
Combining Multipopulation Evolutionary Algorithms
with Memory for Dynamic Optimization Problems

Tao Zhu1,2, Wenjian Luo1,2,∗ and Lihua Yue1,2
1School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
2Anhui Province Key Laboratory of Software Engineering in Computing and Communication in Hefei 230027, Anhui, China

Email: zhuta@mail.ustc.edu.cn; wjluo@ustc.edu.cn; llyue@ustc.edu.cn

Abstract—Both multipopulation and memory are widely used
approaches in the field of evolutionary dynamic optimization. It
would be interesting to examine the effect of the combinations
of multipopulation algorithms (MPAs) and memory schemes.
However, since most of the existing memory schemes are proposed
with single population algorithms, straightforwardly applying
them to MPAs may cause problems. By addressing the possible
problems, a new memory scheme is proposed for MPAs in this
paper. In the experiments, several existing memory schemes and
the newly proposed scheme are combined with a MPA, i.e.
the Species-based Particle Swarm Optimizer (SPSO), and these
combinations are tested on cyclic and acyclic problems. The
experimental results indicate that 1) straightforwardly using the
existing memory schemes sometimes degrades the performance
of SPSO even on cyclic problems; 2) the newly proposed memory
scheme is very competitive.

I. INTRODUCTION

In recent years, dynamic optimization problems have been
attracting more and more attention in the evolutionary com-
putation community [1]–[3]. Among the various approaches,
multipopulation and memory are two widely used approaches.
Generally, multipopulation algorithms (MPAs) for dynamic
optimization divide the whole population into multiple sub-
populations and make efforts to evolve them towards different
promising regions [4]–[8]. These features of MPAs make
them efficient in maintaining population diversity and tracking
multiple optima in dynamic multimodal problems. By contrast,
memory schemes record useful information from past and
reuse it in new environments [9]–[14]. In this way, memory
schemes are always efficient when new environments have
close relationship with the previous ones. If the environments
change randomly, their performance is much less attractive.

Most of the memory schemes were proposed with single
population algorithms. There are some possible problems when
combined with MPAs. Firstly, existing memory schemes con-
stantly replace the least fit population individuals with memory
individuals, which could hinder the scattering of the subpop-
ulations towards different promising regions, and sometimes
the poorly-fitted subpopulations could even be removed. This
phenomenon disrupts the working mechanism of MPAs, and
could harm the performance. Secondly, all the existing memory
schemes have a relatively small memory capacity which can
be inadequate for MPAs, because MPAs can obtain multiple
optima of a multimodal environment which could be useful in
the future. The dilemma is that if we enlarge the memory

∗Corresponding author, Tel.: +86-551-63602824

capacity, the increased computational overhead of memory
could offset its benefit.

In order to efficiently combine memory with MPAs, in this
paper a new memory scheme is proposed. The new scheme
possesses a memory updating strategy that is independent
of fitness. With this strategy, it does not need to reevaluate
the memory frequently, so that the computational overhead is
reduced and the capacity could be enlarged. When updating
the population of MPAs, both space distribution and fitness of
individuals is considered, so that the working mechanism of
MPAs could be influenced to a slight degree.

In this paper, three existing memory schemes [9]–[11] and
the new proposed memory scheme are combined with the
Species-based Particle Swarm Optimizer (SPSO). Experiments
are carried out to investigate the effect of these combinations.
The experimental results indicate that 1) straightforwardly us-
ing the existing memory schemes sometimes degrades the per-
formance of SPSO, even on cyclic problems; 2) the proposed
memory scheme is very competitive on the test problems.

The rest of the paper is organized as follow. Section 2
briefs the related memory schemes and their combinations with
SPSO. Section 3 describes the proposed memory scheme in
detail. In Section 4, the experiments are carried out, and the
results are presented. In Section 5, the conclusion is given.

II. RELATED WORKS

A. The Memory Schemes Used for the Comparative Study

The majority of the memory schemes employ explicit
memory of solutions. Some reviews can be found in [9]. For
an explicit memory scheme, three issues are often involved: 1)
when and what information should be stored in the memory;
2) how to organize and update the memory; 3) how to reuse
the stored information to adapt EAs to new environments. In
the following, three representative explicit memory schemes
are briefly introduced, which are used for comparative studies
in the paper. The structure of an EA with these schemes is
given in Procedure 1.

The memory immigrants (MI) is a scheme proposed in [9].
The memory of MI is randomly initialized, and is updated in
a stochastic time pattern or when an environmental change is
detected. When the memory is updated, the best individual
in the current population replaces its closest individual (in
terms of spatial distance) in the memory if it is better than the
memory individual. At every generation, memory immigrants
are generated by mutating the fittest memory individual to

2047

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

take place of the worst individuals in the population. These
immigrants are regarded more biased to the current environ-
ment than random immigrants [9]. The capacity of the memory
is a tenth of the population, and all the memory points are
reevaluated every generation.

The dynamic memory model (DMM) proposed in [10] is
randomly initialized and is updated every generation. When the
memory is updated, the memory individual that is closest to
the best individual of the population is found firstly. Instead of
being replaced, the closest memory individual is moved in the
direction of the best individual. Before a memory individual
is moved by a best individual, it is mutated by adding a
random Gaussian number to explore the environment when the
memory is updated. At every generation, the worst population
individual is replaced by best memory individual. As in MI,
the memory individuals are reevaluated very generation.

