

An Improved Genetic Algorithm for Dynamic

Shortest Path Problems

Xuezhi Zhu
1, 2

, Wenjian Luo
1, 2, *

and Tao Zhu
1, 2

1
School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027,

Anhui, China
2
Anhui Province key Laboratory of Software Engineering in Computing and Communication, University of Sci-

ence and Technology of China, Hefei 230027, Anhui, China

zxz1990@mail.ustc.edu.cn, wjluo@ustc.edu.cn, zhuta@mail.ustc.edu.cn

Abstract—The Shortest Path (SP) problems are conventional

combinatorial optimization problems. There are many deter-

ministic algorithms for solving the shortest path problems in

static topologies. However, in dynamic topologies, these deter-

ministic algorithms are not efficient due to the necessity of re-

start. In this paper, an improved Genetic Algorithm (GA) with

four local search operators for Dynamic Shortest Path (DSP)

problems is proposed. The local search operators are inspired

by Dijkstra’s Algorithm and carried out when the topology

changes to generate local shortest path trees, which are used to

promote the performance of the individuals in the population.

The experimental results show that the proposed algorithm

could obtain the solutions which adapt to new environments

rapidly and produce high-quality solutions after environmental

changes.

I. INTRODUCTION

The Shortest Path (SP) problems are traditional
combinatorial optimization problems. There are several kinds
of SP problems such as the Single-Source Shortest Path
(SSSP) problems, the Multi-Source Shortest Path (MSSP)
problems the Static Shortest Path (SSP) problems and the
Dynamic Shortest Path (DSP) problems. Given a network
topology with some nodes and some weighted edges, the SP
problem aims to find a path between two nodes so that the
sum of the cost of its edges is minimal. There are many
deterministic algorithms for solving the SP problems, such as
Dijkstra’s Algorithm [1] and Bellman-Ford Algorithm [2].
They work well in static topologies, namely the topologies
are fixed. However, in dynamic topologies, these
deterministic algorithms are not efficient due to the necessity
of restart [3]. Therefore, for DSP problems, new solving
methods are needed. Fortunately, Genetic Algorithms (GAs)
perform well for solving Dynamic Optimization Problems
(DOPs).

A GA, which is based on the mechanisms of biological
evolution, is a kind of stochastic algorithms for global
optimization [4]. A GA mainly includes chromosome coding,
initialization, evaluation, selection, crossover and mutation
[5]. By the principle of “survival of the fittest”, the
individuals could get close to optima by some generations of
evolution [6]. Based on the basic GA, some new GAs for
solving DOPs have been proposed. And typical GAs for
DOPs are described as follows. GAs with elitism-based
immigrants are proposed in [7]. The elitism-based

immigrants are based on the elite in the previous generation,
and therefore, the population is guided by these immigrants.
Besides, a self-organizing random immigrants GA is
proposed in [8], where the immigrants are randomly
generated. And a hybrid immigrants scheme for GAs is
proposed in [9]. The memory-based immigrants for GAs are
adopted in [10] and [11], where the suitable immigrants
stored in the memory could be used for the current population
when the environment changes. Both the memory-based and
the elitism-based immigrants are adopted for the GAs in [12].

For DSP problems, an improved genetic algorithm for
DSP problems is proposed in this paper, which combines a
GA in [3] with four local search operators inspired by
Dijkstra’s Algorithm. Dijkstra’s Algorithm is a simple and
efficient deterministic algorithm for SP problems, but it is not
suitable for dynamic environments because it has to rerun
when the environment changes. GAs perform well in
dynamic environments, but the solutions they get are not
optimal sometimes. Therefore, to enhance the search ability
of GAs, four local search operators inspired by Dijkstra’s
Algorithm are designed to search around some nodes (the
source node, the destination node and the nodes affected by
the environmental changes) when the initial population is
generated or the topology changes. By the local search
operators, local shortest path trees are generated and used to
promote the performance of the individuals in the population
in the evolution stages. So that the proposed algorithm could
get solutions which adapt to new environments rapidly and
produce high-quality solutions after environmental changes.

The rest of this paper is organized as follows. The
description of the DSP problem and the related work are
introduced in section II. In section III, the proposed algorithm
is presented. The experimental results and the analyses are
given in section IV. Section V concludes this paper and
introduces the future work.

II. RELATED WORK

A. The DSP Problem

The DSP model we consider in this paper is described as
follows. Given a real-time network topology G(V, E, t) where
V stands for the nodes and E stands for the weighted edges at
time t. The DSP problem aims to find a path from a source
node s to a destination node d so that the sum of the cost of

*Corresponding author.

