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Abstract—Multi-Objective Evolutionary Algorithms have been
deeply studied in the research community and widely used
in the real-world applications. However, the performance of
traditional Pareto-based MOEAs, such as NSGA-II and SPEA2,
may deteriorate when tackling Many-Objective Problems, which
refer to the problems with at least four objectives. The main
cause for the degradation lies in that the high-proportional non-
dominated solutions severely weaken the differentiation ability of
Pareto-dominance. This may lead to stagnation. The Two Archive
Algorithm (TAA) uses two archives, namely Convergence Archive
(CA) and Diversity Archive (DA) as non-dominated solution
repositories, focusing on convergence and diversity respectively.
However, as the objective dimension increases, the size of CA
increases enormously, leaving little space for DA. Besides, the
update rate of CA is quite low, which causes severe problems for
TAA to drive forth. Moreover, since TAA prefers DA members
that are far away from CA, DA might drag the population
backwards. In order to deal with these weaknesses, this paper
proposes an improved version of TAA, namely ITAA. Compared
to TAA, ITAA incorporates a ranking mechanism for updating
CA which enables truncating CA while CA overflows. Besides,
a shifted density estimation technique is embedded to replace
the old ranking method in DA. The efficiency of ITAA is demon-
strated by the experimental studies on benchmark problems with
up to 20 objectives.

Keywords—Many-objective, Multi-objective, evolutionary algo-
rithm, archive method.

I. INTRODUCTION

In the real world applications, we are often faced with
Multi-Objective Problems (MOPs). MOPs with at least four
objectives are referred to as Many-Objective Problems (Many-
OPs) [1]. ManyOPs appear widely in many real-world applica-
tions, such as engineering design, air traffic controlling, nurse
rostering, and water supply management. Recently, a series
of algorithms have been proposed to solve ManyOPs in the
evolutionary multi-objective optimization (EMO) community.

A Multi-Objective Problem (MOP) can be stated as fol-
lows:

minimize F(x) = (f1(x), f2(x), . . . , fm(x))T

subject to x ∈ Ω (1)

where x = (x1, x2, . . . , xn)T is the decision vector, Ω is
the nonempty decision space, the objective function vector
is denoted as F: Ω → Λ with m (m ≥ 2) objectives,
and Λ is the objective space [2]. Without loss of generality,
we consider minimization problems in this paper, where all

the objectives are supposed to be minimized. The dominance
preference relation is a critical concept in Multi-Objective
Evolutionary Algorithms (MOEAs). Given two objective vec-
tors F(x), F(y) ∈ Rm, F(x) is said to dominate F(y) if
and only if ∀i ∈ {1, 2, ...,m}, fi(x) ≤ fi(y) and ∃j ∈
{1, 2, ...,m}, fj(x) < fj(y) [3]. A decision vector x∗ ∈ Ω
is Pareto optimal if there exist no other feasible solutions that
dominate it [3]. The set of Pareto optimal solutions is called
Pareto Set (PS) and the corresponding objective vector set is
the Pareto Front (PF).

Due to their population-based property and robust search
power for complex problems, MOEAs have been recognized
to be well suitable for tackling MOPs [4]. Ever since the
1990s, plenty of MOEAs have been proposed which show
promising performance when tackling bi-objective or three-
objective problems. However, it has been shown that traditional
Pareto-based approaches, such as NSGA-II [5] and SPEA2
[6], may deteriorate significantly for ManyOPs [7]. The main
reason for this phenomenon is that the proportion of globally
non-dominated solutions in a randomly generated population
rises enormously as the dimension of objective space increases.
Thus the dominance level based primary selection criterion
fails to discriminate solutions in most cases and the secondary
selection criterion aiming at improving diversity determines the
environmental selection, which is referred to as active diversity
promotion [8]. As a result, the convergence of the Pareto-based
MOEAs on ManyOPs is severely deteriorated and the final
solution set might not even converge to PF but stagnate far
away from it [9].

