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Abstract—The Shortest Path (SP) problems are conventional 

combinatorial optimization problems. There are many deter-

ministic algorithms for solving the shortest path problems in 

static topologies. However, in dynamic topologies, these deter-

ministic algorithms are not efficient due to the necessity of re-

start. In this paper, an improved Genetic Algorithm (GA) with 

four local search operators for Dynamic Shortest Path (DSP) 

problems is proposed. The local search operators are inspired 

by Dijkstra’s Algorithm and carried out when the topology 

changes to generate local shortest path trees, which are used to 

promote the performance of the individuals in the population. 

The experimental results show that the proposed algorithm 

could obtain the solutions which adapt to new environments 

rapidly and produce high-quality solutions after environmental 

changes. 

I. INTRODUCTION 

The Shortest Path (SP) problems are traditional 
combinatorial optimization problems. There are several kinds 
of SP problems such as the Single-Source Shortest Path 
(SSSP) problems, the Multi-Source Shortest Path (MSSP) 
problems the Static Shortest Path (SSP) problems and the 
Dynamic Shortest Path (DSP) problems. Given a network 
topology with some nodes and some weighted edges, the SP 
problem aims to find a path between two nodes so that the 
sum of the cost of its edges is minimal. There are many 
deterministic algorithms for solving the SP problems, such as 
Dijkstra’s Algorithm [1] and Bellman-Ford Algorithm [2]. 
They work well in static topologies, namely the topologies 
are fixed. However, in dynamic topologies, these 
deterministic algorithms are not efficient due to the necessity 
of restart [3]. Therefore, for DSP problems, new solving 
methods are needed. Fortunately, Genetic Algorithms (GAs) 
perform well for solving Dynamic Optimization Problems 
(DOPs). 

A GA, which is based on the mechanisms of biological 
evolution, is a kind of stochastic algorithms for global 
optimization [4]. A GA mainly includes chromosome coding, 
initialization, evaluation, selection, crossover and mutation 
[5]. By the principle of “survival of the fittest”, the 
individuals could get close to optima by some generations of 
evolution [6]. Based on the basic GA, some new GAs for 
solving DOPs have been proposed. And typical GAs for 
DOPs are described as follows. GAs with elitism-based 
immigrants are proposed in [7]. The elitism-based 

immigrants are based on the elite in the previous generation, 
and therefore, the population is guided by these immigrants. 
Besides, a self-organizing random immigrants GA is 
proposed in [8], where the immigrants are randomly 
generated. And a hybrid immigrants scheme for GAs is 
proposed in [9]. The memory-based immigrants for GAs are 
adopted in [10] and [11], where the suitable immigrants 
stored in the memory could be used for the current population 
when the environment changes. Both the memory-based and 
the elitism-based immigrants are adopted for the GAs in [12]. 

For DSP problems, an improved genetic algorithm for 
DSP problems is proposed in this paper, which combines a 
GA in [3] with four local search operators inspired by 
Dijkstra’s Algorithm. Dijkstra’s Algorithm is a simple and 
efficient deterministic algorithm for SP problems, but it is not 
suitable for dynamic environments because it has to rerun 
when the environment changes. GAs perform well in 
dynamic environments, but the solutions they get are not 
optimal sometimes. Therefore, to enhance the search ability 
of GAs, four local search operators inspired by Dijkstra’s 
Algorithm are designed to search around some nodes (the 
source node, the destination node and the nodes affected by 
the environmental changes) when the initial population is 
generated or the topology changes. By the local search 
operators, local shortest path trees are generated and used to 
promote the performance of the individuals in the population 
in the evolution stages. So that the proposed algorithm could 
get solutions which adapt to new environments rapidly and 
produce high-quality solutions after environmental changes. 

The rest of this paper is organized as follows. The 
description of the DSP problem and the related work are 
introduced in section II. In section III, the proposed algorithm 
is presented. The experimental results and the analyses are 
given in section IV. Section V concludes this paper and 
introduces the future work. 

