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Abstract—This paper considers the problem of one buyer 
procuring multi-items from multiple potential suppliers in the 
electronic reverse auction, where each supplier can bid on 
combinations of items. From the perspective of the buyer, by 
considering multi-attributes of each item, a winner determination 
problem (WDP) of multi-items single-unit combinatorial reverse 
auctions was described and a bi-objective programming model 
was established. According to the characteristics of the model, an 
equivalent single-objective programming model was obtained. As 
the problem is NP-hard, an improved ant colony (IAC) algorithm 
considering the dynamic transition strategy and the Max-Min 
pheromone strategy is proposed for the problem. Experimental 
results show the effectiveness of the improved algorithm. 

Keywords—reverse auction; winner determination problem; ant 
colony algorithm; dynamic transition strategy; Max-Min 
pheromone strategy 

I. INTRODUCTION 
Combinatorial auctions are auctions that a bidder can place 

a single bid on a set of different items. With combinatorial 
auctions, bidders can avoid the risk of only obtaining a subset 
of items that is not worth as much as a complete set [1]. 
Therefore, combinatorial auctions leading to more efficient 
allocations than traditional multi-item auctions have been 
widely suggested to allocate items that are substitutable or 
complementary. However, price-only auctions tend to lead to 
dire consequences for the buyer in a procurement setting [2], 
[3]. Hence multi-attribute combinatorial reverse auction 
(MACRA) is becoming prevalent in procurement and has 
successfully been used in industrial activities for both services 
and goods. As an important decision problem in the MACRA, 
the winner determination problem (WDP) forms the focus of 
this paper. 

Sandholm [1] introduced the existing algorithms of WDP in 
combinatorial auctions, including enumeration algorithms, 
dynamic programming approaches, polynomial-time 
approximation algorithms, etc., and proposed a novel search 
algorithm based on branch and bound for the problem. 
However, the traditional branch and bound algorithm only 
solves a small scale WDP in the acceptable computation time. 
To improve the efficiency of the algorithm, a sophisticated 
optimal algorithm called combinatorial auction branch on bids 
(CABOB) [4] was proposed to solve the basic WDP in 
combinatorial auctions. CABOB is a depth-first branch-and-
bound tree search algorithm that branches on bids. However, 
the integer programming formulation of the WDP was not tight. 
After obtaining several properties of the traditional formulation 
of the WDP, a set packing formulation of the problem was 
presented and a branch-and-cut algorithm was implemented [5]. 
After that, a particular combinatorial auction setting where the 
valuation functions of the bidders are known to be complement 
free was considered and several approximation algorithms 
were proposed for the WDP [6]. However, the former studies 
only provided decision support for the auctioneer. Hsieh [7] 
considered a WDP with a decision support tool to assist 
bidders’ decisions, and designed a heuristic algorithm to find a 
feasible solution in a multi-round combinatorial reverse auction. 
However, only price is considered in such settings. It is also 
important for buyers to consider other quantitative or 
qualitative attributes, such as delivery time, quality grade of the 
product, etc., to form long-term relationships with potential 
suppliers in a procurement auction [8], [9]. 

Multi-attribute reverse auction (MARA) extends the 
traditional reverse auction to allow negotiation over price and 
non-price attributes and is becoming prevalent in procurement. 
The mathematical study of WDP of MARA started in [2], 
where a linear programming model is formulated to describe 
the problem. Then, Cheng [9] formulated a WDP model in a 
sealed-bid MARA setting and solved the problem with the 
basic “Technique for Order Preference by Similarity to Ideal 
Solution” (TOPSIS) method. However, only quantitative 
attributes were considered in his work. Both of quantitative and 
qualitative attributes are combined with the WDP in a MARA 
setting in [10], using a fuzzy logic and interval arithmetic-
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based TOPSIS (FTOPSIS) method. However, only single item 
is considered in such settings. 

We consider a revised WDP in this paper, where price and 
non-price attributes are combined in an MACRA setting. 
Based on existing multi-attribute decision making method, 
suppliers’ scores of non-price attributes can be firstly obtained. 
Then, a bi-objective programming model that minimizes the 
total cost and maximizes the scores of selected suppliers is 
established to describe the WDP. To solve the problem, an ant 
colony algorithm with the dynamic transition strategy and the 
Max-Min pheromone strategy is proposed based on the model. 
Finally, numerical examples show the effectiveness of the 
proposed algorithm. 

The organization of the paper is as follows. Section 2 
presents the problem and the model of WDP of MACRA. Then 
an improved ant colony algorithm is presented in Section 3. 
Section 4 shows the effectiveness of the proposed algorithm by 
numerical examples. Finally, Section 5 concludes this paper. 