Tel. : +86 – 551 - 63602824
2093

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

mailto:zxz1990@mail.ustc.edu.cn

its edges is minimized at time t. Here, the simulated dynamic
environment is the same as that in [3], where some nodes are
sleeping and wakening over time. The formalized description
of the DSP problem is given as follows.

Here are some symbols we use for the problem:

G(V, E, t) the topology graph at time t;

N the total number of the nodes in G;

V the nodes in G, namely {v1, v2, …, vN};

E the weighted edges in G, such as (vi, vj);

s the source node;

d the destination node;

cost(vi, vj) the cost on the edge (vi, vj);

P(s, d, t) the path from s to d at time t;

C(P) the total cost of the path P.
The purpose of the DSP problem is to find a path P(s, d, t)

whose cost C(P) is minimized at time t, as is shown in (1).

𝐶(𝑃) = min
𝑃∈𝐺

{ ∑ 𝑐𝑜𝑠𝑡(𝑣𝑖 , 𝑣𝑗)

(𝑣𝑖,𝑣𝑗)∈𝑃(𝑠,𝑑,𝑡)

} (1)

B. The GAs for the SSP Problems

There are some GAs solving the SSP problems. A GA for
the SP problem is proposed in [13], in which a path is
represented by a variable-length chromosome and a repair
method is proposed to eliminate the loops in a path. And the
simulated experiments show that the GA has lower failure
ratio and higher rate of convergence than other GAs. The
feasibility of using GAs to solve SP problems is investigated
in [14], and a priority-based approach is proposed to encode
all the potential paths. The priority-based encoding method is
also adopted in [15], where the priority is represented by
random keys and arithmetical crossover, swap mutation and
immigration are adopted.

C. The GAs for the DSP Problems

The DSP problems are more complex than the SSP
problems due to the dynamics of environments. Therefore,
the algorithms for the SSP problems are not suitable for
dynamic environments generally. An elitism-based GA for
the DSP problems is implemented in [16]. Firstly, the
specialized GA for SP is designed, and then in each
generation, a certain number of elitism-based immigrants are
produced and added to the population to maintain the
diversity. The immigrants could provide the guidance to
search good solutions. The GAs with immigrants and
memory schemes are investigated in [3]. Once the topology
changes, the new immigrants and the information in the
memory will help the population adapt to the new
environment. Multi-population GAs with immigrants
schemes are proposed in [17]. The search space is divided
into several parts and several small populations are needed
for the partial spaces. In [17], after a certain number of
generations, the parent population is divided into three small
populations, one of them is designed to explore, and the
others aim to exploit. Then all the small populations will be
merged when the topology changes.

D. The Specialized GA for the SP Problem

Our algorithm is based on the specialized GA for the SP
problem, which is proposed in [13] and adopted in [3].
Therefore, the procedures of the GA, including chromosome
representation, population initialization, fitness function,
selection, crossover, mutation and the repair method are
described as follows.

1) Chromosome representation
A chromosome represents a solution, which is a path

from s to d in the DSP problem. The chromosome for an
individual in this paper is represented by a string with
variable length [13]. Each locus in the string stores a positive
integer which represents a node ID. The first locus and the
last locus represent s and d, respectively. The other loci
represent the intermediate nodes in the path from s to d. For
example, the chromosome (s, vi, vj, …, d) represents a path
P(s, d, t) through vi and vj. As a result, the length of a
chromosome is not greater than N, and the continuous two
nodes in a chromosome are connected in the topology.

2) Population initialization
The initialization of the population is the first step in GA.

There are mainly two kinds of initialization, namely random
initialization and heuristic initialization [13]. The random
initialization is adopted in this paper to increase the diversity
of the initial population. The details of the process to
initialize a chromosome are described as follows. Firstly, s is
stored in the first locus of the chromosome. Then, one of the
adjacent nodes of s is randomly selected (say vi) and stored in
the second locus of the chromosome. And then, one of the
adjacent nodes of vi is randomly selected. These processes are
repeated until d is selected. Notice that: (i) Each node will be
selected once at most to avoid loops; (ii) If there is no
alternative adjacent node to be selected for a chromosome,
the chromosome will be reinitialized.

3) Fitness function
The fitness function is used to evaluate the performance

of the individuals. For the DSP problem, a path with the less
total cost has the higher fitness. Hence, the fitness for the
individual ind, which represents the path P(s, d, t), is shown
in (2).