The variable-size memory (VM) scheme proposed in [11],
[15] uses a variable-size memory. It is reported to outperform
several typical memory strategies. The memory size of the VM
strategy changes between the predefined limits MEM MIN
and MEM MAX. The memory of VM is randomly initialized
and updated in a stochastic time pattern as VI. When it is
time to update, if there is room, the current best population
individual is added to the memory. Otherwise the memory is
cleaned to eliminate redundant individuals. If the cleaning fails
to make room for the best population individual, the best pop-
ulation individual replaces the youngest memory individual.
The age of a memory individual starts from zero, and increased
by one at every generation. If the age reaches LIMIT AGE,
it would be reset to zero. After an environmental change is
detected, the best individual of the memory is introduced into
the population, and an extra increment is added to the age of
this memory individual. As the above memory schemes, the
memory individuals of VM are evaluated every generation.

B. SPSO

Many MPAs are based on Particle Swarm Optimizer
(PSO) [6]–[8]. PSO is a stochastic optimization technique
introduced by Eberhart and Kennedy for the first time in
1995 [16]. PSO optimizes problems by steering a swarm of
particles across the search space, and each particle moves and
learns from the best solution that it finds and the best solution
that its neighbor particles find. Since PSO was proposed,
many versions have been developed and applied to many
academic and real world problems successfully. Among them,
a convergence guaranteed one is proposed by Clerc in [17].
The mathematic description of the movement of each particle
is thus

~v(i,t+1) = χ(~v(i,t)+φ1(~p(i,t)−~x(i,t))+φ2(~p(g,t)−~x(i,t))) (1)

~x(i,t+1) = ~x(i,t) + ~v(i,t+1) (2)

where:

φ1 = c1r1, φ2 = c2r2
χ = 2

|2−c−√c2−4c|

In the above equations, ~x(i,t) denotes the location of the
ith particle at step t, updated by Equation (2); ~v(i,t) represents

Initialize population of an EA
Initialize memory
t← 0
if MI ‖ VM then
TM ← rand(5, 10)

end if
while stop criteria is not satisfied do

A generation of the EA
Evaluate memory
if VM then

if t = tM then
Update memory for VM
TM ← TM + rand(5, 10)

end if
if change detected then

Replace worst individual by best memory point
end if

end if
if VI then

if t = tM ‖ changedetected then
Update memory for MI

end if
New individuals are generate by mutating the best
memory individual
Evaluate the new individuals
Replace the worst population individuals with the new
individuals

end if
if DMM then

Update memory for DMM
Replace worst individual with best memory point

end if
end while

Procedure 1: The structure of an EA with the memory
schemes

seeds← ∅
sort all particles in swarm in decreasing fitness order
while Not reaching the end of swarm do

get the best unprocessed particle p
found← false
for each seed ∈ seeds do

if the distance from seed to p is less than rs then
found← true
break

end if
end for
if not found then
seeds← seeds ∪ {p}

end if
end while

Procedure 2: Determine species seeds for swarm

the velocity of the ith particle and is updated by Equation
(1). ~p(i,t) is the best solution that the ith particle has found,
and ~p(g,t) is the best solution that its neighbor particles have
found by step t. χ is a constriction factor to allow the swarm
to converge. r1 and r2 are uniform random numbers between
0 and 1. c = c1 + c2, where c1 and c2 are constant numbers,
usually set to 2.05.

2048

The speciation-based Particle Swarm Optimizer (SPSO)
is a neat and elegant MPA for dynamic optimization. It is
introduced in [7], [18]. SPSO divides the population into
multiple species (subpopulations). The division starts from the
best particle, all the particles within its radius are assigned to
the same species. Then for the remained particles, recursively
execute the same division until every particle is assigned to a
species. The best particle of each species is called seed and
plays the role of ~p(g,t) for all the particles in the same species.
The mechanism to determine seeds for the swarm is given
in Procedure 2. In [7], a parameter Pmax is introduced to
confine the species size. Only the fittest Pmax particles will be
preserved in a species, and the lower fitness particles in excess
will be reinitialized to a random position and not allocated
to any species until the next generation. In this manner, the
population is prevented from concentrating on too few peaks
and driven to explore new regions. This Pmax version is
employed in this paper to test the memory schemes.

III. THE PROPOSED MEMORY SCHEME

A. Considerations

MPAs are always used in multimodal environments. Local
optima are important futures of dynamic environments and
could evolve to global optima [8]. Therefore, it is useful to
store local optima. However, the memory capacities of the
existing memory schemes are relatively small. Storing multiple
solutions for the current environment would result in losing
information of the previous environments. Therefore, it is
necessary to enlarge memory capacity. But there is a problem
that the updating strategies of the existing memory schemes are
dependent on fitness. Since the environment changes constant-
ly, in order to maintain the correctness of the fitness of memory
individuals, the existing memory schemes reevaluate memory
individuals frequently, and thus heavy computational overhead
is brought in. In consequence, in order to enlarge memory
capacity and avoid heavy computational overhead meanwhile,
a memory updating strategy that is independent of the fitness
of memory individuals is required.

