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Abstract—Portfolio optimization has as its objective to find op-
timal portfolios, which apportion capital between their constituent
assets such that the portfolio’s risk adjusted return is maximized.
Portfolio optimization becomes more complex as constraints are
imposed, multiple sources of return are included, and alternative
measures of risk are used. Meta-heuristic portfolio optimization
can be used as an alternative to deterministic approaches under
increased complexity conditions. This paper uses a particle
swarm optimization (PSO) algorithm to optimize a diversified
portfolio of carry trades. In a carry trade, investors profit by
borrowing low interest rate currencies and lending high interest
rate currencies, thereby generating return through the interest
rate differential. However, carry trades are risky because of their
exposure to foreign exchange losses. Previous studies showed that
diversification does significantly mitigate this risk. This paper
goes one step further and shows that meta-heuristic portfolio
optimization can further improve the risk adjusted returns of
diversified carry trade portfolios.

I. INTRODUCTION

Harry Markowitz famously established the basis of port-
folio optimization in his seminal article, Portfolio Selection,
in 1952 [1]. Subsequently, portfolio optimization has become
an activity central to portfolio management. Whilst Markowitz’
concept remains in tact, state-of-the-art techniques are required
to solve more realistic versions of the classical portfolio
optimization problem. These re-envisaged problems incorpo-
rate real world constraints such as taxation, transaction costs,
market impacts, and liquidity risk. Various computational
intelligence paradigms have been used to solve realistic port-
folio optimization problems for different asset classes where
deterministic methods struggle [2]. Relatively few studies have
used swarm intelligence algorithms [3] and those which have,
either used the particle swarm optimization (PSO) algorithm
[4][5][6][7] or the pareto ant colony optimization algorithm
(ACO) [8]. These two swarm intelligence algorithms have been
applied to portfolios consisting of shares; however, neither
have been applied to portfolios consisting of currencies such
as the diversified carry trade portfolio.

Currency carry trades are speculative bets made by in-
vestors who borrow a funding currency at a relatively low
interest rate and lend an investment currency at a relatively
high interest rate [9]. The difference in interest rates between
the funding and the investment currency is called the interest
rate differential. Carry trades work on the assumption that
payments generated by the investment currency will exceed
the costs of the funding currency. However, carry trades are

exposed to foreign exchange gains or losses between the two
currencies. According to the uncovered interest rate parity con-
dition (UIP), interest rate differentials correspond to expected
changes in exchange rates. Therefore, carry trades should
return a zero profit because the returns generated through the
interest rate differential should be offset by foreign exchange
losses. However, evidence of long term carry trade profitability
indicates the failure of UIP. This puzzle has been the topic of
considerable research [9], [10]. Nevertheless, because foreign
exchange markets are extremely volatile, carry trades are risky
and have been described as “picking up pennies in front of
an oncoming truck”. Techniques aimed at mitigating this risk
include hedging and diversification [11]. Simple diversification
strategies have improved the Sharpe ratio of currency carry
trade portfolios by up to 50% [11].

The remainder of this paper describes how the PSO al-
gorithm can be used to optimize diversified carry trade port-
folios. Section II defines the portfolio optimization problem
in the context of a diversified carry trade portfolio. Section
III specifies a set of benchmark portfolios for comparative
purposes. Section IV details the approach taken to portfolio
optimization and constraint satisfaction. Section V describes
the experiments conducted in this study. Section VI presents
the results obtained through those experiments and lastly,
Section VII concludes and suggests future research topics.