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖𝑛𝑑) = [∑ 𝑐𝑜𝑠𝑡(𝑣𝑖 , 𝑣𝑗)

(𝑣𝑖,𝑣𝑗)∈𝑃(𝑠,𝑑,𝑡)

]

−1

 (2)

4) Selection
By the selection, the individuals with high fitness are

reserved while those with low fitness may be eliminated. For
the sake of simplicity and high-efficiency, the pairwise
tournament selection without replacement is adopted [18],
namely two individuals are picked out and the one with the
higher fitness will be selected, while the same individual
should not be picked out twice.

5) Crossover
Crossover, which is one of the core operators in the GA,

is a procedure for genetic recombination. The crossover in
this paper is a variant of one-point crossover [19]. The details
for the crossover are described as follows. Two individuals
for crossover are randomly picked, say ind1 and ind2, which
represent the paths P1(s, d, t) and P2(s, d, t), respectively.

2094

Notice that P1 and P2 must have at least one common
intermediate node (denoted by vmid, if there are two or more
common intermediate nodes, one of them is randomly
selected). Then ind1 can be viewed as two sub-paths P1(s, vmid,
t) + P1(vmid, d, t). Similarly, ind2 can be viewed as two
sub-paths P2(s, vmid, t) + P2(vmid, d, t). Through the crossover,
two individuals (denoted by ind3 and ind4) are generated. The
individual ind3 represents the path P1(s, vmid, t) + P2(vmid, d, t),
and ind4 represents the path P2(s, vmid, t) + P1(vmid, d, t).

6) Mutation
The diversity of the population could be increased by

mutation [4]. The mutation operator in this paper is described
below. For an individual (denoted by ind) which represents
the path P(s, d, t) to be mutated, a locus (say vr) in the
chromosome is randomly selected. Then ind can be viewed as
two sub-paths P(s, vr, t) + P(vr, d, t). The mutation operator
for ind produces an individual indm, which represents the path
P(s, vr, t) + Prand(vr, d, t). Here, Prand(vr, d, t) is a path from vr
to d which is randomly generated using the same method in
the population initialization procedure.

7) Repair method
The crossover operator may produce the paths with loops,

while for the initialization and the mutation above, there are
no paths with loops due to the avoidance of generating loops.
In this paper, the repair method proposed in [13] is adopted to
eliminate loops. Assume that the individual ind, which
represents the path from s to d: P(s, vc, t) + Pc(vc, vc, t) + P(vc,
d, t). The sub-path Pc(vc, vc, t) is a loop. The repair method is
designed to delete the sub-path Pc(vc, vc, t). That is, the
repaired individual represents the path P(s, vc, t) + P(vc, d, t).

III. THE PROPOSED ALGORITHM

In this section, we mainly introduce the improvement
based on the GA described in section II-D. Because GAs
adapt to dynamic environments rapidly and Dijkstra’s
Algorithm can find the deterministic SP efficiently, an
improved GA is proposed by combining the advantages of
both GAs and Dijkstra’s Algorithm. The proposed algorithm
adopts four local search operators inspired by Dijkstra’s
Algorithm to perform local searches for some nodes when the
topology changes. These nodes are the source node, the
destination node and the nodes affected by the environmental
changes. By these local searches, some shortest path trees are
obtained. Then the obtained shortest path trees are used to
enhance the performance of the population in the evolution
process. The details for the proposed GA are described as
follows.

A. Local Search Operators for s and d

It is obviously known that the shortest path from s to d
contains s and d. Hence, the local searches for s and d could
enhance the individuals well. The local search means a
procedure inspired by Dijkstra’s Algorithm, namely the
procedure will be terminated after searching for a certain
number of nodes by the basic steps of Dijkstra’s Algorithm.

When the algorithm starts or the environment changes, s
is regarded as the source node and a certain number (denoted
by nums) of nodes are searched using the local search
procedure. Then a local shortest path tree (denoted by
SPTrees), of which s is the root, is obtained. And the path

from s to a node (denoted by vi) in the SPTrees is the shortest
path from s to vi. Similarly, d is regarded as the source node
and numd nodes are searched using the local search procedure.
A local shortest path tree (denoted by SPTreed) is obtained.