Intuitively, there are two avenues to improve the perfor-
mance of Pareto-based MOEAs on ManyOPs, i.e. modifying
the dominance-based primary criterion to enhance the selection
pressure towards the PF and improving the diversity-oriented
secondary criterion to weaken the detrimental effect of active
diversity promotion [10]. On one hand, a series of relaxed
dominance definitions have been proposed to improve the se-
lection pressure, such as CADS [11], and grid-dominance [4].
These domination forms are more tolerant, thus the solutions
are less likely to be non-dominated. As a result, the population
are pushed forward instead of stagnating far away from the
PF. On the other hand, modifying the diversity management
mechanism seems to be another way to deal with this issue. In
[12], Adra et al. introduced a diversity management mechanism
to NSGA-II which named DM1. DM1 determines whether
the algorithm activates diversity promotion according to the
spread of the population. Yang et al. proposed a Grid-based
Evolutionary Algorithm (GrEA) to solve ManyOPs [4]. In
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GrEA, based on the adaptive constructed grids, the density
of solutions are measured by the grid crowding distance and
grid coordinate point distance. In [13], Deb et al. replaced
the crowding distance with a reference set based mechanism
to measure the density of solutions, which showed quite
promising performance.

Aggregation-based algorithms are competitive alternatives
non-Pareto-based MOEAs for tackling ManyOPs. One of the
most popular aggregation-based algorithms is MOEA/D pro-
posed by Zhang and Li [3]. When dealing with a ManyOP, they
optimize a series of single-objective sub-problems instead of
directly working on the original problem. Due to its problem
decomposition strategy and solution sharing mechanism for
neighboring sub-problems, MOEA/D shows competitive, if not
better, convergence and diversity performance compared with
other state-of-the-art algorithms.

The indicator-based methods, on the other hand, use the
values of metrics, such as hypervolume and approximation
indicator, to guide the search process [14], [15], [16]. In
[14], Emmerich et al. proposed a steady-state algorithm named
SMS-EMOA based on the gradient of the 1-D hypervolume
metric. However, the computational cost of the hypervolume
indicator is so expensive that the applications of SMS-EMOA
on problems with more than 10 objectives is limited [16].
Bader and Zitzler applied Monte Carlo simulation to ap-
proximate the exact hypervolume values, allowing a tradeoff
between the accuracy of the estimates and the available com-
puting resources [15]. In [17], Bringmann et al. defined an
additive approximation indicator and proposed an algorithm
based on the indicator. Compared to the hypervolume indicator,
it costs much less computational time.

Other techniques, such as user preference incorporation and
dimensionality reduction, are also adopted to MOEAs to deal
with ManyOPs [18], [19]. Dimensionality reduction algorithms
try to reduce less necessary objectives to reduce computational
load, while preference incorporation methods use the decision
makers’ preference information to bias the population towards
a sub-region of the PF.

The Two Archive Algorithm (TAA) uses quite different
mechanism for environmental selection [20]. In TAA, non-
dominated solutions of each generation are selected and sepa-
rated into two archives namely Convergence Archive (CA) and
Diversity Archive (DA) focusing on convergence and diversity
respectively. However, as the objective dimension increases,
the size of CA increases enormously, leaving little space for
DA. Besides, the update rate of CA is quite low, which might
slow down the convergence of TAA. Moreover, since TAA
prefers the DA members which far away from CA, DA might
drag the population backwards.

In this paper, we proposed an improved version of TAA,
named ITAA, where a Penalty-based Boundary Intersection
(PBI) [3] method is incorporated into CA truncation. PBI
method enables the algorithm to truncate CA when the size
of CA is too big. Besides, ITAA replaces the old ranking
mechanism of DA with a recent proposed Shift-based Density
Estimation (SDE) [10] method to improve the convergence of
DA and prevent the DA from dragging the population back-
wards from the PF. The experimental results on benchmark
functions with up to 20 objectives demonstrated that ITAA

outperformed TAA in terms of both convergence and diversity
in most cases.

The remaining part of the paper is organized as follows.
In section II, we will give a detailed introduction of the
two archive mechanism. Section III is devoted to discuss
the Improved Two Archive Algorithm (ITAA). The empirical
evaluation of ITAA, with a detailed description of experimental
settings and results included, are presented in Section IV. The
last section summarizes the paper and discusses some future
directions for further investigation.

II. TWO ARCHIVE MECHANISM

Generally speaking, there are two goals for MOEAs:
minimizing the distance of the solutions to the true PF and
improving the distribution quality of the solutions, aka conver-
gence and diversity. However, it is often the case that these two
goals are contradictory and finding solutions with both good
convergence and good diversity might be hard. Besides, when
tackling ManyOPs, MOEAs are faced with a large proportion
of non-dominated solution.