II. RELATED WORK 

A. The DSP Problem 

The DSP model we consider in this paper is described as 
follows. Given a real-time network topology G(V, E, t) where 
V stands for the nodes and E stands for the weighted edges at 
time t. The DSP problem aims to find a path from a source 
node s to a destination node d so that the sum of the cost of 
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its edges is minimized at time t. Here, the simulated dynamic 
environment is the same as that in [3], where some nodes are 
sleeping and wakening over time. The formalized description 
of the DSP problem is given as follows. 

Here are some symbols we use for the problem: 

G(V, E, t) the topology graph at time t; 

N the total number of the nodes in G; 

V the nodes in G, namely {v1, v2, …, vN}; 

E the weighted edges in G, such as (vi, vj); 

s the source node; 

d the destination node; 

cost(vi, vj) the cost on the edge (vi, vj); 

P(s, d, t) the path from s to d at time t; 

C(P) the total cost of the path P. 
The purpose of the DSP problem is to find a path P(s, d, t) 

whose cost C(P) is minimized at time t, as is shown in (1). 

𝐶(𝑃) = min
𝑃∈𝐺

{ ∑ 𝑐𝑜𝑠𝑡(𝑣𝑖 , 𝑣𝑗)

(𝑣𝑖,𝑣𝑗)∈𝑃(𝑠,𝑑,𝑡)

}    (1) 

B. The GAs for the SSP Problems 

There are some GAs solving the SSP problems. A GA for 
the SP problem is proposed in [13], in which a path is 
represented by a variable-length chromosome and a repair 
method is proposed to eliminate the loops in a path. And the 
simulated experiments show that the GA has lower failure 
ratio and higher rate of convergence than other GAs. The 
feasibility of using GAs to solve SP problems is investigated 
in [14], and a priority-based approach is proposed to encode 
all the potential paths. The priority-based encoding method is 
also adopted in [15], where the priority is represented by 
random keys and arithmetical crossover, swap mutation and 
immigration are adopted. 

C. The GAs for the DSP Problems 

The DSP problems are more complex than the SSP 
problems due to the dynamics of environments. Therefore, 
the algorithms for the SSP problems are not suitable for 
dynamic environments generally. An elitism-based GA for 
the DSP problems is implemented in [16]. Firstly, the 
specialized GA for SP is designed, and then in each 
generation, a certain number of elitism-based immigrants are 
produced and added to the population to maintain the 
diversity. The immigrants could provide the guidance to 
search good solutions. The GAs with immigrants and 
memory schemes are investigated in [3]. Once the topology 
changes, the new immigrants and the information in the 
memory will help the population adapt to the new 
environment. Multi-population GAs with immigrants 
schemes are proposed in [17]. The search space is divided 
into several parts and several small populations are needed 
for the partial spaces. In [17], after a certain number of 
generations, the parent population is divided into three small 
populations, one of them is designed to explore, and the 
others aim to exploit. Then all the small populations will be 
merged when the topology changes. 

D. The Specialized GA for the SP Problem 

Our algorithm is based on the specialized GA for the SP 
problem, which is proposed in [13] and adopted in [3]. 
Therefore, the procedures of the GA, including chromosome 
representation, population initialization, fitness function, 
selection, crossover, mutation and the repair method are 
described as follows. 

1) Chromosome representation 
A chromosome represents a solution, which is a path 

from s to d in the DSP problem. The chromosome for an 
individual in this paper is represented by a string with 
variable length [13]. Each locus in the string stores a positive 
integer which represents a node ID. The first locus and the 
last locus represent s and d, respectively. The other loci 
represent the intermediate nodes in the path from s to d. For 
example, the chromosome (s, vi, vj, …, d) represents a path 
P(s, d, t) through vi and vj. As a result, the length of a 
chromosome is not greater than N, and the continuous two 
nodes in a chromosome are connected in the topology.  

2) Population initialization 
The initialization of the population is the first step in GA. 