II. PORTFOLIO OPTIMIZATION

A carry trade portfolio, P , consists of a set of n carry
trades, C. Each carry trade, cj , borrows a low interest rate
currency called the funding currency and lends a high interest
rate currency called an investment currency. A weight, wj ,
is associated with each carry trade, cj , and represents the
percentage of the portfolio’s capital which is allocated to that
carry trade. P is represented as a set of ordered pairs,

P = {(cj , wj)},∀cj ∈ C

The optimality of P with respect to an objective function,
f(P ), depends on the weights assigned to each carry trade.
Portfolio optimization is a process which attempts to find an
optimal set of weights such that f(P ) is either maximized or
minimized. That is,

optimize f(P ) subject to a set of constraints, Z

where f(P ) : <n → < and f(P ) is the Sharpe ratio [4].
The Sharpe ratio was introduced in 1966 by William Sharpe
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[12] and is a reward to variability ratio. The Sharpe ratio
is commonly used in industry as a measure of risk adjusted
returns, and is computed as

f(P ) =
E[RP ]−Rrf

σ(E[RP ])
(1)

where E[RP ] is a forecast of expected returns for portfolio P ,
σ(E[RP ]) is the standard deviation of expected returns, and
Rrf is the return generated by a risk free portfolio. In this
research study the risk free rate was equivalent to the interest
rate of the funding currency. This was chosen because if the
portfolio’s capital were fully invested in the funding currency,
there would be no foreign exchange risk.

The expected return of a carry trade portfolio is the
weighted sum of each carry trade’s expected return, E[Rcj ],
minus a penalty function, g(P ), representing transaction costs,
that is

E[RP ] =

 n∑
j=1

wj .E[Rcj ]

− g(P ) (2)

where g(P ) is a function of the absolute weight change of
portfolio, P , from time step t to t + 1. Weight changes are
realized through trades which carry transaction costs. The
penalty, g(P ), assumes that larger weight changes require
larger trades which carry higher transaction costs, that is

g(P ) =

n∑
j=1

| wj(t+ 1)− wj(t) | θ, ∀(wj , cj) ∈ P, (3)

where θ is a parameter used to scale transaction costs higher
or lower. A high value for θ causes portfolios to be more
penalized for weight changes. Expected returns, E[Rcj ], are
made up from the interest accumulated through the interest
rate differential and the expected foreign exchange returns,
E[∆FX], computed as

E[Rcj ] =

(
o∑

t=1

(icj − iF )t

)
− E[∆FX] (4)

where icj is the interest rate of the investment currency for
carry trade cj , iF is the interest rate of the funding currency,
and o is the optimization frequency in days. If central bank
interest rates are used in the carry trades and not floating
rates such as LIBOR (The London Interbank Offered Rate)
then the returns generated through the interest rate differential
can be forecast reliably. This is because central banks do not
change interest rates often. However, foreign exchange rates
change frequently and expected foreign exchange gains or
losses need to be forecast. In this research study, three methods
of forecasting E[∆FX] were investigated:

1) Normally distributed - expected returns are nor-
mally distributed around the mean of historical re-
turns, that is

E[∆FX] ∈ N (µ, σ2) (5)

where µ is the mean historical return and σ is the
standard deviation of historical returns.

2) Brownian motion - expected returns follow a Wiener
process, Wt, with a mean expected return of zero

[13]. Foreign exchange prices tend to follow a ran-
dom walk [14]; a Wiener process is a continuous
stochastic process representing a scaled random walk.
That is,

E[∆FX] =
n∑

t=1

(Wt) (6)

3) Geometric Brownian motion (GBM) - expected
returns follow a Weiner process subject to long term
market drift and daily variances. That is,

E[∆FX] =
n∏

t=1

((
1 + µ

1

n

)
+

(
σ ∗
√

1

n

)
∗Wt

)
(7)

where µ is the expected market drift and σ is the
expected return variance.

In addition to the penalty function a set, Z, of three
constraints is enforced on each portfolio. Firstly, each weight
should be positive. Secondly, 100% of the portfolio’s capital
should be allocated between the carry trades. Thirdly, a lower
bound, wmin

j , and an upper bound constraint, wmax
j , is placed

on each individual carry trade weight. The constraints are
defined as

n∑
j=1

wj = 1.0, ∀(wj , cj) ∈ P, (8)

wj ∈ [wmin
j , wmax

j ], ∀j = 1, 2, ..., n (9)

where 0 ≤ wmin
j < wmax

j ≤ 1.0.