II. PROBLEM DESCRIPTION 
In an MACRA, one buyer seeks to procure different items 

from multiple potential suppliers. It is assumed that a single 
unit of each item is needed by the buyer. Suppliers are allowed 
to place a single bid on a set of several distinct items. Each bid 
includes a total quoted price of the packaged items and non-
price attributes of each item in the package. It is also assumed 
that the buyer uses a sealed-bid reverse auction format to run 
the procurement. After the auction process, the buyer 
determines the winner and allocates the items to the winning 
suppliers. 

A. Notations and the Model 
The notations used in the representation of the WDP of 

MACRA are defined as follows. 

Decision variables 

ix : 1 if supplier i  is been selected by the buyer ( 1, ,i n= … ); 
0 otherwise 

Parameters 

ijb : 1 if supplier i  provides item j  ( 1, ,j m= … ); 0 
otherwise 

ip : the total bid price of supplier i  for all his bidding items 

ijka : the value of i -th supplier j -th item for the k -th 
attribute ( 1, ,k K= … ), such as delivery time, product 
quality, etc. 

sp : switching cost if a new supplier is selected 

pp : the penalty of delay delivery time 

ijd : the due date of supplier i  for item j  

jD : the due date of the buyer’s requirement of item j  

M : the maximized number of items allowed in a single 
package for each supplier 

Let [ ] max{ ,0}y y+ = . Using the notations defined above, the 
mathematical model of the WDP of MACRA can be 
constructed as follows. 
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In the formulation, Equation (1) minimizes the procurement 
cost. Equation (2) maximizes the score of the selected 
suppliers’ attributes. Equation (3) ensures that the buyer 
procures all the items required. Equation (4) ensures that each 
supplier wins M  items at most. Equation (5) defines, ix , as a 
0-1 decision variable. 

B. Pre-processing Procedures 
Some pre-processing procedures of the bi-objective 

programming are presented before the improved ant colony 
algorithm. The bi-objective model can be converted to a single-
objective model as follows, which is NP-hard [1], [11]. 
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where δ  is a parameter to ensure that the magnitude of (1) and 
(2) is the same. Equation (6) is the objective function, i.e., 
minimizing the total procurement cost of the buyer. Equation 
(7) and Equation (8) constrain the procurement requirement 
and the maximized items of one bid, respectively. Equation (9) 
constrains the decision variable. 

III. IMPROVED ANT COLONY ALGORITHM 
Because of its robustness and distributed computation, the 

ant colony algorithm has been widely applied to various fields 
[12], [13], [14]. In this paper, an improved ant colony (IAC) 
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algorithm is proposed to solve the WDP of MACRA. We 
improve the traditional ant colony algorithm using two 
strategies as follows: 

(a) To improve the optimization capability of the ant and to 
prevent prematurity of the algorithm, the Max-Min pheromone 
strategy is used to control the pheromone. 

(b) To improve the searching capability of globally optimal 
solution and the searching speed, the dynamic transition 
strategy is also incorporated into the algorithm. 

By combining the strategies with traditional ant colony 
algorithm, an IAC algorithm is briefly described. 

A. Real Number Encoding 
According to the characteristics of the WDP of MACRA, 

real numbers are used to encode potential suppliers in the 
auction, where each ant has to be assigned an initial supplier. 
One possibility is to assign each ant a random initial supplier, 
e.g., we assign a random number chosen according to a 
uniform distribution over the set of suppliers { }1, ,i n= … . 

B. Fitness Function 
A fitness function is usually designed based on the 

objective function. As a result, the objective function of an ant 
is defined by 

1

n

i i
i

f E x
=

= −∑                                  (10) 

where 
1 1 1

m m K

i i s p ij j ij ijk ij
j j k

E p p p d D b a bδ
+

= = =

⎡ ⎤= + + − −⎣ ⎦∑ ∑∑  denotes the 

virtue cost of supplier i . 

C. Dynamic Transition Strategy 
The dynamic transition strategy is defined by combining 

the traditional selection strategy with the dynamic transition 
parameter, which changes as the different times of selected 
suppliers and the number of iterations. 

1
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Equations (11) and (12) are the dynamic transition strategy 
and dynamic transition parameter, respectively. iτ  is the 
pheromone trail of supplier i  and is equally to other 1n −  
suppliers at the initial time. iη  is the heuristic information, 
where 1i iEη = , iE  is the virtue cost of supplier i . iz  is 1 if 
supplier i  is not visit by the ant, otherwise iz  equals 1. α  and 
β  denote the relative importance of pheromone trail and 
heuristic information, respectively, with interval [0,5] . L  and 
t  represent the number of ants and the number of iterations, 
respectively. ig  is the number of choosing supplier i . maxη  is 
the maximum value of the heuristic information. 