There are mainly two kinds of initialization, namely random 
initialization and heuristic initialization [13]. The random 
initialization is adopted in this paper to increase the diversity 
of the initial population. The details of the process to 
initialize a chromosome are described as follows. Firstly, s is 
stored in the first locus of the chromosome. Then, one of the 
adjacent nodes of s is randomly selected (say vi) and stored in 
the second locus of the chromosome. And then, one of the 
adjacent nodes of vi is randomly selected. These processes are 
repeated until d is selected. Notice that: (i) Each node will be 
selected once at most to avoid loops; (ii) If there is no 
alternative adjacent node to be selected for a chromosome, 
the chromosome will be reinitialized. 

3) Fitness function 
The fitness function is used to evaluate the performance 

of the individuals. For the DSP problem, a path with the less 
total cost has the higher fitness. Hence, the fitness for the 
individual ind, which represents the path P(s, d, t), is shown 
in (2). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖𝑛𝑑) = [ ∑ 𝑐𝑜𝑠𝑡(𝑣𝑖 , 𝑣𝑗)

(𝑣𝑖,𝑣𝑗)∈𝑃(𝑠,𝑑,𝑡)

]

−1

   (2) 

4) Selection 
By the selection, the individuals with high fitness are 

reserved while those with low fitness may be eliminated. For 
the sake of simplicity and high-efficiency, the pairwise 
tournament selection without replacement is adopted [18], 
namely two individuals are picked out and the one with the 
higher fitness will be selected, while the same individual 
should not be picked out twice. 

5) Crossover 
Crossover, which is one of the core operators in the GA, 

is a procedure for genetic recombination. The crossover in 
this paper is a variant of one-point crossover [19]. The details 
for the crossover are described as follows. Two individuals 
for crossover are randomly picked, say ind1 and ind2, which 
represent the paths P1(s, d, t) and P2(s, d, t), respectively. 
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Notice that P1 and P2 must have at least one common 
intermediate node (denoted by vmid, if there are two or more 
common intermediate nodes, one of them is randomly 
selected). Then ind1 can be viewed as two sub-paths P1(s, vmid, 
t) + P1(vmid, d, t).  Similarly, ind2 can be viewed as two 
sub-paths P2(s, vmid, t) + P2(vmid, d, t). Through the crossover, 
two individuals (denoted by ind3 and ind4) are generated. The 
individual ind3 represents the path P1(s, vmid, t) + P2(vmid, d, t), 
and ind4 represents the path P2(s, vmid, t) + P1(vmid, d, t). 

6) Mutation 
The diversity of the population could be increased by 

mutation [4]. The mutation operator in this paper is described 
below. For an individual (denoted by ind) which represents 
the path P(s, d, t) to be mutated, a locus (say vr) in the 
chromosome is randomly selected. Then ind can be viewed as 
two sub-paths P(s, vr, t) + P(vr, d, t). The mutation operator 
for ind produces an individual indm, which represents the path 
P(s, vr, t) + Prand(vr, d, t). Here, Prand(vr, d, t) is a path from vr 
to d which is randomly generated using the same method in 
the population initialization procedure. 

7) Repair method 
The crossover operator may produce the paths with loops, 

while for the initialization and the mutation above, there are 
no paths with loops due to the avoidance of generating loops. 
In this paper, the repair method proposed in [13] is adopted to 
eliminate loops. Assume that the individual ind, which 
represents the path from s to d: P(s, vc, t) + Pc(vc, vc, t) + P(vc, 
d, t). The sub-path Pc(vc, vc, t) is a loop. The repair method is 
designed to delete the sub-path Pc(vc, vc, t). That is, the 
repaired individual represents the path P(s, vc, t) + P(vc, d, t). 