Further realistic constraints including cardinality con-
straints (restricting the number of assets in the portfolio that
can have a zero weight), transaction costs, and investor be-
haviours such as loss aversion have been researched in previous
studies [15][16][17][18][19].

III. BENCHMARK PORTFOLIOS

This section defines the benchmark portfolios against
which the optimized portfolio, PPSO, is compared. Five
weighting techniques, two uninformed and three informed,
were selected as benchmarks. An uninformed weighting is
defined as a technique which does not utilize the model of
expected returns and an informed technique as one which does.

A. Uninformed Weighting Techniques

An equally weighted and a randomly weighted portfolio
were used as uninformed benchmarks. The equally weighted
portfolio, PE , assigned an equal weight to each carry trade,
that is

wj =
1

n
, ∀(wj , cj) ∈ PE (10)

The randomly weighted portfolio, Pr, assigned a random
weight to each carry trade, that is

wj ∼ U(0, 1), ∀(wj , cj) ∈ Pr (11)
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B. Informed Weighting Techniques

For informed weighting techniques, the carry trades in
portfolio, P , must be ordered in descending order of expected
return, E[Rcj ]. A scale-weighted and two return-weighted
carry trade portfolios were used as informed benchmarks.
The scale-weighted portfolio, PS , assigned an exponentially
decaying weight to each carry trade recursively, that is

wj = 0.5j , ∀(wj , cj) ∈ PS (12)

The first return-weighted portfolio, PR, weighted each carry
trade proportionately to its expected return, that is

wj =
1

E[Rcj ]
, ∀(wj , cj) ∈ PR (13)

The second return-weighted portfolio, PRS
, weighted each

carry trade proportionately to its scaled expected return, that
is

wj = (2 + E[Rcj ])n−j , ∀(wj , cj) ∈ PRS
(14)

For all weighting techniques the portfolio was repaired using
a set of constraint satisfaction rules described in Section IV.
Also, after the weighting technique was applied, the transaction
cost penalty, g(P ), was calculated and applied.

IV. OPTIMIZED PORTFOLIO

This section describes how an optimal set of weights for
a carry trade portfolio, PPSO, can be found using a particle
swarm optimization (PSO) algorithm. The section begins by
describing the basic PSO and the adaptations applied to it in
this study. Furthermore, this section provides a pseudo-code
representation of the adapted PSO algorithm and elaborates
on the constraint handling approaches used in this study.

A. Basic PSO for portfolio optimization

A PSO is a population based search algorithm originally
inspired by the social behaviour of flocking birds [20]. In a
PSO, a swarm, S, of m particles is randomly initialized. Each
particle in the swarm, xi, is encoded as an n-dimensional
weight vector representing a candidate solution to the portfolio
optimization problem, that is

xi = (xij), ∀j = 1, 2, ..., n and xij = wj for cj (15)

Each particle maintains a reference to its personal best histor-
ical weight vector, yi. For each iteration of the algorithm, the
global best weight vector is found over all of the particles’
personal bests, ŷ. For each particle, the vector of weights is
updated by adding a velocity term, vi, to each weight, that is

xi(t+ 1) = xi(t) + vi(t+ 1) (16)

where, xi(t) is the weight vector associated with the portfolio
at time t, and vi(t+ 1) is the velocity vector update required
for xi at time t+ 1, computed as,

vij(t+ 1) = w.vij(t) + c1.r1j(t).[yij(t)− xij(t)]
+c2.r2j(t).[ŷj(t)− xij(t)] (17)

where w is the inertia weight; c1 and c2 are positive acceler-
ation coefficients to scale the contribution from the cognitive
component, r1j(t).[yij(t)−xij(t)], and the social component,

r2j(t).[ŷj(t) − xij(t)], respectively; vij(t) is the jth com-
ponent of the previous velocity calculated for xi; and lastly
r1j(t) and r2j(t) are uniformly distributed random numbers,
r1j(t), r2j(t) ∼ U(0, 1).