In the evolution process, for each individual, if a non-root
node (denoted by v1, if there are two or more nodes, one is
randomly selected, the same below) in the SPTrees appears in
the individual (denoted by ind), the sub-path from s to v1 in
ind is replaced by the corresponding sub-path in the SPTrees.
Similarly, if a non-root node (denoted by v2) in the SPTreed
appears in ind, the sub-path from v2 to d in ind is replaced by
the corresponding sub-path in the SPTreed. And a new
individual (say indnew) is generated after the above processes,
and an example is shown in Fig. 1. If indnew contains loops,
the repair method in section II-D is performed. And the
generated individual indnew is added into the set of improved
individuals (denoted by ImpIndSet) to be used.

B. Local Search Operator for New Wake-up Nodes

For the dynamic environments we consider, if some
sleeping nodes wake up, the topology changes. If a node
(denoted by vw) wakes up, vw is regarded as the source node
for the local search and a certain number (denoted by
numwaking) of nodes are searched. And a local shortest path
tree (denoted by SPTreewaking), of which vw is the root, is
produced.

In the evolution process, for each individual, if two nodes
(denoted by v1 and v2, if there are more than two nodes, two
among them are randomly selected) in the SPTreewaking

appear in the individual (denoted by ind), the sub-path from

Fig. 1. Improve an individual with SPTrees and SPTreed

Fig. 2. Improve an individual with SPTreewaking

2095

v1 to v2 in ind is replaced by the corresponding sub-path in
the SPTreewaking, and a new individual (say indnew) is
generated, and an example is shown in Fig. 2. As is
mentioned above, if indnew contains loops, the repair method
in section II-D is performed. And indnew is added into
ImpIndSet.

C. Local Search Operator for Sleeping Nodes

If some active nodes sleep, the topology changes. Some
individuals in the population may become infeasible
solutions. In this case, a reconstruction method is proposed in
this paper. For each individual, if a node (denoted by v1)
becomes sleeping, a node (denoted by v2) in the path from s
to v1 in the individual (denoted by ind) is randomly selected.
Then v2 is regarded as the source node for the local search,
and a certain number (say numsleeping) of nodes are searched
using the local search procedure in section III-A. And a local
shortest path (denoted by SPTreesleeping) whose root is v2, are
produced. Then, for each node in the sub-path from v1 to d in
ind, if there exists a node (say v3) in the SPTreesleeping, the
sub-path from v2 to v3 in ind is replaced by that in the
SPTreesleeping, otherwise the sub-path from v2 to v3 in ind is
replaced by a randomly generated sub-path. And a new
individual (denoted by indnew) is generated, and an example is
shown in Fig. 3. If indnew contains loops, it will be repaired as
is mentioned in section II-D. Then ind is replaced by the new
generated individual indnew directly since ind is infeasible for
the current environment.

D. The Outline of the Proposed Algorithm

In order to conveniently control the parameters, the above
numbers nums, numd, numwaking and numsleeping for local
searches are set to the same value. In addition to the
procedures mentioned above, the scheme of elitism-based
immigrants in [3] is adopted in this paper to enhance the
performance. The algorithm framework is shown in
Algorithm 1.

In Algorithm 1, the shortest path trees SPTrees, SPTreed,
SPTreewaking and SPTreesleeping are generated using the local
search operators mentioned above. The steps from 5 to 21
mean the processes for environmental changes. Step 5 is
called for s and d. Step 7 is called for the new wake-up nodes.
Steps 10-20, which are the reconstruction method described
in section III-C, are called for the new sleeping nodes. The
sign popsize means the population size and Path(vj, vk,
container) means the sub-path from vj to vk in container,

where container stands for SPTrees, SPTreed, SPTreewaking,
SPTreesleeping or an individual. The set of improved
individuals ImpIndSet is cleared in step 23. The SPTrees and
SPTreed are used to improve the individuals in the population
(steps 24-33), and the improved individuals are added into
ImpIndSet. And the similar processes are carried out using
SPTreewaking (steps 35-40). The basic operators for a GA are
called (steps 42-46), and the elitism-based immigrants
operation is performed (step 43). Steps 47 and 48 aim to
remove the redundant individuals and add the improved
individuals from ImpIndSet into the population. The details
for steps 47 and 48 are described as follows.