III. THE PROPOSED ALGORITHM 

In this section, we mainly introduce the improvement 
based on the GA described in section II-D. Because GAs 
adapt to dynamic environments rapidly and Dijkstra’s 
Algorithm can find the deterministic SP efficiently, an 
improved GA is proposed by combining the advantages of 
both GAs and Dijkstra’s Algorithm. The proposed algorithm 
adopts four local search operators inspired by Dijkstra’s 
Algorithm to perform local searches for some nodes when the 
topology changes.  These nodes are the source node, the 
destination node and the nodes affected by the environmental 
changes. By these local searches, some shortest path trees are 
obtained. Then the obtained shortest path trees are used to 
enhance the performance of the population in the evolution 
process. The details for the proposed GA are described as 
follows. 

A. Local Search Operators for s and d 

It is obviously known that the shortest path from s to d 
contains s and d. Hence, the local searches for s and d could 
enhance the individuals well. The local search means a 
procedure inspired by Dijkstra’s Algorithm, namely the 
procedure will be terminated after searching for a certain 
number of nodes by the basic steps of Dijkstra’s Algorithm. 

When the algorithm starts or the environment changes, s 
is regarded as the source node and a certain number (denoted 
by nums) of nodes are searched using the local search 
procedure. Then a local shortest path tree (denoted by 
SPTrees), of which s is the root, is obtained. And the path 

from s to a node (denoted by vi) in the SPTrees is the shortest 
path from s to vi. Similarly, d is regarded as the source node 
and numd nodes are searched using the local search procedure. 
A local shortest path tree (denoted by SPTreed) is obtained.  

In the evolution process, for each individual, if a non-root 
node (denoted by v1, if there are two or more nodes, one is 
randomly selected, the same below) in the SPTrees appears in 
the individual (denoted by ind), the sub-path from s to v1 in 
ind is replaced by the corresponding sub-path in the SPTrees. 
Similarly, if a non-root node (denoted by v2) in the SPTreed 
appears in ind, the sub-path from v2 to d in ind is replaced by 
the corresponding sub-path in the SPTreed. And a new 
individual (say indnew) is generated after the above processes, 
and an example is shown in Fig. 1. If indnew contains loops, 
the repair method in section II-D is performed. And the 
generated individual indnew is added into the set of improved 
individuals (denoted by ImpIndSet) to be used.  

B. Local Search Operator for New Wake-up Nodes 

For the dynamic environments we consider, if some 
sleeping nodes wake up, the topology changes. If a node 
(denoted by vw) wakes up, vw is regarded as the source node 
for the local search and a certain number (denoted by 
numwaking) of nodes are searched. And a local shortest path 
tree (denoted by SPTreewaking), of which vw is the root, is 
produced.  

In the evolution process, for each individual, if two nodes 
(denoted by v1 and v2, if there are more than two nodes, two 
among them are randomly selected) in the SPTreewaking 

appear in the individual (denoted by ind), the sub-path from 

 
Fig. 1. Improve an individual with SPTrees and SPTreed 

 
Fig. 2. Improve an individual with SPTreewaking 
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v1 to v2 in ind is replaced by the corresponding sub-path in 
the SPTreewaking, and a new individual (say indnew) is 
generated, and an example is shown in Fig. 2. As is 
mentioned above, if indnew contains loops, the repair method 
in section II-D is performed. And indnew is added into 
ImpIndSet.  

C. Local Search Operator for Sleeping Nodes 

If some active nodes sleep, the topology changes. Some 
individuals in the population may become infeasible 
solutions. In this case, a reconstruction method is proposed in 
this paper. For each individual, if a node (denoted by v1) 
becomes sleeping, a node (denoted by v2) in the path from s 
to v1 in the individual (denoted by ind) is randomly selected. 
Then v2 is regarded as the source node for the local search, 
and a certain number (say numsleeping) of nodes are searched 
using the local search procedure in section III-A. And a local 
shortest path (denoted by SPTreesleeping) whose root is v2, are 
produced. Then, for each node in the sub-path from v1 to d in 
ind, if there exists a node (say v3) in the SPTreesleeping, the 
sub-path from v2 to v3 in ind is replaced by that in the 
SPTreesleeping, otherwise the sub-path from v2 to v3 in ind is 
replaced by a randomly generated sub-path. And a new 
individual (denoted by indnew) is generated, and an example is 
shown in Fig. 3. If indnew contains loops, it will be repaired as 
is mentioned in section II-D. Then ind is replaced by the new 
generated individual indnew directly since ind is infeasible for 
the current environment. 