As having stated previous, existing memory schemes con-
stantly replace the least fit population individuals with memory
individuals, which could hinder the scattering of the subpop-
ulations towards different promising regions, and sometimes
the poorly-fitted subpopulations could even be removed. This
phenomenon disrupts the work mechanism of MPAs, and
could harm the performance. Therefore, when updating the
population with memory, not only should the fitness of the
population individuals be considered, their space distribution
should be taken into account but also.

B. Details of the Proposed Large Memory Scheme

According to the above considerations, a new memory
scheme with a large memory capacity is introduced to enhance
the performance of MPAs for dynamic optimization problems.
The structure of a MPA with the large memory scheme is
presented in Procedure 3.

After an environmental change is detected, the memory
updating procedure, described in Procedure 4, is executed. At
the beginning, mark every subpopulation that is regarded as
having located an optimum. For complex dynamic problems,

Initialize population of a MPA
Initialize memory
while stop criteria is not satisfied do

A generation of the MPA
if change is detected then

Update memory
Evaluate memory
Update the population

end if
end while

Procedure 3: The structure of a MPA with the large memory
scheme

Mark every subpopulation that has located a local optimum.
while the number of the marked subpopulations are less than
5 && there is any unmarked subpopulation do

Mark the subpopulation that has the fittest individual
among the unmarked subopulations

end while
for each marked subpopulation do

Let p denote the best individual of the subpopulation
if memory is not full then

Copy p into memory
else

Find the memory individual closet to p, and name it
cm
if the distance from cm to p is less than
UpdateDistance then

Replace cm with p
else

Find the eldest memory individual, and substitute p
for it with a probability of 2/3

end if
end if

end for
The ages of all new memory individuals are set to zero
Increase the ages of all the memory individuals by 1

Procedure 4: The procedure of updating memory for the large
memory scheme

it is possible that very few subpopulations would locate an
optimum. In this case, other subpopulations are marked until
the number of marked subpopulations reaches 5 or all the
subpopulations are marked. For each marked subpopulation,
if the memory is not full, copy its best individual p into
the memory, otherwise, calculate the distance between p and
its closest memory individual cm. If the distance is less
than UpdateDistance, cm is replaced. Otherwise, replace the
eldest memory individual with probability 2/3. Every memory
individual has an age to record how many generations it stays
in the memory without being used. Note that some schemes
also use distance and age to update memory [11], [14], but
they are dependent on fitness.

The memory updating strategy is independent of fitness.
The reason underlying this strategy is as follows. p is from the
last environment, while cm is from a previous environment.
Therefore, making cm compete with p in terms of the fitness
in the last environment, just as many existing memory schemes
do, is not fair. If cm is far away from p, replacing cm may

2049

m ← n mod ns, l ← bn/nsc, where ns is the number of
subpopulations, and n equals to a tenth of the population
size
For the worst m subpopulations, remove the l + 1 least fit
individuals. For the other subpopulations, remove the l least
fit individuals
if Using LM1 then

Add the best n memory individuals into the population
end if
if Using LM2 then

Determine the specie seeds for memory individual by
Procedure 2
Add the best n memory seeds into the population

end if
Set the age of all the selected memory individuals to zero

Procedure 5: Two versions of updating population for the
large memory scheme

result in loss of information of another environment, and it
is better to replace a rarely used memory individual with a
certain probability. If cm is close to p, replace cm with p, and
so the information loss is possibly slight and the information
of the last environment stored

In Procedure 5, two versions of population updating are
proposed, which are denoted as LM1 and LM2, respectively.
According to the considerations above, we take both fitness
and space distribution into account when insert memory indi-
viduals. The individuals to be replaced by memory individuals
are evenly selected from all subpopulations. The “worst”
subpopulation means its best individual has the worst fitness.
As for which memory individuals are selected to update the
population, LM1 and LM2 act differently. For LM1, the fittest
n memory individuals are selected. For LM2 the fittest n
memory seeds are selected. In the later strategy, both fitness
and space distribution of memory individuals are considered.

Detecting environmental changes is important for an algo-
rithm to effectively optimize dynamic problems, and in some
cases, it is a difficult task. However, it is not a key concern
in this study. In this study, we reevaluate the 5 random points
every generation just as in [19], if any of them changes, an
environmental change is detected.

IV. DYNAMIC TESTING PROBLEMS USED IN THIS PAPER

The moving peaks benchmark (MPB) problem has been
widely applied to simulate dynamic environment in the liter-
ature [8]. In this paper this convention is followed. However,
since the performance of memories is heavily dependent on
whether the dynamic problems in process are cyclic or not,
experiments are also carried out on the cyclic MPB (CMPB)
problem which was introduced in [20].

A. The Moving Peaks Benchmark Problem

The MPB problem is composed of a number of component
problems with peak-like fitness landscape. It has the form as
below [4]:

F (~x, t) = max
i=1,...,p

Hi(t)

1 +Wi(t)
∑D

j=1 (xj(t)−Xij(t))
2

The peaks change independently with three features, i.e. the
peak width W , the peak height H and the peak location ~X .
Formally the change of peak i can be described as

σ ∈ N(0, 1)

Wi(t) =Wi(t− 1) + width severity · σ

Hi(t) = Hi(t− 1) + height severity · σ

~Xi(t) = ~Xi(t− 1) + ~v

where the direction of ~v is random, and its length is called
shift severity.