Algorithm 1. The Improved Genetic Algorithm for the DSP Problem

1: Initialize the population;

2: Generate SPTrees and SPTreed;
3: repeat

4: if the topology changes then

5: Generate SPTrees and SPTreed;
6: if the number of new wake-up nodes ≠ 0 then

7: Generate SPTreewaking;

8: end if

9: if the number of new sleeping nodes ≠ 0 then

10: for i ← 1 to popsize do

11: if individual[i] contains any sleeping node then
12: vj ← a node randomly picked before any sleeping node

in individual[i];

13: Generate SPTreesleeping whose root is vj;
14: if SPTreesleeping contains a node vk after all sleeping

nodes in individual[i] then

15: Replace the Path(vj, vk, individual[i]) by Path(vj, vk,
SPTreesleeping);

16: else

17: Replace the Path(vj, vk, individual[i]) by a random-
ly generated sub-path from vj to vk;

18: end if

19: end if

20: end for

21: end if
22: end if
23: Clear ImpIndSet;

24: for i ← 1 to popsize do

25: if individual[i] contains a non-root node vj in SPTrees then
26: indnew ←Path(s, vj, SPTrees) + Path(vj, d, individual[i]);

27: Add indnew into ImpIndSet;

28: end if

29: if individual[i] contains a non-root node vk in SPTreed then

30: indnew ←Path(s, vk, individual[i]) + Path(vk, d, SPTreed);

31: Add indnew into ImpIndSet;
32: end if

33: end for

34: if the number of new wake-up nodes ≠ 0 then

35: for i ← 1 to popsize do

36: if individual[i] contains two nodes vj and vk in SPTreewaking

then
37: indnew ← Path(s, vj, individual[i]) + Path(vj, vk, SPTreewak-

ing) + Path(vk, d, individual[i]);

38: Add indnew into ImpIndSet;
39: end if

40: end for

41: end if
42: Evaluate the population;

43: Elitism-based immigrants operation;
44: Selection;

45: Crossover;

46: Mutation;
47: Remove the redundant individuals in the population;

48: Add the individuals from ImpIndSet into the population;

49: until the termination condition is met

In favor of adding the improved individuals to the
population and maintaining the diversity of the population, a

Fig. 3. Reconstruct an individual containing a sleeping node

2096

strategy of removing redundancies is adopted. That is, the
frequency occurrence for each individual is no more than a
certain number, which is set to 1 in this paper, namely each
individual appears once at most. If there are redundant
individuals, the repetitive individuals are eliminated. If nr
redundant individuals in the population are removed, the
removed individuals will be replaced by nr improved
individuals which are stored in ImpIndSet. In case that the
total number of individuals in ImpIndSet is less than nr, a
corresponding number of individuals, which are randomly
generated, are added into the population to fill the gap.
Notice that the individuals in ImpIndSet are just suitable for
the current population and should be regenerated in the next
generation, as is shown in step 23.

IV. EXPERIMENTS

In the experiments, the proposed GA for the DSP
problems is implemented. The simulation environments
proposed in [3] are adopted and the dataset provided in [3] is
used for the test. The algorithms with good performance in [3]
are picked for comparisons, where the algorithms EIGA,
RIGA and HIGA perform well in the acyclic dynamic
environments and the algorithms MEGA, MRIGA and
MIGA perform well in the cyclic dynamic environments.
Therefore, the proposed GA is compared with above GAs in
the acyclic dynamic environments and the cyclic dynamic
environments, respectively.

A. The Simulation of Dynamic Environments

In this paper, we investigate the network communication
problem in the mobile ad hoc network (MANET) [20]. A
dynamic simulation environment model for MANET is
designed in [3], and the same model is adopted in this paper,
which is described as follows. Firstly, a square region with
the area of 200 × 200 is specified. Then 100 nodes in the
region are randomly generated. If the Euclidean distance
between two nodes is not greater than 50, an edge is added to
connect them and the cost of this edge is set with a
corresponding value. Finally, the topology should be checked
to ensure that the topology is connected. If it is not connected,
the topology should be regenerated. The nodes in the initial
topology are all waking. After a certain number (denoted by
R) of generations, a certain number (denoted by M) of nodes
sleep or wake up according to their current status.

The data set provided by [3] is adopted in this paper. The
data set includes 4 pieces of data, namely topology series #1,
#2, #3 and #4. Topology series #2, #3 and #4 represent the
acyclic dynamic environments where M equals to 2, 3 and 4
respectively, while topology series #1 represent cyclic
dynamic environments. In topology series #1, M is set to 2,
and topology 1 is the same as topology 21, and the subseries
from topology 1 to 21 are repeated five times, and therefore,
the cyclic dynamic environments with 101 topologies are
created. Besides, for each data pieces, R is set to 5, 10 and 15,
respectively. For the sake of simplicity and without loss of
generality, the source node s is set to 1, and the destination
node d is set to 100.