D. The Outline of the Proposed Algorithm 

In order to conveniently control the parameters, the above 
numbers nums, numd, numwaking and numsleeping for local 
searches are set to the same value. In addition to the 
procedures mentioned above, the scheme of elitism-based 
immigrants in [3] is adopted in this paper to enhance the 
performance. The algorithm framework is shown in 
Algorithm 1. 

In Algorithm 1, the shortest path trees SPTrees, SPTreed, 
SPTreewaking and SPTreesleeping are generated using the local 
search operators mentioned above. The steps from 5 to 21 
mean the processes for environmental changes. Step 5 is 
called for s and d. Step 7 is called for the new wake-up nodes. 
Steps 10-20, which are the reconstruction method described 
in section III-C, are called for the new sleeping nodes. The 
sign popsize means the population size and Path(vj, vk, 
container) means the sub-path from vj to vk in container, 

where container stands for SPTrees, SPTreed, SPTreewaking, 
SPTreesleeping or an individual. The set of improved 
individuals ImpIndSet is cleared in step 23. The SPTrees and 
SPTreed are used to improve the individuals in the population 
(steps 24-33), and the improved individuals are added into 
ImpIndSet. And the similar processes are carried out using 
SPTreewaking (steps 35-40). The basic operators for a GA are 
called (steps 42-46), and the elitism-based immigrants 
operation is performed (step 43). Steps 47 and 48 aim to 
remove the redundant individuals and add the improved 
individuals from ImpIndSet into the population. The details 
for steps 47 and 48 are described as follows.  

Algorithm 1. The Improved Genetic Algorithm for the DSP Problem 

1: Initialize the population; 

2: Generate SPTrees and SPTreed; 
3: repeat 

4: if the topology changes then 

5: Generate SPTrees and SPTreed; 
6: if the number of new wake-up nodes ≠ 0 then 

7: Generate SPTreewaking; 

8: end if 

9: if the number of new sleeping nodes ≠ 0 then 

10: for i ← 1 to popsize do 

11: if individual[i] contains any sleeping node then 
12: vj ← a node randomly picked before any sleeping node 

in individual[i]; 

13: Generate SPTreesleeping whose root is vj; 
14: if SPTreesleeping contains a node vk after all sleeping 

nodes in individual[i] then 

15: Replace the Path(vj, vk, individual[i]) by Path(vj, vk, 
SPTreesleeping); 

16: else 

17: Replace the Path(vj, vk, individual[i]) by a random-
ly generated sub-path from vj to vk; 

18: end if 

19: end if 

20: end for 

21: end if 
22: end if 
23: Clear ImpIndSet; 

24: for i ← 1 to popsize do 

25: if individual[i] contains a non-root node vj in SPTrees then 
26: indnew ←Path(s, vj, SPTrees) + Path(vj, d, individual[i]); 

27: Add indnew into ImpIndSet; 

28: end if 

29: if individual[i] contains a non-root node vk in SPTreed then 

30: indnew ←Path(s, vk, individual[i]) + Path(vk, d, SPTreed); 

31: Add indnew into ImpIndSet; 
32: end if 

33: end for 

34: if the number of new wake-up nodes ≠ 0 then 

35: for i ← 1 to popsize do 

36: if individual[i] contains two nodes vj and vk in SPTreewaking 

then 
37: indnew ← Path(s, vj, individual[i]) + Path(vj, vk, SPTreewak-

ing) + Path(vk, d, individual[i]); 

38: Add indnew into ImpIndSet; 
39: end if 

40: end for 

41: end if 
42: Evaluate the population; 

43: Elitism-based immigrants operation; 
44: Selection; 

45: Crossover; 

46: Mutation; 
47: Remove the redundant individuals in the population; 

48: Add the individuals from ImpIndSet into the population; 