B. PSO Adaptations

PSO performance is affected by the exploration-
exploitation trade off [21]. Exploration describes a PSO’s
ability to explore different regions of the search space and
exploitation describes the PSO’s ability to concentrate the
search in a promising region of the search space. The PSO
used in this research study was adapted in the following ways:

1) To improve the exploration ability of the swarm, par-
ticles that have converged on the global best particle
are re-initialized. Kennedy and Eberhart were the first
to study re-initialization of particles in the swarm
[22]. Convergence was measured using a similarity
function, d(xi, ŷ) where the average similarity of each
weight was calculated as

d(xi, ŷ) =

(∑n
j=1

xij

ŷj

)
n

(18)

If d(xi, ŷ) = 1.0 (to within a 10−5 threshold) then
on average the weights in particle xi and ŷ were
the same. If this condition was met, the position of
particle xi was randomly reinitialized and the velocity
of xi was set to zero. Because xi converged on the
global best position, the personal best position of xi
was set to the new randomly initialized position.

2) To improve the exploitation ability of the swarm, fitter
random neighbours replace the global best particle.
A mutation process creates a neighbour, ŷN , close to
the global best particle. This mutation involved mul-
tiplying each weight in the neighbour by a normally
distributed random number between -0.01 and 0.01
with a zero mean, that is

ŷN = ŷ + (ŷ.r) (19)

where rj ∼ N (0.0, 0.01) ∀j = 1, 2, ..., n in r. If the
neighbour was fitter than the global best particle, it
replaced the global best particle. A similar technique
was used by Miranda and Fonseca [23].

Additionally, the execution time of the PSO was improved
by updating each particle’s position in a concurrent thread.
Where applicable, memoization was also used [24]. Memo-
ization is an optimization technique used to improve perfor-
mance by having functions avoid recalculation of previously
processed inputs. Hash map data structures were used to store
input-output pairs from frequently called functions to improve
performance. An example is the function which fetched interest
rates and exchange rates for a particular date. After the first
call of this function for a particular date, the hash value of that
date is calculated. Then the hash value and rates are stored in
the hash map. The hash map is then queried if the rates for
that date are requested by any other particle.

C. PSO Portfolio Optimizer Pseudo-code

The pseudo-code in Algorithm 1 describes how the adapted
PSO was used to optimize a carry trade portfolio.

3053



Data: Carry Trade Portfolio, PPSO(t)
Result: Optimized Carry Trade Portfolio, PPSO(t+ 1)
Initialize swarm, S, of size m
for iteration ← 0 to maxiterations do

ŷ← y1
for i ← 1 to m do

if f(yi) > f(ŷ) then
ŷ← yi //Get global best particle

end
end
Initialize thread pool, q = {q1, q2, ..., qm};
for i ← 1 to m do

if xi = ŷ then
create global best neighbour ŷN using
equation (19);
replace global best if neighbour is fitter;

else
qi → update xi velocity using equation (17);
qi → update xi position using equation (16);

end
end
Wait for threads q1 to qm to finish...
for i ← 1 to m do

if f(xi) > f(yi) then
yi ← xi //Update personal best positions

end
if d(xi, ŷ) = 1.0 then

reinitialize xi as per equation (18)
end

end
end
Algorithm 1: Adapted Particle Swarm Optimization

D. Constraint Satisfaction Rules

This section describes how portfolio optimization con-
straints were handled by the adapted PSO algorithm. One con-
straint handling approach for PSO lets only feasible solutions
be selected as the personal bests or the global best. Other
approaches randomly reinitialize infeasible solutions [25] or
penalize infeasible solutions using penalty functions for each
constraint. In the context of portfolio optimization Chang et al
[26] used search heuristics to find solutions which satisfied the
cardinality constraint and Deng et al [27] used repair methods
to satisfy boundary and cardinality constraints. This paper uses
the repair approach. Three repair operators were defined to
convert an infeasible solution to a feasible solution:

1) The lower bound constraint requires that each weight
in the portfolio be greater than wmin

j . The repair
method added the absolute value of the weight, |wj |,
and wmin

j to the infeasible weight value thereby
ensuring that the repaired weight is positive and
greater than or equal to the lower bound; that is,

wj = |wj |+ wmin
j , ∀wj < wmin

j (20)

2) The equality constraint requires that 100% of the
portfolio’s capital be allocated. The repair method
re-based each weight as its percentage of the sum
of weights, T ; that is,

wj =
wj

T
, ∀wj (21)

where T =
∑n

j=1 wj .
3) The upper bound constraint requires that each weight

in the portfolio be less than wmax
j . The repair method

added a portion of the difference between wmax
j and

the infeasible weight to other weights in the portfolio
ensuring that the total weight remained the same and
no weights exceeded the upper bound; that is,

wj = wj +
wmax

j − wj

n
, ∀wj ≥ wmax

j , j 6= k (22)

These three repair methods were applied in order to each
particle in the swarm after updating their positions.

V. EXPERIMENT DESIGN

The historic performance of each portfolio defined in Sec-
tions III and IV were determined through back-tests. Back-tests
are experiments which simulate the historical performance of a
portfolio or trading strategy. This section provides detail about
how the back-tests were designed and executed. The results of
these back-tests are then presented in Section VI.

A. Experiment Data

Back-tests for the benchmark portfolios and PPSO were
simulated using real data for 22 currencies over a 12 year
time period starting on 2000-07-03 and ending on 2012-10-
08. This data was sourced from Quandl.com, an online data
store. The funding currency was the Japanese Yen (JPY) as it
has maintained the lowest interest rate for the better part of
two decades (0.346% in the given time period). Table I shows
the set of investment currencies.

TABLE I. SET OF INVESTMENT CURRENCIES, THEIR CURRENCY
CODES, AND AVERAGE INTEREST RATES OVER THE 12 YEAR PERIOD

Currency Name Code Interest Rate
Australian Dollar AUD 4.089
Brazilian Real BRL 14.27
Canadian Dollar CAD 1.223
Swiss Franc CHF 0.763
Chinese Yuan CNY 2.605
Danish Krone DKK 2.527
Euro EUR 2.325
Great British Pound GBP 3.439
Indonesian Rupiah IDR 9.741
Israeli New Sheqel ILS 4.087
Indian Rupee INR 11.369
Mexican Peso MXN 3.243
Malaysian Ringgit MYR 2.989
Norwegian Krone NOK 3.643
New Zealand Dollar NZD 5.680
Philippine Peso PHP 4.987
Russian Ruble RUB 5.155
Swedish Krona SEK 1.634
Thai Baht THB 2.187
Turkish Lira TRY 29.47
United Stated Dollar USD 1.994

B. Experiment Configuration

The results from the PSO algorithm are averages across
30 independent runs and were configured to use the values
given in Table II for each of the free parameters. The PSO
parameters (inertia weight and acceleration coefficients) were
set to the popular values published by Eberhart and Shi [28].
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TABLE II. PARAMETER VALUES USED FOR THE PSO ALGORITHM AND
THE E[FX] FORECASTER

Parameter Value
Samples 30 samples
Optimization frequency 20 trading days
Objective function Sharpe Ratio
E[FX] technique GBM
Forecast data for E[FX] 20 trading days
Historical days for E[FX] 120 trading days
GBM market drift 0.05
GBM daily variance 0.30
Particle swarm size 30 particles
Iterations per period 3000 iterations
Inertia value, w 0.729844
Social acceleration coefficient, c2 1.496180
Cognitive acceleration coefficient, c1 1.496180
Multiple starts true
Mutate global best particle true
Weight lower bound, wmin

i 0.0
Weight upper bound, wmax

i 0.7
Portfolio staring capital $100,000

VI. RESULTS

This section first defines the key performance indicators for
the portfolios and then presents the averaged back-test results
achieved by the portfolios. The portfolios include PE , Pr, PS ,
PR, PRS

, and PPSO.