Praditwong and Yao [20] proposed an effective way to pro-
vide a coarse-grained discrimination for the non-dominated so-
lutions by maintaining two archives: the Convergence Archive
(CA) and the Diversity Archive (DA). During the searching
process, these two archives focus on convergence and diversity
respectively. Only the non-dominated population members
which are not dominated by any archive members are qualified
to enter the archives. In order to determine whether they are ad-
mitted into CA or DA, the non-dominated solutions are tested
if they can dominate archive members. The solutions which
can dominate at least one existing archive member are deemed
to show more convergence ability, thus they are added into CA.
These solutions are addressed as non-dominated solutions with
domination. Meanwhile, the dominated archive members are
discarded from the archives. The rest non-dominated solutions,
which are called non-dominated solutions without domination,
are added into DA instead. If the cardinality of the union of
CA and DA (denoted as UA, hereinafter) is over the threshold,
DA members with the minimum distance to CA are discarded
iteratively, aiming at obtaining a diverse solution set. The
experimental results have demonstrated that the Two Archive
Algorithm outperformed PESA [21] on DTLZ benchmark
functions with up to 8 objectives [20].

Although some promising results are obtained in [20],
there do exist some problems in TAA. First, as the number
of objective increases, the proportion of non-dominated so-
lutions increases enormously. However, CA members won’t
be updated (replaced) unless dominated by new solutions. In
that case, the size of CA accounts for a large proportion of
UA (roughly larger than 90% in many cases), leaving little
space for DA. Moreover, the update rate of CA will remain
quite low, which may slow down the convergence speed of the
algorithm. Second, the diversity maintenance strategy of DA
is also questionable. Based on the Euclidean distance, the DA
truncation mechanism prefers the solutions which are far away
from CA, thus DA may fall far behind the population and drag
UA backwards.
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III. THE IMPROVED TWO ARCHIVE ALGORITHM

The main loop of ITAA is shown in Algorithm 1. As
shown in the pseudo-code, it begins with a randomly initialized
population. At each generation, the archives are updated after
evaluating the population. There are two phases for the up-
dating: adding non-dominated solutions into the archives and
truncating archives (line 5 and 6 in Algorithm 1). In general,
ITAA remains the same with TAA except for the truncation
phase (line 6 in Algorithm 1).

Algorithm 1 The Improved Two Archive Algorithm (ITAA):
Main Loop

1: Initialize the population
2: Evaluate initial population
3: Set CA← ∅,DA← ∅, t← 0
4: while t ≤ MaxGen do
5: Adding non-dominated solutions into the archives
6: Truncating archives
7: Mating selection
8: Apply genetic operators to generate a new population
9: Evaluate the new generation

10: t← t+ 1
11: end while

In order to deal with the CA size issue, an intuitive way is
to set a threshold for CA. When CA overflows, a ranking mech-
anism is carried out and the redundant members are discarded
from CA according to the ranking mechanism. The ranking
mechanism should be able to keep a good convergence of CA
and provide a high updating rate for CA. In this paper, we used
a Penalty-based Boundary Intersection (PBI) [3] to rank the
CA members. Besides, We replaces the old ranking mechanism
with a recent proposed Shift-based Density Estimation (SDE)
[10] method. SDE is better than the original Euclidean distance
measure in that it introduces some convergence information
into the density estimation mechanism. Thus the convergence
of DA will be improved and DA won’t drag the population
backwards from the PF. Also, it should be noted that modifying
DA truncation without changing the maintenance strategy of
CA might obtain limited performance improvement since there
is a good chance that CA will still occupy a large proportion
of UA. So we consider modifying CA updating strategy first.

A. PBI-based CA Truncation

In order to rank CA members, we adopt PBI from literature
[3] to evaluate the convergence quality of each solution. If CA
overflows, a fitness assignment procedure is conducted for all
CA members. The CA member with the worst fitness value
is discarded iteratively until CA meets the capacity constraint.
First, a reference direction is defined by a unit weighted vector
wk = {w1

k, w
2
k, . . . , w

m
k },wk ∈W, k = 1, 2, . . . , |W|. In order

to keep a fair search strength among all directions, a global
counter gc is maintained. At each generation, gc is updated by
gc = (gc+ 1)mod|W|+ 1. The PBI fitness of a CA member
according to the reference direction of wk is the weighted
sum of the distance (d1) along the reference direction and the
perpendicular distance (d2) from the reference direction, which
is stated as follows:

PBI(F(x),wk) = d1 + θd2 (2)

where d1 = wTk · F(x), d2 = ||F(x)− wTk · F(x) · wk||
PBI enables a selection among CA members so that the

size of CA can be controlled. Besides, the convergence of
MOEA/D-PBI 1 has implied that PBI is able to select solutions
which is better in terms of convergence. Thus although the
size of CA in ITAA is smaller than TAA in most cases, the
convergence of CA in ITAA won’t be diminished.