B. The Cyclic Moving Peaks Benchmark Problem

The CMPB problem is constructed by modifying the MPB
problem with a cyclical benchmark problem generator [20]. It
is easy to tune independently the change severity, the number
of peaks and the cycle length of the CMPB problem.

1) A Cyclical Benchmark Problem Generator in Real Space
[20]: Given the changing severity s, the cycle length l and the
number of dimensions d, the following procedure generates a
d × d rotation matrix R and a d-dimensional vector set V =
{~vi : i ≥ 0}. R and V satisfy the two following properties.

Property 1: R~vi = ~v(i+1) (mod l), (~vi ∈ V)

Property 2: ‖R~vi − ~vi‖ = s, (~vi ∈ V)

The details of the generating procedure are described as
below. Note that the first two steps are very similar to the
procedure of generating a rotation matrix described in [21].

Step 1: Randomly choose k (k is an even number, i.e. d
or d − 1) dimensions d1, d2, . . . , dk out of the d dimensions
to compose k/2 planes p1, p2, . . . , pk/2, with pi composed of
d2i−1 and d2i, i ≤ i ≤ k/2.

Step 2: Construct the rotation matrix R.

A rotation matrix Ri,j(θ) described in [22] rotates the
projection of a vector ~v in the plane i-j by an angle θ from
the ith axis to the jth axis. R is obtained by multiplying these
rotations matrixes.

R = Rd1,d2
(
2π

l
)×Rd3,d4

(
2π

l
)× · · · ×Rdk−1,dk

(
2π

l
)

Step 3: Construct ~v0 .

Randomly generate k/2 positive real numbers λ1, . . . , λk/2
satisfying

∑k/2
i=1 λi

2 = s2

1) For each λi, calculate a real number γi

γi =
λi

2 sin(π/l)

2) For each γi, randomly generate two real numbers µ2i−1,
µ2i satisfying

µ2i−1
2 + µ2i

2 = γi
2

3) The ith dimension of ~v0 is set to µi, if i is one of the
k randomly chosen dimensions. Otherwise, set it to a random
number.

2050

TABLE I. DEFAULT SETTINGS FOR THE MPB AND CMPB PROBLEMS

Parameter Value
Change of frequency 5000
Number of change 100
Height severity 7.0
Width severity 1.0
Peak shape Cone
Number of dimensions D 5
S [0,100]
H [30.0,70.0]
W [1,12]
I 50

Step 4: Construct V = {~vi : 0 ≤ i}.

~vi = Ri~v0, i > 0

With the above steps and given a function in real space, it
is easy to construct a cyclic dynamic version. Suppose F (~x)
is a function in real space, and the optimal solution is ~O .
Construct a vector set V for F (~x) with the above procedure,
F (~x) can be transformed into a cyclically changing problem
F ′(~x) easily as below:

F ′(~x, t) = F (~x− ~vt + ~O)

2) The Cyclic MPB (CMPB) Problem: The cyclic MPB
problem can be constructed easily. For each peak position ~Xi,
given the cycle length and shift severity, a rotation matrix
R and the corresponding vector set V = {~vij : 0 ≤ j}
is generated using the procedure proposed above. The new
benchmark problem changes the peak height and width in the
same manners as MBP, but moves the peak location in the
following manner [20].

~Xi(0) = ~vi0

~Xi(t) = R ~Xi(t− 1) = ~vit, t > 0

V. EXPERIMENTS

A. Experimental Settings

Experiments are carried out both on MPB and CMPB
problems, and some parameters are fixed for all experiments.
These parameters are listed in TABLE I as in [8]. S confines
the range of allele values, and I denotes the initial peaks
height for all peaks. The height and width of the peaks shift
randomly in the range of H and W respectively. Besides these
parameters, the shift severity, the number of peaks and the
cycle length are varied to generate test problems with different
degrees of complexity. For the sake of convenience, in this
paper, a CMPB problem is denoted as CMPB(s,l,n) to mean
that the shift severity, the cycle length and the number of peaks
are s, l and n respectively.

In the remainder part of the paper, SPSO with VM, MI
and DMM are denoted as VMSPSO, MISPSO, DMMSPSO,
respectively. According to the version of population updating,
the combinations of the large memory scheme and SPSO
are denoted as LM1SPSO and LM2SPSO, respectively. Some
parameters of the algorithms are fixed in the experiments.
Because the settings of MBP problems used here is the
same as in [7], the same settings of SPSO are used in this
paper. For LM1SPSO and LM2SPSO, the population size is
100, UpdateDistance = 0.8. Inspired by [23], if the best

(a) Current error for the first ten environments

(b) Current error for the third ten environments

Fig. 1. The current error of LM1SPSO on CMPB(1,10,10)

individual of a subpopulation has not been improved for 5
generations, this subpopulation is regarded as having found a
local optimum. For DMMSPSO and MISPSO, the population
size is 100, including 10 memory individuals, just the same as
in [9].

