

sufficiently reduced to deal with the storage and evaluation

time problems of the NN classifier.

In the literature, best performing models follow an evolu-

tionary positioning adjustment of the prototypes [8]. These

techniques aim to correct the position of a subset of pro-

totypes RS by using an optimization procedure according

to TR. Among them, the IPADECS algorithm [10], [14]

highlights as a very competitive PG algorithm1.

Despite their bright performance with medium size prob-

lems, they lack of scalability with big data sets (from tens

of thousands of instances [16]). Their main problems are:

• Runtime: The complexity of PG models is O((n ·D)2)
or higher, where n is the number of instances and D

the number of features. Although these techniques are

only applied once on a TR, if this process takes too

long, its application could become inoperable for real

applications.

1More information and results about PG can be found at the SCI2S
thematic public website on Prototype Reduction in Nearest Neighbor Classi-

fication: Prototype Selection and Prototype Generation http://sci2s.
ugr.es/pr/

• Memory consumption: PG methods store in the main

memory many partial calculations, intermediate solu-

tions, and/or also the entire TR. When TR is too big,

it could easily exceed the available RAM memory.

These problems are usually more pronounced in EPG algo-

rithms. As we will see in further sections, these weaknesses

motivate the use of distributed partitioning procedures in

conjunction with a windowing scheme.

B. MapReduce

MapReduce is a paradigm of parallel programming [17],

[4] designed to process large data sets over a computer cluster

regardless the underlying hardware.

This model works in two different steps: the map phase

and the reduce phase. Each one has key-value (< k, v >)

pairs as input and output. The map phase takes each <

k, v > pair and generates a set of intermediate < k, v >

pairs. Then, MapReduce merges all the values associated

with the same intermediate key as a list (shuffle phase).

The reduce phase takes that list as input for producing the

final values. Figure 1 depicts a flowchart of the MapReduce

framework. In a MapReduce program, all map and reduce

operations run in parallel. First of all, all map functions

are independently run. Meanwhile, reduce operations wait

until their respective maps are finished. Then, they process

different keys concurrently and independently. Note that

inputs and outputs of a MapReduce job are stored in an

associated distributed file system that is accessible from any

computer of the used cluster.

In this work we will focus on the Hadoop implementation

[18] of the MapReduce framework because of its perfor-

mance, its open source nature and its distributed file system

(Hadoop Distributed File System, HDFS). A Hadoop cluster

is formed by a master-slave architecture, where one master

node manages an arbitrary number of slave nodes. The HDFS

replicates file data in multiple storage nodes that can concur-

rently access to the data. As such cluster, a certain percentage

of these slave nodes may be out of order temporarily. For

this reason, Hadoop provides a fault-tolerant mechanism,

so that, when one node fails, Hadoop restarts automatically

the task on another node. Thus, Hadoop offers a propitious

environment to successfully speed up data mining techniques.

III. MRW-EPG: MAPREDUCE AND WINDOWING FOR

EVOLUTIONARY PROTOTYPE GENERATION

In this section we present the proposed MapReduce and

windowing approach for EPG. Firstly, we argue the moti-

vation that justifies our proposal (Section III-A). Then, we

detail the proposed model in depth (Section III-B).

A. Motivation

PG methods reduce their performance when tackling large-

scale data sets. The distribution and parallelization of work-

load in different sub-processes may ease the issues previously

mentioned: runtime and memory consumption.

In a previous work [13], we proposed a distributed par-

titioning technique to alleviate these problems for any PG
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Fig. 1: The MapReduce framework

method. This model splits the training set, called TR, into

disjoint d subsets (TR1, TR2, ..., TRd) with equal class

distribution and size. Then, a PG model is applied to each

TRj , obtaining a resulting reduced set RSj . Finally, all RSj

(1 ≤ j ≤ d) are merged into a final reduced set RS, which

is used to classify the instances of TS with the NN rule.

This partitioning process shows to perform well in medium

size domains. However, it has some limitations:

• Maintaining the proportion of examples per class of TR

within each TRj cannot be accomplished when the size

of the data set does not fit in the main memory. Hence,

this strategy cannot scale to data sets of arbitrary size.