Algorithm 2 Truncating CA in ITAA
1: gc = (gc+ 1)mod|W|+ 1
2: if sizeof(CA) > limitCA then
3: for all i = 1 to sizeof(CA) do
4: Compute PBI(CA(i),wgc) according to Eqn. (2)
5: end for
6: while sizeof(CA) > limitCA do
7: Remove the CA member with the worst PBI value
8: end while
9: end if

B. SDE-based DA Truncation

After truncating CA, if UA still overflows, we will need to
truncate DA too. The truncating procedure is shown in Algo-
rithm 3. In order to rank DA members, TAA calculates their
distances to CA. The redundant DA members with shortest
distances to CA are removed. When measuring the similarity
between two points in the objective space p = (p1, p2, . . . , pm)
and q = (q1, q2, . . . , qm), instead of using Euclidean distance
Ed(p,q), we use the Shifted Density Estimation (SDE) method
[10] which is defined as follows:

SDE(p,q) = Ed(p,q′)) (3)

where the shift version of q′ = (q′1, q
′
2, . . . , q

′
m) is defined as:

q′i =

{
pi if qi < pi
qi otherwise i ∈ {1, 2, . . . ,m} (4)

Compared to Euclidean distance, SDE is more suitable for
ManyOPs since it considers both diversity and convergence
information of the solutions [10]. As a result, the convergence
of DA is expected to be improved so that DA won’t drag the
whole population backwards.

IV. EXPERIMENTAL STUDIES

A. Experimental Settings

In order to examine the effect of CA truncation and DA
modification mentioned above, we implemented three variants
of the Two Archive Algorithms under the framework of jMetal
[22] 2, as shown in Table I. To be specific, TAA represents the
old version, ITAA-a modifies the CA truncation of TAA while
ITAA-b modifies both CA and DA maintenance strategies.

TABLE I. ALGORITHM VARIANTS

Modifications TAA ITAA-a ITAA-b
CA truncation - X X
DA truncation - - X

1MOEA/D-PBI is a variant of MOEA/D using Penalty-based Boundary
Intersection to aggregate objective values [3].

2jMetal(Metaheuristic Algorithms in Java) is a Java-based framework for
multi-objective optimization.
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Algorithm 3 Truncating DA in ITAA
1: for all i = 1 to sizeof(DA) do
2: Set DA(i).DistanceToCA ← maxReal
3: for all j = 1 to sizeof(CA) do
4: if DA(i).DistanceToCA > Dist(CA(j),DA(i)) then
5: Set DA(i).DistanceToCA ← Dist(CA(j),DA(i))
6: end if
7: end for
8: end for
9: if sizeof(CA) + sizeof(DA) > limitUA then

10: while sizeof(CA) + sizeof(DA) > limitUA do
11: Delete the member with the minimal DistanceToCA

from DA
12: end while
13: end if

DTLZ is a well-defined continuous test problem suite
which is widely used to evaluate MOEAs [23]. More im-
portantly, it is scalable in terms of objective numbers, which
makes DTLZ popular in evaluating many-objective evolution-
ary algorithms. Problems with various characteristics such as
different Pareto front shapes, different number of local Pareto-
optimal fronts and different solution density are included in the
test function family. In our experiments, we used four DTLZ
functions (DTLZ1-DTLZ4) since their Pareto front is known
in advance. The number of objectives was set to 5, 10, 15, and
20. As a result, there are in total 16 test instances.