D. Pheromone Trails Update Rule 
After all the ants have constructed their tours, i.e., selecting 

potential suppliers to provide all the items required by the 
buyer, the pheromone trails are updated. This is done by first 
lowering the pheromone value on all suppliers by a constant 
factor, and then adding pheromone to the suppliers the ants 
have crossed in their tours. Pheromone evaporation is 
implemented by 

( )1 ,     1, ,i i i nτ ρ τ← − ⋅ = …                    (13) 

where 0.1 0.99ρ< <  is the pheromone evaporation rate. The 
parameter ρ  is used to avoid unlimited accumulation of the 
pheromone trails and it enables the algorithm to forget bad 
decisions previously taken. 

After evaporation, all ants deposit pheromone on the 
suppliers they have crossed in their tour: 

( ) 1
1 ,     1, ,L l

i i il
i nτ ρ τ τ

=
← − ⋅ + Δ =∑ …             (14) 

where l
iτΔ  is the amount of pheromone ant l  deposits on the 

suppliers it has chosen. It is defined by 

1 ,  if supplier  is chosen by ant 
,     1, ,
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ll

i

h i l
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   ⎧
Δ = =⎨        ⎩

…     (15) 

where lh  is the currently best solution that ant l  has searched. 

E. Max-Min Pheromone Strategy 
The maximum and minimum pheromone trail values are 

assumed to be maxτ  and minτ , respectively. The pheromone trail 
value of each ant is limited to the interval [ ]min max,τ τ , which is 
defined by 

max max

min min
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,     1, ,

, if
i

i
i

i n
τ τ τ

τ
τ τ τ

    >⎧
= =⎨     >⎩

…             (16) 

If there is no better solution after a constant iteration, then 
the pheromone trail value is defined by 

min max

max min

, if
,     1, ,

, if
i

i
i

i n
τ τ τ

τ
τ τ τ

    =⎧
= =⎨     =⎩

…             (17) 

The Max-Min pheromone strategy can improve the 
optimization capability of the ant and prevent prematurity of 
the algorithm. 

F. The Termination Rule 
After running a constant loops, i.e., NG , stop the process 

and output the best solution. 

G. The Process of IAC Algorithm 
Step 1: Initialize parameters of the IAC algorithm, 

including the maximum loops, NG , the maximum iteration of 
the same local solution, T , the heuristic information, iη , and 
parameters, α , β , ρ , minτ , maxτ . 
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Step 2: After assigning each ant a random number of 
supplier set { }1, ,i n= … , based on the pheromone trail values, 
calculate the dynamic transition probability using (11)-(12). 
According to the dynamic transition strategy, the ant chooses 
one supplier with the maximum probability. Check whether the 
selected supplier is enforced by the constraints. If not, delete 
the supplier form the set of selected supplier, label the supplier 
as the visited one; otherwise, go to visit the next supplier that 
the ant has not visited based on the dynamic transition 
probability. Thus, a feasible solution can be searched, that is all 
items required by the buyer are selected. 

Step 3: Calculate the fitness function using (10). Store the 
currently best solution and the currently global solution by 
comparing all the fitness values of feasible solutions 
constructed by the ants. 

Step 4: If the currently global solution is the same for T  
continuous iterations, exchange the maximum and minimum 
pheromone trail values using (16)-(17). 

Step 5: Update the pheromone trail values using (13)-(15) 
for the next iteration. 

Step 6: Check whether the maximum allowable number of 
iterations, NG , is reached. If not, go to Step 2; otherwise, stop 
the process and output the best solution. 

H. Enumeration Algorithm with Backtracking (EAB) 
Enumeration algorithm firstly constructs all the feasible 

solutions of the problem, an optimal solution then can be 
obtained by comparing all the feasible solutions. Although 
enumeration algorithms always find an optimal solution, they 
also need much more time, especially solving a large scale 
problem. Therefore, enumeration algorithms cannot be 
extensively used in practice. 

Backtracking is a simple algorithm for finding an optimal 
solution among all solutions systematically, that incrementally 
builds candidates to the solutions, and abandons each partial 
candidate violating the constraints, then backtracks to the last 
candidate. 

Considering the characteristic of the model, the main 
process of an enumeration algorithm with backtracking (EAB) 
is shown as follows: 

Step 1 : Initialize the decision variables, 0ix = , 1, ,i n= … , 
and the parameter 1i = . 

Step 2: Search candidate suppliers sequentially to build 
feasible solutions using the depth-first tree algorithm, 1ix = . 

Step 3: Check whether the currently selected candidate 
violating the constraints. If not, use the depth-first tree 
algorithm to search the next candidate supplier, otherwise, 
abandon the current candidate, and backtrack to the last 
candidate. Thus, a feasible solution is found. 

Step 4: Calculate the virtual cost function of the selected 
suppliers, store the currently best solution. 