In order to evaluate the performance of the GAs, the
offline performance function is adopted. For each run of an
algorithm, the best individual in the population is picked and

the total path cost of this individual is calculated. The overall
offline performance of a GA is shown as (3) [3].

�̅�𝑂𝐹𝐹 =
1

𝐺𝑚𝑎𝑥

∑ (
1

𝑁𝑟𝑢𝑛

∑ 𝐹𝑂𝐹𝐹𝑖𝑗

𝑁𝑟𝑢𝑛

𝑗=1

)

𝐺𝑚𝑎𝑥

𝑖=1

 (3)

In the function, Gmax represents the total number of
evolutionary generations for a run; Nrun is the total number of
runs; 𝐹𝑂𝐹𝐹𝑖𝑗

 is the best fitness in the ith generation of the jth

run. �̅�𝑂𝐹𝐹 is the offline performance.

B. The Experimental Results and Analyses in the Acyclic

Dynamic Environments

The topology series #2, #3 and #4 are adopted to evaluate
the performance of the proposed GA in the acyclic dynamic
environments. The GAs (EIGA, RIGA and HIGA) with good
performance in the acyclic dynamic environments in [3] are
picked out to compare with the proposed GA, and the
parameters of the picked GAs are assigned with the same
values as mentioned in [3]. For the sake of fairness, the
parameters of the proposed GA are assigned with the same
values, namely the population size is 50; the mutation
probability is 0.1; the parameters for the elitism-based
immigrants are the same as those in the EIGA (the percentage
of the elitism-based immigrants in the population is 0.2 and
the mutation probability for the elite is set to 0.8). Besides,
nums, numd, numwaking and numsleeping mentioned in section III
are all set to 10. In the acyclic dynamic environments, we set
M to 2, 3 and 4 and set R to 5, 10 and 15, and therefore, nine
simulation environments are created for each combination.
Because there are 21 topologies for each value of R, the
maximum evolutionary generations for the GAs are 105, 210
and 315, respectively. And the number of runs for the GAs is
set to 10.

The first 100 generations of the GAs with R=5 over
topology series #2 and #4 are picked to present the quality of
the solutions in Fig. 4(a) and (b), respectively. From Fig. 4, it
is obviously known that the proposed GA achieves the lowest
path cost after some generations. The reason is that after
some generations, the proposed GA picks out some
individuals in ImpIndSet to replace the redundant individuals
in the population while the other GAs do not. Further, it is
known that the proposed GA adapts to the environmental
changes rapidly, especially in the generations from 70 to 80
in Fig. 4(a) and from 40 to 50 in Fig. 4(b).

The average optimal path costs over all the generations
for each GA in the acyclic dynamic environments are shown
in Table I. From Table I, it can be observed that for the same
data and the same GA, the average optimal path cost is the
maximum in the case with R of 5, while the average optimal
path cost is the minimum with R of 15. This is because the
value of R represents the generation interval between two
environmental changes. Therefore, if the generation interval
gets longer, the total evolution times will be longer, and the
lower average optimal path cost will be obtained. From Table
I, it is known that the proposed GA could get the minimal
average optimal path cost, which is shown in bold, compared
with the other GAs in all the nine simulation environments.

In order to compare the offline performance of the GAs,
we adopt the two-tailed t-test with a 0.05 level of significance.

2097

And the results are shown in Table II. The sign “s+” means
that the GA in the left of “-” is significantly better than the
right GA. It is concluded that the proposed GA performs
significantly better than all the other GAs in all the acyclic
dynamic environments under a 0.05 level of significance.

C. The Experimental Results and Analyses in the Cyclic Dy-

namic Environments

Because the GAs with memory schemes proposed in [3]
are excellent in the cyclic dynamic environments, the
proposed GA is compared with the three GAs (MEGA,
MRIGA and MIGA) with memory schemes in the cyclic
dynamic environments. In the same way, the parameters of
the GAs are assigned with the same values specified in [3].
And the parameters of the proposed GA are the same as those
mentioned in section IV-B. The topology series #1 are
adopted in the cyclic dynamic environments, and M is set to 2.
The performances of the GAs are compared in the three
environments, in which R is set to 5, 10 and 15 respectively.
The topology series #1 contain 101 topologies. Therefore, the
maximum generations for the GAs are 505, 1010 and 1515
with different values of R, respectively.

We sample the first 100 generations and the generations
from 800 to 900 of the GAs with R=10 over topology series
#1 to present the results in Fig. 5(a) and (b), respectively.