Although the ideal population size will increase expo-
nentially to the objective dimension, we cannot afford this.
Thus we used a linear function to set the population size.
Specifically, the population size, denoted as popSize, was set
to 5 ∗m where m is the number of objectives. The evolving
generation MaxGen was set to 500. Each algorithm was
executed 20 independent times. As to the genetic operators,
we set them according to [5]. In all algorithm variants, the
simulated binary crossover (SBX) operator and polynomial
mutation were applied to generate offspring solutions. The
crossover probability pc was set to 0.9 while the mutation
probability pm was set to 1/ND (ND is the number of de-
cision variables). Both distribution indexes for crossover and
mutation (ηc and ηc) were set to 20. In TAA, the parameter
limitCA is tuned to 0.6*popSize since it obtained best overall
performance compared with other limitCA values in our
preliminary experiments. Other than that, all parameters in
these algorithms were kept the same in order to perform a
fair comparison. The parameter k of the test problems was set
according to [23]. In our experiments, the weight vector set
W was generated using the sampling method from [24]. The
parameter θ in PBI was set to 5 according to [3].

In order to verify the performance of ITAA-b, we com-
pared it with four state-of-the-art many-objective evolutionary
algorithms in the literature: ε-MOEA [25], MOEA/D-TCH
[3], SPEA2+SDE [10], and NSGA-III [13]. ε-MOEA uses ε-
dominance to enhance the selection pressure towards the Pareto
front while MOEA/D-TCH uses Tchebycheff functions as ag-
gregation method to decompose a many-objective problem into
a series of single-objective sub-problems. In SPEA2+SDE,
Shift-based Density Estimation (SDE) are combined into
SPEA2 algorithm to incorporate convergence information into

diversity measuring mechanism. NSGA-III takes advantage of
reference direction based niching strategy to balance the search
power along all the directions. In order to guarantee a fair
comparison, the parameters are set as follows: The population
size, the evolving generation, and the weight vectors of ITAA-
b, MOEA/D-TCH, and NSGA-III were set the same way
as described in the previous part. So are the crossover and
mutation settings. In order to make the archive size of ε-
MOEA, which is determined by the value of ε, approximately
the same with that of the remaining algorithms, we set the
value of ε according to Table II. Other than that, the parameter
settings of the four algorithms are the same with their original
paper.

TABLE II. THE VALUES OF ε IN ε-MOEA

problem 5d 10d 15d 20d
DTLZ1p 0.05 0.3 0.4 0.5
DTLZ2p 0.15 0.25 0.275 0.3
DTLZ3p 0.1 0.8 0.9 1.0
DTLZ4p 0.1 0.25 0.275 0.3

To measure the convergence quality of the final solution
set, we used the Inverted Generational Distance (IGD) [26].
Given an approximation set A and a subset of the real Pareto
front PF

′
= {p1,p2, ...,p|PF ′ |}, IGD is defined as follows:

IGDp =

(
1

|PF ′ |
∑

p∈PF ′
(d(p, A))p

) 1
p

(5)

where d(p, A) is the Euclidean distance between p and its
nearest member in A. In our experiments, the coefficient p
was set to 2.

In order to measure the diversity quality, we also used the
Generalized Spread (GSpread) [27] as evaluation indicator. It’s
defined as follows:

GSpread =

s∑
i=1

d(ei, A) +
∑

p∈PF ′
|d(p, A)− d̄|

s∑
i=1

d(ei, A) + |PF ′ |d̄
(6)

where {e1, . . . , es} are s extreme solutions in PF
′
, d(p, A)

is the Euclidean distance of p from its nearest neighbor in A,
d̄ is the average values of d(p, A) for all solutions in PF

′
.

If A is well distributed and the extreme solutions in PF
′

are included in A, its GSpread value will be zero. A smaller
GSpread indicates a better population diversity.

B. Experimental Results and Discussions

1) Performance Comparisons of TAA, ITAA-a, and ITAA-b:
The IGD and GSpread results of TAA, ITAA-a, and ITAA-b
are shown in Tables III and IV respectively. Based on these
two tables, we can carry out a Friedman Test on these results.
Finally, Table V is obtained. When p = 0.05, degrees of
freedom is 2, the critical value is 5.99. Both 16.125 and 18.375
are larger than 5.99. Thus the null hypotheses are rejected
and there are statistically significant differences among the
IGD and GSpread performances of the three algorithms. Thus
we can say that ITAA-b outperforms TAA in terms of both
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TABLE III. IGD. MEAN AND STANDARD DEVIATION OF THE THREE
VARIANTS OF TAA