• Joining all the partial reduced sets RSj into a final RS

may lead to the introduction of noisy and/or redundant

examples. Each resulting RSj tries to represent, with

the minimum number of instances, a proportion of

the entire TR. Thus, when the size of TR tends to

be very high, the instances contained in some TRj

subsets may be located very near in the D-dimensional

space. Therefore, the final RS may enclose unnecessary

instances to represent the training data. The likelihood

of this issue increases with the number of partitions.

Apart from these general weaknesses for any kind of

PG algorithm, it is important to note that existing EPG

methods perform their fitness evaluation in terms of training

set classification [8]. It means that this promising PG family

of methods may spend more time to tackle a problem of the

same size in comparison with other PG models.

These drawbacks motivate the design of a combined

MapReduce and windowing system for EPG. The MapRe-

duce strategy will allow us to avoid the general limitations of

the partitioning process for any PG method. In addition, we

will apply a windowing scheme to accelerate EPG models.

B. A two-level parallelization model for EPG

The proposed MRW-EPG model is composed by two par-

allelism levels. In this section we detail each parallelization

level of MRW-EPG by following a bottom-up description.

First, Section III-B.1 explains the use of windowing for EPG

and the implementation followed in this work. Then, Section

III-B.2 describes the distributed partitioning process, based

on MapReduce, that uses the windowing scheme for EPG as

part of its processing. At the end of this section, Figure 5

depicts a flowchart of the proposed model.

Require: TRj , nw
1: W1,W2, ...,Wnw = Divide TRj into nw stratified sub sets.
2: Initialize Population
3: iter=0
4: while iter < iterations do

5: Modification of the prototypes according to operators
6: fitness= NN-leave-one-out(RSj , W

iter%nw+1)
7: Selection operator
8: iter=iter+1
9: end while

10: return RSj

Fig. 2: Structure of a EPG algorithm based on windowing

1) Parallelizing EPG with windowing: The windowing

approach was originally proposed in [12] to speed up genetic-

based machine learning algorithms [3]. The underlying idea

of this technique is the use of a subset of the whole training

data to perform the fitness evaluations. Thus, as the dis-

tributed partitioning methods explained before, the window-

ing strategy divides the input training data into nw disjoint

windows (W1,W2, ...,Wnw) with equal class distribution and

size. At each iteration of a genetic algorithm, it utilizes

a different subset to compute the fitness function, using a

round-robin policy. It is noteworthy that in contradistinction

to the distributed partitioning method, within this scheme, the

algorithm disposes of the whole information TR although it

is accessed in successive iterations.

This technique could be easily extensible to many other

evolutionary algorithms developed to solve data mining tasks.

In this sense, we consider its application for EPG. To the best

of our knowledge, all existing EPG methods calculate their

fitness function as follows: The instances in the training set

TR are classified with the prototypes of the current RSj by

the NN rule with a leave-one-out validation scheme. The re-

sulting fitness value is measured as the number of successful

hits in comparison with the total number of classifications.

Therefore, the windowing scheme for EPG merely consists of

using different windows Wj at each iteration as the training

set that will be classified by the NN rule. Figure 2 shows the

pseudo-code of windowing for a general EPG method.

In our experiments we include this idea into the IPADECS

algorithm [14]. This inclusion requires minor changes to

the structure of the algorithm. We introduce the number of

windows as a parameter, create the subsets and modify every

fitness computation into the differential evolution algorithm

that is used in IPADECS according to Figure 2.
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This model itself aims to improve the runtime require-

ments of EPG algorithms without accuracy losses. However,

it does not deal with the memory consumption problem

because it is run in a single computing node. Hence, this

strategy will be used as a second level parallelization scheme

after a previous distribution of the processing in a cluster of

computing elements.

2) Parallelizing with MapReduce: Splitting the data into

several subsets, and processing them separately, fits better

with the MapReduce philosophy than with other paralleliza-

tion schemes because of two reasons: Firstly, each subset

is individually processed, so that it does not need any data

exchange between nodes to proceed [19]. Secondly, the

computational cost of each chunk could be so high that

a fault-tolerant mechanism is mandatory. As a MapReduce

model, it organizes the processing into two key operations:

the map phase corresponds to the splitting procedure and the

application of the EPG technique. Concretely, the EPG al-

gorithm is applied with the described windowing scheme, as

a second level of parallelization. The reduce stage performs

a fusion of prototypes to avoid the introduction of harmful

prototypes to the resulting data set.