From Fig. 5(a), the results show that the proposed GA gets
the minimum path cost after some generations. However, the
results in Fig. 5(b) show that the quality of the solutions of
the proposed GA is worse than those of other GAs sometimes
(around generation 810). The reason is that the information in
the memory of the memory-based GAs is much too useful
due to the cyclically environmental changes.

The average optimal path costs over all the generations
for all GAs in the cyclic dynamic environments are shown in
Table III. From Table III, compared with the other GAs, the
proposed GA could obtain the minimal average optimal path
cost which is shown in bold in all the three dynamic
environments. However, the differences between the
proposed GA’s average optimal path cost and the
memory-based GAs’ in the cyclic environments are not so
obvious as those in the cyclic environments.

Similarly, we adopt two-tailed t-test with a 0.05 level of
significance to compare the offline performances of the GAs,
as shown in Table IV. The signs “+” and “s+” mean that the
GA in the left of “-” is better and significantly better than the
right GA, respectively. From Table IV, it is known that the
proposed GA is significantly better than MEGA and MIGA
in all the three environments and significantly better than
MRIGA with R of 10. However, the proposed GA is better
than but not significantly better than MRIGA when R is set to

(a) (b)

Fig. 4. Comparison results of the quality of the solutions for GAs in acyclic dynamic environments over (a) topology series #2 and (b) topology series #4

TABLE I

THE AVERAGE OPTIMAL PATH COSTS OVER ALL THE GENERATIONS IN ACYCLIC DYNAMIC ENVIRONMENTS

Data
GAs

Topology Series #2 Topology Series #3 Topology Series #4

5 10 15 5 10 15 5 10 15

EIGA 448.152 436.535 436.935 460.901 451.386 442.123 474.629 456.384 452.726

RIGA 442.614 435.407 436.278 458.702 447.658 444.445 465.824 456.996 449.575

HIGA 443.817 436.743 435.141 456.613 445.810 444.367 464.731 455.780 452.100

Proposed GA 435.104 427.242 425.213 440.581 433.868 430.615 448.477 440.919 437.174

TABLE II

T-TEST RESULTS OF COMPARING GAS IN ACYCLIC DYNAMIC ENVIRONMENTS

 Data

Comparison

Topology Series #2 Topology Series #3 Topology Series #4
5 10 15 5 10 15 5 10 15

Proposed GA - EIGA s+ s+ s+ s+ s+ s+ s+ s+ s+
Proposed GA - RIGA s+ s+ s+ s+ s+ s+ s+ s+ s+

Proposed GA - HIGA s+ s+ s+ s+ s+ s+ s+ s+ s+

2098

5 and 15. From the results, it is known that the
memory-based GAs perform well in the cyclic dynamic
environments. If the environments change cyclically, the
memory-based GAs could get the highly fit solutions which
have been stored in the memory. So that the proposed GA is
not significantly better than the memory-based GAs
sometimes.

V. CONCLUSIONS AND FUTURE WORK

The shortest path problems are conventional
combinatorial optimization problems. In this paper, an
improved GA with four local search operators inspired by
Dijkstra’s Algorithm is proposed for DSP problems. When
the population initializes or the environment changes, the
local search operators are carried out to perform local
searches around some nodes (namely, the source node,
destination node and the nodes affected by the environmental
change), and local shortest path trees are generated and stored.
Then local shortest path trees are used to enhance the quality
of the individuals when the population evolves, so that the
proposed GA could get solutions with higher fitness. In order
to verify the performance of the proposed GA, we have
compared the proposed GA with some other well-behaved
GAs in both acyclic and cyclic dynamic environments. The
experimental results show that the proposed algorithm could
get solutions which adapt to new environments rapidly and
produce high-quality solutions after environmental changes.

In the future, we will investigate the DSP problems in the
large-scale topologies, and take some missing factors (such
as the situation where some nodes move) into consideration.

And we will adopt the more ideas from the deterministic
algorithms to enhance the performance of GAs. Besides,
some dynamic path optimization problems in the real-world
applications (such as the car navigation problems) are the
multi-objective ones in some situations. Therefore, we will
do some work on the multi-objective path optimization
problems under dynamic environment.

REFERENCES

[1] E. W. Dijkstra, "A note on two problems in connexion with graphs,"

Numerische mathematik, vol. 1, pp. 269-271, 1959.

[2] R. Bellman, "On a routing problem," DTIC Document1956.
[3] S. Yang, H. Cheng, and F. Wang, "Genetic Algorithms With

Immigrants and Memory Schemes for Dynamic Shortest Path Routing

Problems in Mobile Ad Hoc Networks," Systems, Man, and

Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,

vol. 40, pp. 52-63, 2010.