A. Key Performance Indicators

For each portfolio, the following key performance indica-
tors were calculated over the 12 year back-test:

1) Hit rate (%) - the percentage of months which
achieved positive returns during the back-test.

2) Total return (%) - the total return achieved from the
beginning to the end of the back-test.

3) Average return (%) - the average monthly return
generated by the portfolio during the back-test.

4) Variance - the variance of monthly returns. Variance
measures portfolio risk, so this should be minimized.

5) Standard deviation (stdev) - the standard deviation of
monthly returns. Standard deviation measures portfo-
lio risk, so this should be minimized.

6) Negative standard deviation (Negative stdev) - the
standard deviation of months which achieved negative
returns.

7) Maximum draw down - the maximal drop of the
portfolio value from its running maximum value, that
is

minimize Dt = Mt − St (23)

where Mt = maxu∈[0,t] Su and Mt is the running
maximum value.

8) Maximum draw up - the maximum increase of the
portfolio value from its running minimum value, that
is

maximize Ut = St −mt (24)

where mt = minu∈[0,t] Su and mt is the running
minimum value.

9) Sharpe ratio (Sharpe) - a measure of risk adjusted
return where risk is the standard deviation of returns.

10) Sharpe ratio variance (var(Sharpe)) - Sharpe ratio
variance on a six month sliding window.

11) Average Sharpe ratio (avg(Sharpe)) - Mean Sharpe
ratio on a six month sliding window.

12) Sortino ratio (Sortino) - a measure of risk adjusted
return where risk is the standard deviation of negative
returns.

13) Compounded annual growth rate (CAGR%) - The
year-over-year portfolio growth rate computed as

maximize CAGR =

(
Ending capital
Starting capital

) 1
12

− 1

(25)

B. Tabular Results

Table III contains the results achieved for each of the
performance indicators achieved by the portfolios over the 12
year back-test.

TABLE III. BACK-TEST RESULTS FOR EACH PORTFOLIO ON THE 13
KEY PERFORMANCE INDICATORS

Indicator PE Pr PS PR PRS
PPSO

Hit rate (%) 63.4 62.1 71.4 69.6 71.4 74.5
Total return (%) 133 118 1563 512 2004 2429
Average return (%) 0.57 0.5 1.82 1.18 1.98 2.12
Variance .0006 .0003 .001 .0006 .001 .002
Stdev .024 .018 .035 .026 .038 .041
Negative Stdev .019 .01 .014 .011 .015 .016
Maximum draw down -10.8 -4.1 -4.9 -4.5 -5.0 -5.6
Maximum draw up 8.21 6.18 18.3 14.5 21.6 23.0
Sharpe .24 .28 .52 .45 .52 .51
avg(Sharpe) .34 .32 .63 .53 .63 .61
var(Sharpe) .29 .24 .37 .35 .34 .27
Sortino .29 .50 1.28 1.05 1.36 1.35
CAGR % 6.7 6.2 24.1 15. 26.4 28.2

The following observations are made from Table III:

1) Each diversified carry trade portfolio made long term
profits over the 12 year period.

2) Informed weighting techniques (PS , PR, PRS
, and

PPSO) outperformed uninformed weighting tech-
niques (PE and Pr).

3) Pr was the worst performing portfolio in terms of
hit rate, total return, average return, maximum draw
up, average Sharpe ratio, and compounded annual
growth.