Suppose a training set TR of a given size, stored in

the HDFS as a single file. The first step of MRW-EPG

is the splitting of TR into a number of disjoint subsets.

Within a Hadoop perspective, the TR file is composed by

h HDFS blocks that are accessible from any computer of

the cluster independently of its size. Let m the number

of map tasks (a user-defined parameter). Each map task

(Map1,Map2, ...,Mapm) will form an associated TRj ,

where 1 ≤ j ≤ m, with the instances of each chunk in

which the training set file is divided. This partitioning process

is performed sequentially, so that the Mapj corresponds to

the j data chunk of h/m HDFS blocks. So, each map will

process approximately the same number of instances.

Under this scheme, if the partitioning procedure is directly

applied over TR, the class distribution of each subset TRj

could be biased to the original distribution of instances in its

corresponding file. As we stated before, no proper stratified

partitioning can be carried out if the size of TR does not fit

in the main memory. To develop a scheme easily scalable to

any number of instances, we previously randomize the entire

file. This operation is not time-consuming in comparison with

the application of the PG technique and should be applied

only once. It does not ensure that every class is represented

proportionally to its number of instances in TR. However,

probabilistically, each chunk should include approximately a

number of instances of class ω according to the probability

of belonging to this class in the original TR.

When each map has formed its corresponding TRj , an

EPG step should be performed using TRj as the input

training data to generate a reduced set RSj .

At this point, we concatenate the windowing scheme for

EPG in order to accelerate the generation process. Although

the proposed MapReduce approach can distribute the in-

stances of a given data set over a whole cluster, avoiding

Require: Number of split j, Number of windows nw
1: Constitute TRj with the instances of split j.
2: RSj=EPG windowing(TRj , nw)
3: return RSj

Fig. 3: Map function

Require: RSj , typeOfReducer {Initially RS = ∅}
1: RS = RS ∪ RSj

2: if typeOfReducer==Fusion then

3: RS = RS ∪ RSj

4: RS=Fusion(RS)
5: end if

6: return RS

Fig. 4: Reduce function

memory consumption problems, it does not guarantee the ex-

ecution of EPG algorithms to be reasonably fast. Note that we

could accelerate EPG techniques by increasing the number of

used mappers (it implies more computing units). However, as

we will see in the experimental results, this could deteriorate

their performance because the available information may not

be enough. As we commented previously, the windowing

scheme gradually uses the whole information of the problem

during its evolutionary process. Figure 3 summarizes the

pseudo-code of the map function.

As each map finishes its processing the results are for-

warded to a single reduce task. The reduce phase consists

of a iterative aggregation of all the RSj as a single set

RS. Figure 4 shows the pseudo-code of the reduce function.

Initially RS = ∅. We propose two different alternatives:

• Join: This option concatenates all the RSj sets into a

final reduce set RS. Instruction 2 of Figure 4 indicates

how the reduce function progressively joins all the RSj

as the mappers finish their processing. This type of

reducer implements with MapReduce the strategy pro-

posed in [13]. This joining process does not guarantee

that the resulting RS does not contain irrelevant or even

harmful instances, but it is included as a baseline.

• Fusion: In this variant we aim to eliminate redundant

prototypes. To accomplish this objective we rely on

the success of centroid-based methods for prototype

generation [8]. These techniques reduce a prototype

set by merging similar examples [20]. Since in this

step we have to fuse all the RSj into a single one,

these methods can be very useful to generate a final

set without redundant or very similar prototypes. The

fusion phase will be progressively applied during the

creation of RS. It means that as the mappers end their

execution, the reduce function is run and the next RS

is computed as the fused set obtained with its current

content and the new RSj . Instructions 4-7 of Figure 4

explain how to apply the fusion phase.

We will use the ICLP2 method presented in [21].

This model integrates several prototypes by identifying

borders and merging those instances that are not located

in these borders. It highlights as the best performing

model of the centroid-based family in [8].
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Fig. 5: MRW-EPG scheme

As we have explained, MRW-EPG only uses one single

reducer that is run every time that a mapper is completed.

With the adopted strategy, the use of a single reducer is

computationally less expensive than use more than one,

decreasing the network overhead.

As summary, Figure 5 outlines the way of working of the

MRW-EPG framework, differentiating between the map and

reduce phases. The resulting RS will be used as training set

for the NN rule to classify the unseen data of the TS set.