49: until the termination condition is met 
 

In favor of adding the improved individuals to the 
population and maintaining the diversity of the population, a 

 
Fig. 3. Reconstruct an individual containing a sleeping node 
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strategy of removing redundancies is adopted. That is, the 
frequency occurrence for each individual is no more than a 
certain number, which is set to 1 in this paper, namely each 
individual appears once at most. If there are redundant 
individuals, the repetitive individuals are eliminated. If nr 
redundant individuals in the population are removed, the 
removed individuals will be replaced by nr improved 
individuals which are stored in ImpIndSet. In case that the 
total number of individuals in ImpIndSet is less than nr, a 
corresponding number of individuals, which are randomly 
generated, are added into the population to fill the gap. 
Notice that the individuals in ImpIndSet are just suitable for 
the current population and should be regenerated in the next 
generation, as is shown in step 23. 

IV. EXPERIMENTS 

In the experiments, the proposed GA for the DSP 
problems is implemented. The simulation environments 
proposed in [3] are adopted and the dataset provided in [3] is 
used for the test. The algorithms with good performance in [3] 
are picked for comparisons, where the algorithms EIGA, 
RIGA and HIGA perform well in the acyclic dynamic 
environments and the algorithms MEGA, MRIGA and 
MIGA perform well in the cyclic dynamic environments. 
Therefore, the proposed GA is compared with above GAs in 
the acyclic dynamic environments and the cyclic dynamic 
environments, respectively. 

A. The Simulation of Dynamic Environments 

In this paper, we investigate the network communication 
problem in the mobile ad hoc network (MANET) [20]. A 
dynamic simulation environment model for MANET is 
designed in [3], and the same model is adopted in this paper, 
which is described as follows. Firstly, a square region with 
the area of 200 × 200 is specified. Then 100 nodes in the 
region are randomly generated. If the Euclidean distance 
between two nodes is not greater than 50, an edge is added to 
connect them and the cost of this edge is set with a 
corresponding value. Finally, the topology should be checked 
to ensure that the topology is connected. If it is not connected, 
the topology should be regenerated. The nodes in the initial 
topology are all waking. After a certain number (denoted by 
R) of generations, a certain number (denoted by M) of nodes 
sleep or wake up according to their current status. 

The data set provided by [3] is adopted in this paper. The 
data set includes 4 pieces of data, namely topology series #1, 
#2, #3 and #4. Topology series #2, #3 and #4 represent the 
acyclic dynamic environments where M equals to 2, 3 and 4 
respectively, while topology series #1 represent cyclic 
dynamic environments. In topology series #1, M is set to 2, 
and topology 1 is the same as topology 21, and the subseries 
from topology 1 to 21 are repeated five times, and therefore, 
the cyclic dynamic environments with 101 topologies are 
created. Besides, for each data pieces, R is set to 5, 10 and 15, 
respectively. For the sake of simplicity and without loss of 
generality, the source node s is set to 1, and the destination 
node d is set to 100. 

In order to evaluate the performance of the GAs, the 
offline performance function is adopted. For each run of an 
algorithm, the best individual in the population is picked and 

the total path cost of this individual is calculated. The overall 
offline performance of a GA is shown as (3) [3]. 

�̅�𝑂𝐹𝐹 =
1

𝐺𝑚𝑎𝑥

∑ (
1

𝑁𝑟𝑢𝑛

∑ 𝐹𝑂𝐹𝐹𝑖𝑗

𝑁𝑟𝑢𝑛

𝑗=1

)

𝐺𝑚𝑎𝑥

𝑖=1

      (3) 

In the function, Gmax represents the total number of 
evolutionary generations for a run; Nrun is the total number of 
runs; 𝐹𝑂𝐹𝐹𝑖𝑗

 is the best fitness in the ith generation of the jth 

run. �̅�𝑂𝐹𝐹  is the offline performance. 