4) PE had the highest maximum draw down and had
the worst Sharpe ratio and Sortino ratio.

5) PPSO outperformed the benchmark portfolios in
terms of the hit rate, total return, average return,
maximum draw up, and compounded annual growth
rate.

6) PPSO had a higher standard deviation of returns than
PRS

did. This might indicate greater risk taking,
however because the standard deviation of negative
returns for the two portfolios were similar, the higher
standard deviation of returns are as a result of the
PPSO having higher positive returns. This is sup-
ported by the fact that PPSO and PRS

have similar
Sortino ratios.

7) The maximum drawn down of PPSO was larger than
all the portfolios except PE . However the maximum
draw up of PPSO was the largest of all the portfolios.

8) The average Sharpe ratio was higher than the Sharpe
ratio for all of the portfolios. This implies that the
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carry trade portfolio has become less attractive over
time.

Table IV presents the average performance improvements
realized by PPSO on selected key performance indicators as
compared to the set of uninformed (PE and Pr) and the set
of informed portfolios (PS , PR, and PRS

).

TABLE IV. AVERAGE PERFORMANCE IMPROVEMENTS OF PPSO

AGAINST THE UNINFORMED AND INFORMED BENCHMARK PORTFOLIOS

Key Performance Indicator Uninformed Informed
Hit rate improvement 18.82% 5.28%
Total return improvement 1839.85% 150.30%
Average return improvement 296.14% 34.79%
Sharpe ratio improvement 102.14% 4.07%
Sortino ratio improvement 259.65% 10.93%
CAGR improvement 337.9% 37.3%

Table IV shows that the average PPSO key performance
values were much higher than the average values for the
uninformed and informed portfolios. The percentage increase
in the key performance values of PPSO over the uninformed
portfolios was higher than the increase over the informed
portfolios.

C. Return Results

Fig. 1 graphs the compounded returns of each portfolio, the
dark line on top represents the compounded returns generated
by the PPSO which are mirrored by PRS

. Fig. 1 shows that:

1) The PPSO performed consistently better than the
other portfolios over the given time period.

2) Portfolio’s which scaled weights based on ranked
E[Rcj ] (PRS

and PS) performed better than port-
folios which did not scale weights (PR, PE , andRr).

3) PPSO, PS , PR, and PRS
follow the same trend

because they used the same E[FX] forecaster.
4) PE performed similarly to Pr.

Fig. 1. Compounded 20 day returns generated by each of the five benchmark
portfolios and the PPSO portfolio during the period 2000-07-03 to 2012-10-
08. Each portfolio began with $100,000 worth of capital.

Fig. 2 graphs the average Sharpe ratios for each portfolio
over time. This graph was smoothed across 50 optimization
periods in order to visualize long term trends. Fig. 3 graphs
the returns generated by each portfolio over time. This graph
was also smoothed over 50 optimization periods. These fig-
ures confirm that the carry trade portfolio had become less
profitable over time.

Fig. 2. Sharpe ratio change over time for each of the portfolios from 2000-
07-03 to 2012-10-08.

Fig. 3. Average 20 day returns generated by each of the benchmark portfolios
and the PPSO from 2000-07-03 to 2012-10-08.

From Figures 2 and 3 it is observed that:

1) The returns generated by each portfolio, except PE ,
experienced the same general ups and downs.

2) The returns generated by PPSO were just slightly
larger than PRS

and PS , but when compounded over
the entire time period, this equated to more than
400%.

Fig. 4 contrasts the starting interest rate differentials against
ending interest rate differentials on a log graph. Interest rate
differentials have mostly decreased which contributes to the
declining profitability of carry trades over time.