IV. EXPERIMENTAL STUDY

In this section we present all the questions raised with the

experimental study. Section IV-A establishes the experimen-

tal framework and Section IV-B presents and discusses the

results achieved.

A. Experimental Framework

We will use the following measures to characterize the

abilities of MRW-EPG:

• Accuracy: It counts the number of correct classifications

regarding the total number of instances [2].

• Reduction rate: It measures the reduction of storage

requirements achieved by a PG algorithm.

ReductionRate = 1− size(RS)/size(TR) (1)

Reducing the stored instances in the TR set will yield

a time reduction to classify a new input sample.

• Runtime: We will quantify the total time spent by MRW-

EPG to generate the RS, including all the computations

performed by the MapReduce framework.

• Test classification time: It refers to the time needed to

classify all the instances of TS regarding a given TR.

• Speed up: It checks the efficiency of a parallel algorithm

in comparison with a slower version. In our experiments

we will compute the speed up achieved depending on

the number of mappers and windows.

Speedup =
reference time

parallel time
(2)

where reference time is the runtime spent by the

algorithm we want to accelerate and parallel time is

the runtime achieved with its improved version.

TABLE I: Parameter specification for all the methods

Algorithm Parameters

MRW-EPW Mappers = 16/32/64/128, Reducers= 1

Windows = [1-7], ReduceType = Join/Fusion.

IPADECS PopulationSize = 10, iterations of Basic DE = 500

iterSFGSS =8, iterSFHC=20, Fl=0.1, Fu=0.9

ICLP2 (Fusion) Filtering method = RT2

NN Number of neighbors = 1, Euclidean distance.

The experiments have been carried out on twelve nodes

in a cluster: a master node and eleven compute nodes. Each

one of these compute nodes has 2 Intel Xeon CPU E5-2620

processors, 6 cores per processor (12 threads), 2.0 GHz and

64GB of RAM. The network is Gigabit ethernet (1Gbps).

In terms of software, we have used the Cloudera’s open-

source Apache Hadoop distribution (Hadoop 2.0.0-cdh4.4.0).

A maximum of 128 map tasks are available and one reducer.

This experimental study is focused on analyzing the dif-

ferent components of MRW-EPG. To do so, we will use
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TABLE II: Results obtained without using the windowing scheme (nw = 1).

Reduce type #Mappers Training Test Runtime Reduction rate Classification

Avg. Std. Avg. Std. Avg. Std. Avg. Std. time (TS)

Join 16 0.5037 0.0013 0.5035 0.0017 14684.2590 1640.2804 99.9449 0.0025 43.8560

Fusion 16 0.5121 0.0028 0.5120 0.0031 15058.4740 1824.6586 99.9863 0.0007 26.2472

Join 32 0.4979 0.0018 0.4977 0.0018 7018.4668 334.6388 99.8990 0.0023 63.7146

Fusion 32 0.5089 0.0031 0.5086 0.0029 6963.5734 294.3580 99.9772 0.0018 28.1252

Join 64 0.4947 0.0029 0.4947 0.0032 3309.3414 176.6006 99.8152 0.0031 98.2246

Fusion 64 0.5074 0.0023 0.5076 0.0021 3212.5440 200.6037 99.9548 0.0025 32.2760

Join 128 0.4895 0.0041 0.4887 0.0049 1966.6030 193.9369 99.6530 0.0096 163.4240

Fusion 128 0.4969 0.0028 0.4973 0.0034 1976.9906 277.8757 99.8769 0.0029 55.2700

NN 0 0.5003 0.0007 0.5001 0.0011 – – – – 48760.8242

IPADECS as a representative EPG method and we will test

its performance over the PokerHand data set. It has been

taken from the UCI repository [22] and contains 1025010

instances, 10 features and 10 different classes.

This data set has been partitioned using a 5 fold cross-

validation (5-fcv) scheme. Because of the randomness of

some operations that IPADECS includes, the MRW-EPG

has been run three times per partition. Table I presents all

the parameters involved in our experimental study. These

parameters have been fixed according to the author’s rec-

ommendations. Our research is not devoted to optimize the

accuracy obtained with a PG method over a specific problem.

We focus our experiments on the analysis of the behavior of

the proposed parallel system. We will study the influence

of the number of mappers, windows and type of reduce

regarding to the accuracy achieved and the runtime needed.