The widely used Mühlenbein mutation [24] is employed
to generate immigrants for MISPSO, whose mutation rule is
shown below:

x
′

i = xi ± rangei · γ

The sign are selected randomly with probability of 0.5.
rangei confines the mutation range and normally set to a tenth
of the whole search range. γ is defined as:

γ =
∑15

k=0
ak2
−k.

ak is set to 0 or 1 randomly with p(ak = 1) = 1
16 . At

every generation, 5 memory immigrants are generated with
Mühlenbein mutation.

To make VM strategy effective for working with SPSO,
we tuned its parameter settings by means of trial and error.
MEM MIN is set to 8 and MEM MAX is set to 15. We fix
the population sizes of SPSO to 90 in the experiments. As

2051

TABLE II. OFFLINE ERROR OF ALGORITHMS ON THE CMPB PROBLEMS

s ,l, n 1, 5, 5 1, 5, 10 1, 5, 20 1, 5, 40 1, 20, 5 1, 20, 10 1, 20, 20 1, 20, 40
LM1SPSO 0.08± 0.03 0.14± 0.06 0.77± 0.19 1.15± 0.16 0.14± 0.19 0.24± 0.14 0.99± 0.06 1.56± 0.07
LM2SPSO 0.07± 0.02 0.17± 0.1 0.81± 0.18 1.37± 0.19 0.14± 0.13 0.31± 0.09 1.07± 0.14 1.63± 0.17

SPSO 0.65± 0.3 0.91± 0.36 1.85± 0.33 2.64± 0.33 0.73± 0.37 0.9± 0.26 2.11± 0.33 2.88± 0.46
VMSPSO 0.20± 0.18 0.47± 0.27 1.77± 0.33 2.25± 0.37 0.26± 0.29 0.61± 0.24 1.75± 0.28 2.41± 0.36

DMMSPSO 0.93± 0.35 0.97± 0.43 1.94± 0.28 2.41± 0.30 1.09± 0.47 1.02± 0.37 2.04± 0.31 2.58± 0.24
MISPSO 3.56± 0.47 3.88± 0.77 5.58± 1.11 6± 0.51 9.29± 1.08 8.62± 0.83 9.89± 0.7 10.51± 0.78

s, l, n 2, 5, 5 2, 5, 10 2, 5, 20 2, 5, 40 2, 20, 5 2, 20, 10 2, 20, 20 2, 20, 40
LM1SPSO 0.08± 0.01 0.19± 0.07 0.79± 0.15 1.17± 0.13 0.20± 0.14 0.42± 0.12 1.13± 0.14 1.71± 0.17
LM2SPSO 0.09± 0.03 0.21± 0.12 0.86± 0.14 1.32± 0.14 0.24± 0.07 0.36± 0.19 1.22± 0.11 1.79± 0.18

SPSO 0.94± 0.29 1.22± 0.29 2.46± 0.33 3.23± 0.51 0.99± 0.29 1.47± 0.34 2.59± 0.36 3.39± 0.34
VMSPSO 0.41± 0.13 0.96± 0.31 2.12± 0.28 2.75± 0.33 0.64± 0.32 1.01± 0.29 2.31± 0.26 2.8± 0.25

DMMSPSO 1.33± 0.45 1.17± 0.30 2.23± 0.34 2.66± 0.30 1.39± 0.61 1.48± 0.38 2.27± 0.30 2.83± 0.28
MISPSO 6.11± 0.92 5.58± 0.55 7± 0.6 7.84± 0.78 14.88± 1.28 13.02± 1.07 13.57± 1.02 13.34± 1.1

s, l, n 5.5, 5 5, 5, 10 5, 5, 20 5, 5, 40 5, 20, 5 5, 20, 10 5, 20, 20 5, 20, 40
LM1SPSO 0.10± 0.03 0.26± 0.08 0.65± 0.09 1.12± 0.10 0.46± 0.09 0.84± 0.08 1.51± 0.29 2.05± 0.15
LM2SPSO 0.14± 0.07 0.26± 0.09 0.77± 0.10 1.16± 0.11 0.41± 0.08 0.77± 0.09 1.49± 0.15 2.09± 0.12

SPSO 2.08± 0.61 2.49± 0.36 3.75± 0.39 4.59± 0.41 2.25± 0.39 3.02± 0.48 4.15± 0.38 4.51± 0.37
VMSPSO 1.09± 0.53 1.59± 0.37 2.66± 0.37 3.17± 0.32 1.29± 0.55 2.37± 0.52 2.98± 0.33 3.24± 0.34

DMMSPSO 1.90± 0.37 2.15± 0.50 2.63± 0.33 3.04± 0.34 2.31± 0.55 2.59± 0.55 3.17± 0.41 3.19± 0.32
MISPSO 10.27± 1.34 9.24± 0.98 10.64± 1.33 10.82± 0.83 18.6± 1.75 19.28± 1.18 18.16± 1.02 16.73± 1.02

s, l, n 10, 5, 5 10, 5, 10 10, 5, 20 10, 5, 40 10, 20, 5 10, 20, 10 10, 20, 20 10, 20, 40
LM1SPSO 0.15± 0.04 0.33± 0.06 0.74± 0.10 1.17± 0.10 0.86± 0.09 1.51± 0.08 2.35± 0.28 2.78± 0.24
LM2SPSO 0.15± 0.04 0.33± 0.09 0.73± 0.09 1.17± 0.09 0.82± 0.11 1.52± 0.10 2.31± 0.24 2.77± 0.19