[4] D. E. Goldberg and J. H. Holland, "Genetic algorithms and machine
learning," Machine learning, vol. 3, pp. 95-99, 1988.

[5] T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of evolutionary
computation: IOP Publishing Ltd., 1997.

[6] M. Srinivas and L. M. Patnaik, "Genetic algorithms: A survey,"

Computer, vol. 27, pp. 17-26, 1994.
[7] S. Yang, "Genetic Algorithms with Elitism-Based Immigrants for

Changing Optimization Problems," in Proceedings of the 2007

EvoWorkshops 2007 : Applications of Evolutionary Computing, 2007,
pp. 627-636.

[8] R. Tinós and S. Yang, "A self-organizing random immigrants genetic

algorithm for dynamic optimization problems," Genetic Programming
and Evolvable Machines, vol. 8, pp. 255-286, 2007.

[9] S. Yang and R. Tinós, "A hybrid immigrants scheme for genetic

algorithms in dynamic environments," International Journal of
Automation and Computing, vol. 4, pp. 243-254, 2007.

(a) (b)

Fig. 5. Comparison results of the quality of the solutions for GAs in cyclic dynamic environments over topology series #1 in the generations (a) from 1 to
100 and (b) from 800 to 900

TABLE III
THE AVERAGE OPTIMAL PATH COSTS OVER ALL THE GENERATIONS IN CY-

CLIC DYNAMIC ENVIRONMENTS

TABLE IV
T-TEST RESULTS OF COMPARING GAS IN CYCLIC DYNAMIC ENVIRONMENTS

 Data

GAs

Topology Series #1
5 10 15

MEGA 434.242 428.675 426.731
MRIGA 429.055 427.168 425.975

MIGA 430.863 427.759 426.189

Proposed GA 426.830 424.319 423.673

 Data

Comparison

Topology Series #1
5 10 15

Proposed GA - MEGA s+ s+ s+
Proposed GA - MRIGA + s+ +

Proposed GA - MIGA s+ s+ s+

2099

[10] S. Yang, "Memory-based immigrants for genetic algorithms in
dynamic environments," in Proceedings of the 2005 Conference on

Genetic and Evolutionary Computation, 2005, pp. 1115-1122.

[11] H. Cheng and S. Yang, "Genetic algorithms with immigrants schemes
for dynamic multicast problems in mobile ad hoc networks,"

Engineering Applications of Artificial Intelligence, vol. 23, pp.

806-819, 2010.
[12] S. Yang, "Genetic algorithms with memory- and elitism-based

immigrants in dynamic environments," Evolutionary Computation, vol.

16, pp. 385-416, 2008.
[13] C. W. Ahn and R. S. Ramakrishna, "A genetic algorithm for shortest

path routing problem and the sizing of populations," Evolutionary

Computation, IEEE Transactions on, vol. 6, pp. 566-579, 2002.
[14] M. Gen, R. Cheng, and D. Wang, "Genetic algorithms for solving

shortest path problems," in Evolutionary Computation, IEEE

International Conference on, 1997, pp. 401-406.
[15] M. Gen and L. Lin, "A new approach for shortest path routing problem

by random key-based GA," in Proceedings of the 2006 Conference on

Genetic and Evolutionary Computation, 2006, pp. 1411-1412.
[16] H. Cheng and S. Yang, "Genetic algorithms with elitism-based

immigrants for dynamic shortest path problem in mobile ad hoc

networks," in Evolutionary Computation, IEEE Congress on, 2009, pp.
3135-3140.

[17] H. Cheng and S. Yang, "Multi-population genetic algorithms with

immigrants scheme for dynamic shortest path routing problems in
mobile ad hoc networks," in Proceedings of the 2010 International

Conference on Applications of Evolutionary Computation-Volume Part

I, 2010, pp. 562-571.
[18] S. Lee, S. Soak, K. Kim, H. Park, and M. Jeon, "Statistical properties

analysis of real world tournament selection in genetic algorithms,"

Applied Intelligence, vol. 28, pp. 195-205, 2008.
[19] R. Poli and W. B. Langdon, "Schema theory for genetic programming

with one-point crossover and point mutation," Evolutionary

Computation, vol. 6, pp. 231-252, 1998.
[20] S. Corson and J. Macker, "Mobile Ad hoc Networking (MANET):

Routing Protocol Performance Issues and Evaluation Considerations,"

Network Working Group, 1999.

2100