Instances1 TAA ITAA-a ITAA-b
DTLZ1p5d 2.34e − 021.3e−02 5.91e − 032.0e−03 1.74e − 036.5e−05
DTLZ2p5d 2.55e − 039.4e−05 2.46e − 031.0e−04 3.03e − 032.3e−04
DTLZ3p5d 2.37e − 016.9e−02 1.34e − 014.7e−02 3.17e − 033.7e−04
DTLZ4p5d 4.65e − 032.1e−03 4.78e − 031.7e−03 4.53e − 031.7e−03
DTLZ1p10d 3.38e − 022.0e−02 1.83e − 021.4e−02 3.22e − 032.5e−04
DTLZ2p10d 6.18e − 031.7e−04 1.13e − 024.6e−04 6.51e − 032.9e−04
DTLZ3p10d 2.84e − 019.3e−02 2.56e − 017.2e−02 9.87e − 036.3e−03
DTLZ4p10d 8.26e − 031.6e−04 1.15e − 024.8e−04 7.27e − 033.3e−04
DTLZ1p15d 4.38e − 021.5e−02 2.04e − 021.1e−02 5.31e − 037.1e−04
DTLZ2p15d 1.03e − 023.8e−04 1.48e − 022.8e−04 1.01e − 023.5e−04
DTLZ3p15d 3.88e − 018.1e−02 2.67e − 011.1e−01 1.36e − 025.0e−03
DTLZ4p15d 1.62e − 027.2e−04 1.68e − 023.7e−04 1.09e − 024.0e−04
DTLZ1p20d 4.85e − 022.5e−02 2.93e − 021.7e−02 7.91e − 039.5e−04
DTLZ2p20d 1.57e − 026.9e−04 1.87e − 023.5e−04 1.31e − 022.7e−04
DTLZ3p20d 4.70e − 011.3e−01 3.14e − 017.0e−02 3.86e − 022.8e−02
DTLZ4p20d 2.34e − 025.8e−04 2.20e − 029.7e−04 1.44e − 023.7e−04

1 DTLZαpβd mean β-objective DTLZα test function, hereinafter.

TABLE IV. GSPREAD. MEAN AND STANDARD DEVIATION OF THE
THREE VARIANTS OF TAA

Instances TAA ITAA-a ITAA-b
DTLZ1p5d 1.48e + 001.6e−01 1.65e + 009.2e−02 8.41e − 015.2e−02
DTLZ2p5d 5.37e − 017.7e−02 6.64e − 019.9e−02 6.17e − 019.2e−02
DTLZ3p5d 1.25e + 001.0e−01 1.33e + 008.5e−02 6.16e − 018.4e−02
DTLZ4p5d 4.60e − 011.2e−01 5.95e − 011.3e−01 6.50e − 011.1e−01
DTLZ1p10d 1.53e + 001.3e−01 1.58e + 001.6e−01 6.58e − 019.6e−02
DTLZ2p10d 5.84e − 015.4e−02 1.10e + 006.8e−02 6.50e − 017.9e−02
DTLZ3p10d 1.20e + 008.1e−02 1.34e + 008.9e−02 7.41e − 019.1e−02
DTLZ4p10d 7.94e − 017.6e−02 1.17e + 006.4e−02 6.24e − 016.0e−02
DTLZ1p15d 1.52e + 008.0e−02 1.60e + 001.2e−01 7.56e − 011.3e−01
DTLZ2p15d 7.61e − 014.3e−02 9.64e − 016.2e−02 6.58e − 018.3e−02
DTLZ3p15d 1.31e + 004.8e−02 1.35e + 006.2e−02 7.35e − 011.0e−01
DTLZ4p15d 6.50e − 011.6e−01 1.11e + 007.8e−02 6.00e − 014.9e−02
DTLZ1p20d 1.41e + 001.8e−01 1.59e + 001.2e−01 9.35e − 011.4e−01
DTLZ2p20d 9.59e − 013.9e−02 9.39e − 013.3e−02 7.06e − 015.1e−02
DTLZ3p20d 1.41e + 005.1e−02 1.36e + 008.5e−02 7.73e − 011.0e−01
DTLZ4p20d 3.10e − 012.3e−02 7.27e − 011.2e−01 5.67e − 015.0e−02

convergence and diversity on most test cases. ITAA-a ranks a
little better than TAA in terms of IGD while is beaten on the
GSpread metric. Also, since the experimental results in [20]
showed that TAA outperformed PESA, thus we can hint that
ITAA also outperforms PESA, although more comparisons are
needed to draw a strict conclusion.