Step 5: Check whether the enumeration tree is finished. If 
not, go to Step 3; otherwise 1i i= + , go to Step 2. 

Step 6: The currently best solution is the globally optimal 
solution, output the optimal solution and stop the process. 

IV. NUMERICAL EXAMPLES 
To illustrate the effectiveness of the proposed IAC 

algorithm, three numerical examples are calculated with the 
comparison of an EAB. Example 1 assumes that the buyer 
procures 10 different items using a first price sealed-bid 
auction, where 30 potential suppliers bid competitively with 
maximized 3 items in a single package at most. Example 2 
assumes that the buyer procures 30 different items in a reverse 
auction system with 100 competitive suppliers, and 10 items 
are allowed in a single package. In example 3, one buyer and 
150 potential suppliers are in the electronic reverse auction 
system, where the buyer procures 40 different items and allows 
8 items in a single package. 

Usually, the best combination of the algorithm parameters 
has to be set to get a better solution. In this paper, we use 
example 2 to test the best parameters of the IAC algorithm, i.e., 
the population size, L , the number of iteration, NG , 
importance of pheromone trails, α , the importance of heuristic 
information, β , the maximum pheromone trail value, maxτ , the 
minimum pheromone trail value, minτ , and the pheromone 
evaporation rate, ρ . The results show that it is better to set 

50L = , 50NG = , 0.9α = , 0.7β = , max 0.7τ = , min 0.4τ = , and 
0.3ρ =  for further analysis because the optimization value is 

14748, and the deviation is minimum. 

After obtaining the best combination of the parameters, the 
IAC, the traditional ant colony (AC) algorithm and the EAB 
are used to compute the numerical examples, respectively. The 
results are shown in Table I, where the best solution (BS), the 
worst solution (WS), the mean value relative to the iteration 
number (Mean) and the computation time (Time) are used to 
investigate the performance of the improved algorithm. 

TABLE I.  THE COMPARISON OF IAC, AC AND EAB FOR WDP IN 
DIFFERENT SCALE PROBLEMS 

Alga Exb L  NG  BS WS Mean Time 

EAB 

1 –c – 5902.7 5902.7 5902.7 <1s 

2 – – 14178 14178 14178 3s 

3 – – – – – – 

AC 

1 20 30 5902.7 5902.7 5902.7 <1s 

2 50 50 14748 14748 14748 4s 

3 75 1000 4012.7 4012.7 4012.7 433s 

IAC 

1 20 30 5902.7 5902.7 5902.7 <1s 

2 50 50 14748 14748 14748 9s 

3 75 1000 3811.2 3870.4 3823.9 832s 
a. “Alg” represents the algorithm in this paper 

b. “Ex” represents the number of the examples mentioned before 
c. “—” represents the non-existing parameters or non-available values of the EA method 

From Table 1, we see that, for the small scale problem 
(example 1), the EAB, the AC and the IAC methods can find 
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the optimal solution. For the mid-scale problem (example 2), 
the EAB method can find the optimal solution in less time, 
while the AC and the IAC algorithms can find a satisfactory 
solution with a deviation of 0.04 from the optimal solution in a 
short time. This is because suppliers are allowed to bid more 
items in a single package in example 2 and the EAB can prune 
the branch of infeasible solutions effectively. For the large 
scale problem (example 3), the EAB method cannot find a 
solution in limited time, while the AC and IAC algorithms can 
find a satisfactory solution in a short time. This is because 
example 3 has the most combinations compared to the other 
examples and the EAB method is unable to solve the large 
scale problem effectively. Moreover, the IAC algorithm 
provides a better solution compared to the AC algorithm due to 
the premature convergence of the AC algorithm. By 
embedding the dynamic transition strategy and Max-Min 
pheromone strategies, the algorithm can search more areas in 
the solution space, deviate from the local optimal solution, 
improve the ability of global search and increase the 
probability of searching a better solution. Therefore, the IAC 
method is effective for the buyer to find an optimal solution for 
a small scale WDP of MACRA and a satisfactory solution for a 
mid-scale and large scale problems in a short time. 

V. CONCLUSIONS 
Winner determination is an important decision problem for 

buyers to procure goods or services. Allowing suppliers to bid 
combination of items in a single package tends to lead to 
efficient allocation compared to traditional sequential action, 
especially when the items are complementary. However, many 
researches neglect multi-attributes of the multiple items in a 
combinatorial auction. This paper focuses on the WDP of 
MACRA from the buyer’s perspective. Firstly, a bi-objective 
programming model is constructed. Then an improved ant 
colony algorithm with the consideration of the dynamic 
transition strategy and the Max-Min pheromone strategy is 
proposed to solve the problem. Finally, three numerical 
examples are used to show the effectiveness of the IAC 
algorithm to solve the WDP compared with the EAB and 
traditional AC methods. 
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