SPSO 3.79± 0.59 4.71± 0.5 5.25± 0.43 5.34± 0.41 4.62± 0.63 5.54± 0.52 5.79± 0.4 5.37± 0.41
VMSPSO 2.05± 0.64 2.80± 0.54 3.37± 0.50 3.48± 0.33 3.11± 0.72 3.91± 0.72 4.21± 0.49 3.85± 0.40

DMMSPSO 3.24± 0.74 3.57± 0.75 3.63± 0.43 3.73± 0.43 4.15± 0.88 4.54± 0.59 4.54± 0.50 3.93± 0.36
MISPSO 14.89± 1.84 12.7± 1.2 12.89± 1.22 13.05± 1.15 23.48± 1.9 21.94± 1.48 20.13± 1.28 17.94± 0.84

regards the updating strategy, we adopt the gen strategy, which
is reportedly best in [15].

The offline error is used in this paper to evaluate the
performance of the algorithms, which is defined as follows
[8]

eoffline =
1

T

T∑
i=1

(optimumi − fbesti)

here T is the total number of environments, optimumi is the
theoretic optimal value of the ith environment, and fbesti is
the fitness of the best solution found in the ith environment.

B. The Online Performance of the Large Memory Scheme

As an example, Fig. 1 depicts the average current error of
LM1SPSO over 30 runs. The test problem is CMPB(1,10,10).
The current error refers to the difference between the theoretic
global optimum and the fittest particle found since the last
environmental change. The effect of the LM1 scheme is
obvious by comparing the results for the first ten and the
third ten environments. Since the cycle length is 10, after the
first ten environments, all the environments are recorded in
the memory. In Fig 1(a), the current error decreases gradually,
while in Fig 1(b), the current error drops to a valve near 0
quickly. This indicates that the effect of the large memory
scheme is very good.

C. Comparison on Cyclical Problems

In this group of experiments, we compare the performance
of the combinations on the CMPB problems. For these prob-
lems, the shifting severity is chosen from {1, 3, 5, 10}, the
cycle length from {5, 20}, and the number of peaks from {5,
10, 20, 40}. The results are proposed in TABLE II. Every
single result is averaged over 30 independent runs, and the
standard deviations are attached.

The results indicate that LM1SPSO and LM2SPSO out-
perform all the other four algorithms in all the test cases;

VMSPSO outperforms SPSO in all the test cases; DMMSPSO
outperforms SPSO in some test cases and is defeated by SPSO
in the other cases; MISPSO is worst in all the test cases. This
indicates that in this set of experiments, the large memory
scheme dramatically enhances the performance of SPSO, but
not all the memory schemes can enhance SPSO, even in cyclic
environments.

The reason could be as follows. SPSO adaptively dis-
tributes the subpopulations over different ranges in the search
space to locate and track optima. With memory schemes,
although memory information is added to population, the pop-
ulation distribution and search is disturbed, which could bring
negative effect. If the disturbance is too severe, the benefit of
memory scheme would be offset. VM replaces one population
individual every detected change. The disturbance is slight and
the negative effect is slight consequently. Therefore VM could
enhance SPSO in all the cases. DMM replaces one population
individual every generation. The disturbance is medium, and
therefore, the benefit of DMM can sometimes overcome its
negative effect. MI replaces more than one population indi-
viduals with memory immigrants every generation. In conse-
quence, the formation and movement of the subpopulation is
disturbed severely, and thus the performance of SPSO gets
much worse. LM1 and LM2 replace a tenth of population
individuals with memory individuals once an environmental
change is detected. Because the replaced individuals are evenly
chosen from all the subpopulations, the influence on the
distribution of subpopulations is relieved.

The shift severity greatly affects the offline error of SPSO,
because there is a long distance for the particles to fly to
the new optima. However, the shift severity affects LM1SPSO
and LM2SPSO much more slightly. This is because after the
environment changes, highly fit memory individuals of the new
environment is added to the population at once. By contrast,
the cycle length hardly affects the performance of SPSO, but
it affects the performance of LM1SPSO and LM2SPSO. This
is because long cycle length means there is long time for the

2052

TABLE III. OFFLINE ERROR OF ALGORITHMS ON THE STANDARD MPB PROBLEMS WITH DIFFERENT NUMBER OF PEAKS

severity LM1SPSO LM2SPSO SPSO MISPSO VMSPSO DMMSPSO
1 0.70± 0.15 0.66± 0.14 1.07± 0.32 11.81± 1.3 2.22± 0.43 2.83± 0.83
2 1.23± 0.13 1.19± 0.15 1.45± 0.3 18.3± 1.88 3.22± 0.54 4.10± 0.76
3 1.62± 0.18 1.60± 0.16 1.9± 0.34 22.46± 2.27 4.69± 0.68 5.16± 0.72
4 2.05± 0.17 1.99± 0.13 2.38± 0.45 25.24± 2.11 5.02± 0.75 5.85± 0.81
5 2.45± 0.19 2.47± 0.18 2.65± 0.38 27.45± 2.28 6.17± 0.81 6.48± 0.89
6 2.90± 0.18 2.86± 0.18 3.09± 0.41 28.39± 2.16 6.90± 0.96 7.36± 1.06