B. The Experimental Results and Analyses in the Acyclic 

Dynamic Environments 

The topology series #2, #3 and #4 are adopted to evaluate 
the performance of the proposed GA in the acyclic dynamic 
environments. The GAs (EIGA, RIGA and HIGA) with good 
performance in the acyclic dynamic environments in [3] are 
picked out to compare with the proposed GA, and the 
parameters of the picked GAs are assigned with the same 
values as mentioned in [3]. For the sake of fairness, the 
parameters of the proposed GA are assigned with the same 
values, namely the population size is 50; the mutation 
probability is 0.1; the parameters for the elitism-based 
immigrants are the same as those in the EIGA (the percentage 
of the elitism-based immigrants in the population is 0.2 and 
the mutation probability for the elite is set to 0.8). Besides, 
nums, numd, numwaking and numsleeping mentioned in section III 
are all set to 10. In the acyclic dynamic environments, we set 
M to 2, 3 and 4 and set R to 5, 10 and 15, and therefore, nine 
simulation environments are created for each combination. 
Because there are 21 topologies for each value of R, the 
maximum evolutionary generations for the GAs are 105, 210 
and 315, respectively. And the number of runs for the GAs is 
set to 10. 

The first 100 generations of the GAs with R=5 over 
topology series #2 and #4 are picked to present the quality of 
the solutions in Fig. 4(a) and (b), respectively. From Fig. 4, it 
is obviously known that the proposed GA achieves the lowest 
path cost after some generations. The reason is that after 
some generations, the proposed GA picks out some 
individuals in ImpIndSet to replace the redundant individuals 
in the population while the other GAs do not. Further, it is 
known that the proposed GA adapts to the environmental 
changes rapidly, especially in the generations from 70 to 80 
in Fig. 4(a) and from 40 to 50 in Fig. 4(b). 

The average optimal path costs over all the generations 
for each GA in the acyclic dynamic environments are shown 
in Table I. From Table I, it can be observed that for the same 
data and the same GA, the average optimal path cost is the 
maximum in the case with R of 5, while the average optimal 
path cost is the minimum with R of 15. This is because the 
value of R represents the generation interval between two 
environmental changes. Therefore, if the generation interval 
gets longer, the total evolution times will be longer, and the 
lower average optimal path cost will be obtained. From Table 
I, it is known that the proposed GA could get the minimal 
average optimal path cost, which is shown in bold, compared 
with the other GAs in all the nine simulation environments. 

In order to compare the offline performance of the GAs, 
we adopt the two-tailed t-test with a 0.05 level of significance. 
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And the results are shown in Table II. The sign “s+” means 
that the GA in the left of “-” is significantly better than the 
right GA. It is concluded that the proposed GA performs 
significantly better than all the other GAs in all the acyclic 
dynamic environments under a 0.05 level of significance. 

C. The Experimental Results and Analyses in the Cyclic Dy-

namic Environments 

Because the GAs with memory schemes proposed in [3] 
are excellent in the cyclic dynamic environments, the 
proposed GA is compared with the three GAs (MEGA, 
MRIGA and MIGA) with memory schemes in the cyclic 
dynamic environments. In the same way, the parameters of 
the GAs are assigned with the same values specified in [3]. 
And the parameters of the proposed GA are the same as those 
mentioned in section IV-B. The topology series #1 are 
adopted in the cyclic dynamic environments, and M is set to 2. 
The performances of the GAs are compared in the three 
environments, in which R is set to 5, 10 and 15 respectively. 
The topology series #1 contain 101 topologies. Therefore, the 
maximum generations for the GAs are 505, 1010 and 1515 
with different values of R, respectively. 

 

We sample the first 100 generations and the generations 
from 800 to 900 of the GAs with R=10 over topology series 
#1 to present the results in Fig. 5(a) and (b), respectively. 

From Fig. 5(a), the results show that the proposed GA gets 
the minimum path cost after some generations. However, the 
results in Fig. 5(b) show that the quality of the solutions of 
the proposed GA is worse than those of other GAs sometimes 
(around generation 810). The reason is that the information in 
the memory of the memory-based GAs is much too useful 
due to the cyclically environmental changes. 