B. Results and discussion

This section presents and analyzes the results collected

in the experimental study. Firstly, we only focus on the

first level of parallelization, studying the results of MRW-

EPG without using windowing (it corresponds to the case in

which nw = 1). Table II summarizes the results obtained on

PokerHand. It shows the training/test accuracy, runtime and

reduction rate obtained by the IPADECS algorithm, in our

MRW-EPG framework, depending on the number of mappers

(#Mappers) and the reduce type. For each one of these

measures, average (Avg.) and standard deviation (Std.) results

are presented (from the 3x5-fcv experiment). Moreover, the

average classification time in the TS is computed as the

time needed to classify all the instances of TS with the

corresponding RS generated by MRW-EPG. Furthermore,

we compare these results with the accuracy and the test

classification time achieved by the NN classifier. It uses the

whole TR set to classify all the instances of TS. In these

tables, average accuracies higher or equal than the obtained

with the NN algorithm have been highlighted in bold. The

best ones in overall are stressed in italic.

From this table we can stress several factors:

• Since within the proposed framework an EPG algorithm

does not dispose of the full information about the

addressed problem, it is expected that the accuracy

obtained decreases as the number of available instances

in the used training set is reduced. Nevertheless, in this

table we can see that the performance keeps close to the

one obtained with the NN rule or is even better. This

situation occurs because PG techniques remove noisy

instances from the TR set that damage the classification

performance of the NN rule. Moreover, PG models typ-

ically smooth the decision boundaries between classes,

and this usually rebounds in an improvement of the

generalization capabilities (test accuracy).

• Comparing join and fusion reducers, we can check that

in general the fusion approach highlights as the best

performing one. It is also notorious that this scheme al-

ways reports the highest reduction rate. As we explained

before, the fusion scheme requires extra computations

regarding to the join approach. However, we take advan-

tage from the way of working of MapReduce, so that

the reduce stage is being executed while the mappers are

still finishing. In this way, most of the extra calculations

needed by the fusion approach are performed before all

the mappers have finished.

• Analyzing the runtime achieved, an approximate linear

reduction is shown when the number of mappers is

increased.

• When tackling large-scale problems, the reduction rate

of a PG technique becomes much more important,

maintaining the premise that the accuracy is not very

deteriorated. A high reduction rate implies a significant

decrease in the computational time spent to classify

new instances. For example, we can see in this table

that MRW-EPG can perform the classification up to

1857 times faster than the NN classifier when the fusion

method and 16 mappers are used.

Taking into consideration the windowing scheme, we study

the behavior of MRW-EPG varying the number of windows.

Due to limitations of space, Table III only presents the

numerical results obtained with different number of windows

when 16/32 mappers and the fusion reducer type are used.

Once again, average accuracies higher or equal than the one

obtained with the NN rule have been stressed in bold. The

best ones in overall are emphasized in italic.

Nevertheless, we provide visually all the resulting informa-

tion. Figure 6 shows a scatterplot that compares the average

accuracy test versus the average runtime needed, depending

on the number of windows and mappers and the type of

reducer studied. The average accuracy result of the NN rule

is presented as a line x = AverageAccuracy, to show
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TABLE III: Results obtained incorporating the windowing scheme with MRW-EPG and fusion reducer.

#Windows nw #Mappers Training Test Runtime Reduction rate Classification

Avg. Std. Avg. Std. Avg. Std. Avg. Std. time (TS)