TABLE IV. OFFLINE ERROR OF ALGORITHMS ON THE STANDARD MPB PROBLEMS WITH DIFFERENT SHIFT SEVERITY

peaks LM1SPSO LM2SPSO SPSO MISPSO VMSPSO DMMSPSO
1 0.54± 0.05 0.57± 0.06 0.5± 0.09 17.4± 4.55 2.59± 0.73 7.05± 2.34
2 0.58± 0.05 0.56± 0.10 0.71± 1.05 14.94± 2.74 2.11± 0.50 4.80± 1.02
5 0.58± 0.11 0.60± 0.17 0.67± 0.44 13.29± 1.34 1.88± 0.37 3.10± 0.43
7 0.61± 0.13 0.63± 0.17 0.7± 0.34 12.19± 1.2 1.85± 0.31 3.00± 0.52
10 0.70± 0.14 0.66± 0.14 1.07± 0.32 11.81± 1.3 2.22± 0.43 2.83± 0.83
20 1.78± 0.14 1.73± 0.12 2.39± 0.35 12.98± 1.26 3.33± 0.60 3.56± 0.68
30 2.23± 0.13 2.25± 0.17 2.81± 0.35 13.45± 1.08 3.54± 0.59 3.49± 0.60
40 2.49± 0.15 2.44± 0.17 3.03± 0.38 13.52± 0.98 3.74± 0.57 3.52± 0.57
50 2.61± 0.12 2.55± 0.15 3.26± 0.44 13.86± 1.29 3.72± 0.45 3.53± 0.57

100 2.86± 0.17 2.81± 0.12 3.59± 0.41 13.46± 0.94 4.07± 0.57 3.31± 0.35

memory to collect useful information of all the environments,
and before the useful information is obtained, the effect of
memory is week. It is difficult to tell the influence of the
number of peaks, because it affects SPSO and LMSPSO
currently.

D. Comparison on Acyclic Problems

In this group of experiments, we compare the performance
of the combinations on the standard MPB problems with
different settings.

1) Effect of the shift severity: In this group of experiments,
the performances of the combinations are compared on the
standard MPB problems with different shift severities. The
number of peaks is set to 10. The offline error and related
standard deviation averaged over 30 independent runs are
presented in TABLE III.

It can be seen from TABLE III that LM1SPSO and
LM2SPSO outperform all the others, while MISPSO achieves
the worst in all the test cases. In all the test cases, SPSO is
better than VMSPSO and DMMSPSO, and VMSPSO is better
than DMMSPSO. Since memory is less efficient in acyclic
environments than in cyclic environments, for MI, DMM and
VM, the memory benefit is overcome by the negative effect.
These results also show that, on standard MPB problems, the
enhancing effect of the large memory scheme is competitive
with the changing of shift severity.

2) Effect of number of peaks: In this group of experiments,
the performances of the combinations are compared on the
standard MPB problems with different numbers of peaks. The
shift severity is set to 1.0. The offline error and the related
standard deviation averaged over 30 independent runs are
presented in TABLE IV.

From TABLE IV we can observe that LM1SPSO and
LM2SPSO are better than the others except when the number
of peaks is 1, while MISPSO, MISPSO and VMSPSO are
beaten by SPSO in all the cases. In some cases, VMSPSO is
worse than DMMSPSO, and in the other cases DMMSPSO
is worse than VMSPSO. The offline errors of SPSO and
LM1SPSO and LM2SPSO increase with the number of peaks,

while the offline errors of the other algorithms are irregular.
The results show that the large memory scheme can enhance
the performance of SPSO for optimizing dynamic multimodal
problems.

E. Comparison between LM1 and LM2

LM1 selects the fittest memory individuals into the popu-
lation, while LM2 takes into account both fitness and space
distribution of the memory individuals. According to the
results above, the performances LM1SPSO and LM2SPSO are
close in all the test cases. On CMPB, LM1SPSO is better when
l = 5 and s is small. While l = 20 and s is great, LM2SPSO
is better. On MPB, LM2SPSO is better in most cases.

The reason could be as follows. In relatively simple envi-
ronments, it is easy for the memory to store all the positions
that the global optimum could appear. Therefore, when the
environment changes, the high-fitted memory individuals se-
lected by LM1 could help to locate the new global optimum
quickly. In relatively complex environments, it is less likely
to find the new global optimum directly from the memory.
In these cases, the memory seeds can help to find high-fitted
solution from different regions of the search space, which is
helpful for SPSO to locate the global optimum.

VI. CONCLUSION

By addressing the possible problems of applying existing
memory to MPAs, the large memory scheme is proposed in this
paper specially for MPAs. The scheme updates the memory
with a strategy independent of the fitness. In this way, it does
not need to reevaluate the memory individuals frequently as
the exiting memory schemes do, and thus is able to enlarge the
memory capacity without consuming too much computational
resource. In order not to disrupt the work mechanism of
MPAs, when updating population with memory, the proposed
scheme takes into account the fitness and space distribution of
individuals at the same time.