The average optimal path costs over all the generations 
for all GAs in the cyclic dynamic environments are shown in 
Table III. From Table III, compared with the other GAs, the 
proposed GA could obtain the minimal average optimal path 
cost which is shown in bold in all the three dynamic 
environments. However, the differences between the 
proposed GA’s average optimal path cost and the 
memory-based GAs’ in the cyclic environments are not so 
obvious as those in the cyclic environments.  

Similarly, we adopt two-tailed t-test with a 0.05 level of 
significance to compare the offline performances of the GAs, 
as shown in Table IV. The signs “+” and “s+” mean that the 
GA in the left of “-” is better and significantly better than the 
right GA, respectively. From Table IV, it is known that the 
proposed GA is significantly better than MEGA and MIGA 
in all the three environments and significantly better than 
MRIGA with R of 10. However, the proposed GA is better 
than but not significantly better than MRIGA when R is set to 

  
(a) (b) 

Fig. 4. Comparison results of the quality of the solutions for GAs in acyclic dynamic environments over (a) topology series #2 and (b) topology series #4 
 

TABLE I 

THE AVERAGE OPTIMAL PATH COSTS OVER ALL THE GENERATIONS IN ACYCLIC DYNAMIC ENVIRONMENTS 

Data 
GAs 

Topology Series #2 Topology Series #3 Topology Series #4 

5 10 15 5 10 15 5 10 15 

EIGA 448.152 436.535 436.935 460.901 451.386 442.123 474.629 456.384 452.726 

RIGA 442.614 435.407 436.278 458.702 447.658 444.445 465.824 456.996 449.575 

HIGA 443.817 436.743 435.141 456.613 445.810 444.367 464.731 455.780 452.100 

Proposed GA 435.104 427.242 425.213 440.581 433.868 430.615 448.477 440.919 437.174 
 

 

TABLE II 

T-TEST RESULTS OF COMPARING GAS IN ACYCLIC DYNAMIC ENVIRONMENTS 

 Data 

Comparison 

Topology Series #2 Topology Series #3 Topology Series #4 
5 10 15 5 10 15 5 10 15 

Proposed GA - EIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ 
Proposed GA - RIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ 

Proposed GA - HIGA s+ s+ s+ s+ s+ s+ s+ s+ s+ 
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5 and 15. From the results, it is known that the 
memory-based GAs perform well in the cyclic dynamic 
environments. If the environments change cyclically, the 
memory-based GAs could get the highly fit solutions which 
have been stored in the memory. So that the proposed GA is 
not significantly better than the memory-based GAs 
sometimes. 

V. CONCLUSIONS AND FUTURE WORK 

The shortest path problems are conventional 
combinatorial optimization problems. In this paper, an 
improved GA with four local search operators inspired by 
Dijkstra’s Algorithm is proposed for DSP problems. When 
the population initializes or the environment changes, the 
local search operators are carried out to perform local 
searches around some nodes (namely, the source node, 
destination node and the nodes affected by the environmental 
change), and local shortest path trees are generated and stored. 
Then local shortest path trees are used to enhance the quality 
of the individuals when the population evolves, so that the 
proposed GA could get solutions with higher fitness. In order 
to verify the performance of the proposed GA, we have 
compared the proposed GA with some other well-behaved 
GAs in both acyclic and cyclic dynamic environments. The 
experimental results show that the proposed algorithm could 
get solutions which adapt to new environments rapidly and 
produce high-quality solutions after environmental changes. 

In the future, we will investigate the DSP problems in the 
large-scale topologies, and take some missing factors (such 
as the situation where some nodes move) into consideration. 

And we will adopt the more ideas from the deterministic 
algorithms to enhance the performance of GAs. Besides, 
some dynamic path optimization problems in the real-world 
applications (such as the car navigation problems) are the 
multi-objective ones in some situations. Therefore, we will 
do some work on the multi-objective path optimization 
problems under dynamic environment.  
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