However, it is interesting that in Table III, ITAA-a doesn’t
converge very well on DTLZ2 instances. One possible cause
might be that some good members in CA might be eliminated
by PBI-based truncation when the Pareto front is spherical
since PBI emphasizes a single direction in each generation.
Although DTLZ3 instances also have the same Pareto front
shape, it is more harder for algorithms to convergence since
they introduce many local Pareto-optimal fronts. These local
fronts might cause TAA to stagnate. On the other hand, ITAA-a
with PBI-embedded is less likely to be attracted to these local
Pareto fronts. This may be the reason why ITAA-a achieved
better IGD values than TAA on DTLZ3 instances. Although
more experiments are needed for some in-depth analysis.

2) Further Experiments and Discussions: In order to fur-
ther analyze the behavior of the PBI-based CA truncation
and SDE-based DA truncation, we carried out some more
experiments on DTLZ3 and DTLZ4 instances, since they
are designed to investigate an MOEA’s ability in terms of
convergence and diversity respectively.

First, we tested if the CA truncation mechanism could
improve the evolving of CA. Thus the update rates of CA
for TAA and ITAA-a (colored black and red respectively) on
the DTLZ3 instances with 5-20 objectives are calculated and
shown in Fig. 1. In the figure, update rate is the ratio of the
number of new CA members to the size of CA. For certain
instance and algorithm, the error bar is generated by mean,

TABLE V. AVERAGE IGD AND GSPREAD RANKINGS OF THE THREE
VARIANTS OF TAA

Algorithm 3 IGD Ranking1 GSpread Ranking2

TAA 2.5 1.875
ITAA-a 2.3125 2.8125
ITAA-b 1.1875 1.3125

1 Friedman statistic considering reduction perfor-
mance (distributed according to chi-square with 2
degrees of freedom: 16.125).

2 Friedman statistic considering reduction perfor-
mance (distributed according to chi-square with 2
degrees of freedom: 18.375).

3 When p = 0.05, degrees of freedom is 2, the
critical value is 5.99. Both 16.125 and 18.375
are larger than 5.99. Thus the null hypotheses are
rejected and there are statistically significant dif-
ferences among the IGD and Spread performances
of the three algorithms.

maximum and minimum of its update rate among 20 runs
every 50 generations. Similar generating method is used for
the remaining figures. From Fig. 1, we can see that ITAA-a
achieves a higher update rate of CA compared to TAA during
the evolving process on these DTLZ3 instances. This means
PBI-based CA truncation is more likely to help CA evolving
instead of stagnating.

Second, one critical role of CA is to achieve a good con-
vergence performance so that it can drive the whole population
forward. Having this in mind, we recorded the IGD value of
CA for TAA and ITAA-a during the evolving process every 50
generations. From Fig. 2, we can say that on these instances,
ITAA-a achieves better IGD values for CA. This means that
PBI-based CA truncation mechanism helps CA drive forth in
the searching process, thus ITAA-a converges better than TAA,
as shown in Table V.

Moreover, since the only difference between ITAA-a and
ITAA-b is the DA truncation strategy, these two algorithms are
compared to examine the effect of SDE-based DA truncation.
DTLZ4 instances are studied since it can demonstrate an
algorithm’s ability to maintain a good distribution of solu-
tions. Here, we tested the online GSpread of UA for ITAA-a
and ITAA-b during the evolving process. We didn’t use the
GSpread of DA because that DA truncation involves not only
DA but also CA and the major goal of DA truncation is to
maintain the diversity of UA instead of DA. The results are
shown in Fig. 3. We can see that ITAA-b (colored blue) is at
least comparable to, if not better than ITAA-a (colored red) in
terms of the GSpread of UA. This means that SDE is superior
to Euclidean distance since it resulted in better spread of UA.

In order to explain the results, we further examined the
IGD value of CA and DA for these two algorithms. The results
are shown in Fig. 4. As the figure shows, the DA of ITAA-a
falls further behind CA, while in ITAA-b, DA are comparable
to CA in terms of convergence. Actually this is because that
SDE takes into consideration not only distribution but also
convergence information. We think the improvement of the
IGD of DA might be the main reason why the GSpread of UA
for ITAA-a is beaten by ITAA-b. Actually an evidence for the
prediction can be inferred from Fig.3(b) and Fig.4(b), where
the change of the GSpread of UA in ITAAa (the solid red line)
seems to be in accordance with the IGD of DA in ITAAa (the
dashed red line).