Experimental study is carried out to investigate the effect of
combining MPAs with memory schemes. Three existing mem-
ory schemes and the proposed memory scheme are compared

2053

by combining with SPSO and being tested on the cycle and
acyclic problems. The experimental results show that proposed
memory scheme is able to enhance the performance of SPSO
effectively in almost all the test cases. The results also show
that straightforwardly using existing memory scheme does not
always help and could harm the performance of MPAs even
in cyclic environments.

ACKNOWLEDGEMENTS

This work is partly supported by the 2006-2007 Excellent
Young and Middle-aged Academic Leader Development Pro-
gram of Anhui Province Research Experiment Bases.

REFERENCES

[1] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environ-
ments - a survey,” IEEE Transactions on Evolutionary Computation,
vol. 9, no. 3, pp. 303–317, 2005.

[2] C. Cruz, J. Gonzlez, and D. Pelta, “Optimization in dynamic environ-
ments: a survey on problems, methods and measures,” Soft Computing,
vol. 15, no. 7, pp. 1427–1448, 2011.

[3] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic opti-
mization: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 6, pp. 1–24, 2012.

[4] J. Branke, “Memory enhanced evolutionary algorithms for changing
optimization problems,” in the 1999 IEEE Congress on Evolutionary
Computation (CEC’99), Washington, DC, USA, 1999, pp. 1875–1882.

[5] J. Branke, T. Kauler, C. Smidt, and H. Schmeck, “A multi-population
approach to dynamic optimization problems,” in Evolutionary Design
and Manufacture. Springer, 2000, pp. 299–307.

[6] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Transactions on Evolu-
tionary Computation, vol. 10, no. 4, pp. 459–472, 2006.

[7] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima
by a particle swarm model using speciation,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 4, pp. 440–458, 2006.

[8] S. Yang and C. Li, “A clustering particle swarm optimizer for locating
and tracking multiple optima in dynamic environments,” IEEE Transac-
tions on Evolutionary Computation, vol. 14, no. 6, pp. 959–974, 2010.

[9] S. Yang, “Genetic algorithms with memory- and elitism-based immi-
grants in dynamic environments,” Evolutionary Computation, vol. 16,
no. 3, pp. 385–416, 2008.

[10] C. N. Bendtsen and T. Krink, “Dynamic memory model for non-
stationary optimization,” in the 2002 IEEE Congress on Evolutionary
Computation, 2002, pp. 145 – 150.

[11] A. Simöes and E. Costa, “Variable-size memory evolutionary algorithm
to deal with dynamic environments,” in Applications of Evolutionary
Computing. Springer Berlin Heidelberg, 2007, vol. 4448, pp. 617–
626.

[12] Y. Cao and W. Luo, “Novel associative memory retrieving strategies
for evolutionary algorithms in dynamic environments,” in Proceedings
of the 4th International Symposium on Advances in Computation and
Intelligence, 2009, pp. 258–268.

[13] ——, “A novel updating strategy for associative memory scheme in
cyclic dynamic environments,” in Proceedings of the Third Internation-
al Workshop on Advanced Computational Intelligence (IWACI2010),
Suzhou, China, 2010.

[14] T. Zhu, W. Luo, and Z. Li, “An adaptive strategy for updating the
memory in evolutionary algorithms for dynamic optimization,” in Pro-
ceedings of the 2011 IEEE Symposium on Computational Intelligence
in Dynamic and Uncertain Environments, Paris, France, 2011, p. 2011.

[15] A. Simöes and E. Costa, “Improving memory’s usage in evolutionary
algorithms for changing environments,” in the 2007 IEEE Congress on
Evolutionary Computation, Singapore, 2007, pp. 276–283.

[16] R. Eberhart and J. Kennedy, “New optimizer using particle swarm
theory,” in Proceedings of the 1995 6th International Symposium on
Micro Machine and Human Science, Nagoya, Japan, 1995, pp. 39–43.

[17] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and
convergence in a multidimensional complex space,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[18] X. Li, “Adaptively choosing neighbourhood bests using species in a
particle swarm optimizer for multimodal function optimization,” in
Proceedings of Genetic and Evolutionary Computation Conference,
2004, pp. 105–116.

[19] S. Bird and X. Li, “Using regression to improve local convergence,” in
Evolutionary Computation, 2007. IEEE Congress on, 2007, pp. 592–
599.

[20] T. Zhu, W. Luo, and L. Yue, “Dynamic optimization facilitated by the
memory tree,” Soft Computing, 2014, DOI:10.1007/s00500-014-1273-1.

[21] C. Li, S. Yang, T. T. Nguyen et al., “Benchmark generator for CEC
2009 competition on dynamic optimization,” Department of Computer
Science, University of Leicester, U.K., Tech. Rep., 2008.

[22] R. Salomon, “Re-evaluating genetic algorithm performance under co-
ordinate rotation of benchmark functions. a survey of some theoretical
and practical aspects of genetic algorithms,” Biosystems, vol. 39, no. 3,
pp. 263–278, 1996.

[23] S. Bird and L. Xiaodong, “Enhancing the robustness of a speciation-
based pso,” in IEEE Congress on Evolutionary Computation, Vancou-
ver, BC, Canada, 2006, pp. 843–850.

[24] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive models for
the breeder genetic algorithm i. continuous parameter optimization,”
Evolutionary Computation, vol. 1, no. 1, pp. 25–49, 1993.

2054