1 16 0.5121 0.0028 0.5120 0.0031 15058.4740 1824.6586 99.9863 0.0007 26.2472

2 16 0.5115 0.0035 0.5113 0.0036 8813.7134 678.1335 99.9875 0.0007 23.8804

3 16 0.5038 0.0032 0.5039 0.0033 4666.5424 412.5351 99.9883 0.0010 26.5612

4 16 0.5052 0.0060 0.5055 0.0057 4095.8610 941.5737 99.9890 0.0011 25.8442

5 16 0.5041 0.0024 0.5034 0.0022 3244.0716 534.8720 99.9899 0.0015 25.0526

6 16 0.5031 0.0042 0.5028 0.0041 2639.4266 360.3121 99.9905 0.0011 26.6988

7 16 0.5000 0.0067 0.4998 0.0069 2099.5182 339.7356 99.9895 0.0010 25.8770

1 32 0.5089 0.0031 0.5086 0.0029 6963.5734 294.3580 99.9772 0.0018 28.1252

2 32 0.5084 0.0045 0.5080 0.0041 4092.5484 855.7351 99.9789 0.0016 30.6644

3 32 0.5067 0.0025 0.5065 0.0024 2343.1542 104.7222 99.9794 0.0012 33.6744

4 32 0.5012 0.0045 0.5012 0.0039 1639.0032 335.6036 99.9785 0.0015 26.8272

5 32 0.5012 0.0045 0.5012 0.0039 1639.0032 335.6036 99.9785 0.0015 26.8272

6 32 0.4824 0.0104 0.4820 0.0101 1083.1116 143.9288 99.9768 0.0019 35.1896

7 32 0.4838 0.0072 0.4835 0.0065 1129.8838 173.9482 99.9757 0.0024 35.4692
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Fig. 6: PokerHand: Accuracy Test vs. Runtime results obtained by MRW-EPG

the accuracy differences between using the whole TR or

a generated RS as training data set.

To apply MRW-EPG, we have to consider how representa-

tive the used training subset (Wj) is, regarding to the original

TR. Table IV shows the approximate number of instances per

chunk, that is, the size of each Wj for MRW-EPG, attending

to the number of mappers and windows established.

TABLE IV: Approximate number of instances in each Wj

subset according to the number of mappers and windows

used. PokerHand data set

Number Number of windows

of mappers 1 2 3 4 5 6 7

16 51250.50 25625.25 17083.50 12812.63 10250.10 8541.75 7321.50

32 25625.25 12812.63 8541.75 6406.31 5125.05 4270.88 3660.75

64 12812.63 6406.31 4270.88 3203.16 2562.53 2135.44 1830.38

128 6406.31 3203.16 2135.44 1601.58 1281.26 1067.72 915.19

Finally, Figure 7 depicts the speed up achieved with the

windowing scheme in MRW-EPG, fixing the number of

mappers to 16. The speed up has been computed using the

runtime spent with one window as the reference time.

According to these results, we can make some comments:

• As it could be expected, an increment in the number

of windows implies a slight reduction of the accuracy

capabilities of the EPG technique. With the partitioning

scheme, the performance should decrease when the

number of available instances is lesser than a determined

threshold. Exceeding this limit, the used data do not

represent the addressed problem. According to Table IV

and Figure 6, we can see that for the PokerHand data

set, it occurs when the number of instances is lesser than

10000. Thus, a higher number of mappers and windows

may deteriorate the performance of the IPADECS.

3042



2

3

4

5

6

7

2 3 4 5 6 7
Number of windows

S
pe

ed
up ReduceType

Join

IterativeFusion

PokerHand (16 mappers)

Fig. 7: PokerHand: Speed up

• Comparing the results obtained with one window with

the use of more windows, the windowing scheme pro-

vides higher accuracy test results with the same number

of available instances (see Table IV). For example, by

using 16 mappers and 4 windows, in comparison to 32

mappers and 2 windows, IPADECS uses approximately

12800 instances to evaluate the fitness function, but

it performs better with the first setting. As explained

in Section III-B.1, it is due to the fact that with the

windowing scheme the EPG algorithm utilizes all the

information although it is accessed partially during the

evolutionary cycle. Thus, it is important to find a trade-

off between number of mappers and windows.

• In terms of runtime and speed up, we observe that the

model reduces the runtime computation in a linear way

(approximately) as the number of mappers or windows

is incremented. The runtime crucially depends on the

number of instances that the algorithm has to evaluate

during its evolutionary process. In Figure 7, a superlin-

ear speed up is shown for some number of windows (3

and 7). It is due to the fact that the windowing scheme

modifies the way of working of IPADECS. Since this

algorithm decides automatically its number of iterations

according to the fitness function, it may occur that it

finishes earlier.

V. CONCLUDING REMARKS

In this contribution we have developed a two-level par-

allelization scheme for evolutionary prototype generation.

At first level, it is based on a MapReduce framework

that is later enhanced with a windowing approach. The

experimental study carried out has shown the good synergy

between the windowing and MapReduce approaches and how

they complement themselves in our two-level proposal. The

application of this model has resulted in a very big reduction

of storage requirements and classification time for the NN

rule, when dealing with large data sets. Without this model,

evolutionary prototype generation could not be applied to

data sets larger than approximately ten thousands instances.
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