2873



0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

Generation

U
p

d
a

te
 R

a
te

 

 

CA of TAA

CA of ITAA−a

(a) DTLZ3p5d

0 100 200 300 400 500
0

0.05

0.1

0.15

Generation

U
p

d
a

te
 R

a
te

 

 

CA of TAA

CA of ITAA−a

(b) DTLZ3p10d

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

Generation

U
p

d
a

te
 R

a
te

 

 

CA of TAA

CA of ITAA−a

(c) DTLZ3p15d

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

Generation

U
p

d
a

te
 R

a
te

 

 

CA of TAA

CA of ITAA−a

(d) DTLZ3p20d

Fig. 1. Update rate of CA in TAA and ITAA-a on DTLZ3 instances. Update rate is the ratio of the number of new CA members to the size of CA. For certain
instance and algorithm, the error bar is generated by mean, maximum and minimum of its update rate among 20 runs every 50 generations. Similar generating
method is used for the remaining figures.
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Fig. 2. IGD of CA in TAA and ITAA-a on DTLZ3 instances.
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Fig. 3. GSpread of UA in ITAA-a and ITAA-b on DTLZ4 instances.
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3) Comparison with State-of-the-art Algorithms: The IGD
and GSpread results are shown in Tables VI and VII. Dark/light
gray entries in the tables indicate the corresponding values
rank first/second place among all the values in the same row,
hereinafter. The Friedman testing results can be seen from
Tables VIII. From these tables, we can see that SPEA2+SDE
seems to show the best overall performance in terms of
both IGD and GSpread metrics. ITAA-b is competitive with
two state-of-the-art many-objective algorithms: ε-MOEA and
MOEA/D-TCH, especially in terms of convergence. As [10]
indicated, SDE will reduce the density estimation accuracy
to some extent. Although it works quite well in the SPEA2
framework, it might need some custom modifications when
embedded into TAA. We think this might be the reason why the
ranking of diversity performance of ITAA-b is not very good.
We will study this problem in our future work. It’s interesting
that NSGA-III didn’t perform very well on these instances.
One possible reason might be that our settings of population
size, maximum generation, and weight vectors might not be
the best choice for NSGA-III.

TABLE VIII. AVERAGE RANKINGS OF THE IGD VALUES OF THE FIVE
ALGORITHMS

Algorithm3 IGD Ranking1 GSpread Ranking2

ITAA-b 2.625 3.125
ε-MOEA 2.9375 3.5625

MOEA/D-TCH 2.9375 3.3125
SPEA2+SDE 1.625 1.0

NSGA-III 4.875 4.0
1 Friedman statistic considering reduction perfor-

mance (distributed according to chi-square with
4 degrees of freedom: 35.55).

2 Friedman statistic considering reduction perfor-
mance (distributed according to chi-square with
4 degrees of freedom: 34.75).

3 When p = 0.05, degrees of freedom is 4, the crit-
ical value is 9.49. Both 35.55 and 34.75 are larger
than 9.49. Thus the null hypotheses are rejected
and there are statistically significant differences
among the IGD and Spread performances of these
algorithms.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the Two Archive Algorithm has been ex-
tended to ITAA by modifying CA and DA truncation strategies.
In order to deal with the size issue of CA, we set a threshold
for CA and adopted the Penalty-based Boundary Intersection
(PBI) to remove CA members when CA overflows. Also, the
Euclidean distance for diversity measure in DA is replaced
by a Shifted Density Estimation (SDE) technique, which is
more suitable for many-objective problems. The performance
of ITAA is evaluated on 16 DTLZ test instances with 5–
20 objectives. As the experimental results showed, ITAA
outperformed TAA in terms of the convergence metric IGD
and diversity metric GSpread. In addition, further experiments
were carried out to investigate the effect of truncation strategies
for both archives. Experimental results on DTLZ3 instances
showed that PBI-based CA truncation was able to improve
the update rate and IGD of CA. Moreover, SDE-based DA
truncation is demonstrated to be effective to improve the
convergence of DA and maintain the diversity of the union
of CA and DA. Comparison results with four state-of-the-art
algorithms demonstrate that ITAA is a competitive alternative
when tackling many-objective problems.

There are several future directions for this work. First,
ITAA is only tested on 16 DTLZ problem instances, further
investigation is needed to evaluate its performance on other
problems with more objectives. Second, whether there are any
other better ways to embed PBI and SDE into TAA is still an
open question. Third, the parameter analysis of the algorithm
also needs to be studied.
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