Observations from Fig. 4 are that:

1) Emerging nations have higher interest rate differen-
tials, e.g. Turkey, Brazil, Indonesia, and India.
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Fig. 4. Interest rate differentials for each one of the countries at the beginning
of the period, 2000-07-03, against the interest rate differentials at the end of
the period, 2012-10-08

2) Interest rates in Switzerland and the United States
dropped below that of Japan. This means that the
USD and CHF became less expensive funding cur-
rencies than JPY towards the end of the given time
period.

D. Carry Trade Weights

Fig. 5 is a stacked logarithmic line graph showing the
PPSO weights of the top and bottom five currencies over time.

Fig. 5. A stacked logarithmically scaled line graph showing the weights
selected over the period from 2000-07-03 to 2012-10-08 by a PPSO

Fig. 5 shows that:

1) Countries with high interest rate differentials made
up the majority of the portfolio and countries with
low interest rate differentials made up the minority.

2) Over time the portfolio converged on a set of optimal
weights with very little variance after that. This may
present a problem if a market correction were to
occur.

E. Penalty Function

Fig. 6 graphs the compounded returns of PPSO with
and without the penalty function, g(P ). The portfolio with
no penalty performed slightly worse, implying that frequent
weight changes do not always result in greater returns.

Fig. 6. Comparison of the average compounded returned generated by the
PPSO with and without the penalty function, g(P )

F. E[FX] Forecaster Analysis

Fig. 7 graphs the compounded returns of PRS
when us-

ing each of the three different foreign exchange forecasting
forecasting techniques, E[FX], discussed in Section II.

Fig. 7. The 20 day returns generated by PRS
when using the three E[FX]

forecasting techniques discussed in Section II

Fig. 7 illustrates the impact that poor heuristics have on
long term performance. The quality of a forecaster can be mea-
sured by calculating the correlation co-efficient, Γ ∈ [−1, 1],
between the expected returns generated by the forecaster and
the actual returns realized by the portfolio. This is shown in
Table V.

Values for Γ of 1, 0 and -1 are indicative of a perfect
correlation, no correlation, and perfect anti-correlation, respec-
tively, between the forecaster and the actual returns. The values
in Table V show that Geometric Brownian Motion was the
only predictor to show a positive correlation to actual returns.
Optimizing E[FX] such that Γ is maximized is a worthwhile
sub-optimization problem.
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TABLE V. CORRELATION CO-EFFICIENT VALUES BETWEEN THE
EXPECTED RETURNS FORECAST BY EACH E[FX] TECHNIQUE AND

ACTUAL RETURNS GENERATED BY THE PORTFOLIO

E[FX] technique Γ
Normally distributed -0.436
Brownian Motion -0.007
Geometric Brownian Motion 0.4431

VII. CONCLUSIONS AND FUTURE WORK

Using particle swarm optimization (PSO) to find optimal
carry trade portfolios resulted in significant long term perfor-
mance improvements. Portfolios optimized by the PSO had
higher returns, higher compounded annual growth rates, larger
draw ups, and better risk adjusted returns as measured by the
Sharpe and Sortino ratios.

Despite constraining the search space using an equality and
two boundary constraints, the PSO found quality solutions to
the carry trade portfolio optimization problem. Using a penalty
function to simulate the impact of transaction costs on the
portfolio resulted in a slight performance improvement of the
portfolio’s returns over the long term.

The performance of the portfolio optimizer depends on the
reliability of expected returns. Three foreign exchange return
forecasters were investigated in this study and it was found
that Geometric Brownian Motion produced the most reliable
expected returns. Furthermore the correlation coefficient be-
tween expected returns and actual returns was observed to be
a good heuristic for forecaster reliability.

In conclusion, the particle swarm optimization algorithm
is able to find quality solutions to the constrained carry trade
portfolio optimization problem. It is expected that algorithmic
tuning would result in further performance improvements.
Avenues for further research include the use of neural networks
to forecast expected returns, enhancing the PSO to self adapt
control parameters, and formulating the portfolio optimization
problem as a multi-objective problem.
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