
*Tego - a framework for adversarial planning
Daniel Ashlock

Department of Mathematics and Statistics
University of Guelph

Email: dashlock@uoguelph.ca

Philip Hingston
School of Computer and Security Science

Edith Cowan University
Email: p.hingston@ecu.edu.au

Abstract—This study establishes a framework called *-Tego
for a situation in which two agents are each given a set of
players for a competitive game. Each agent places their players
in an order. Players on each side at the same position in the
order play one another, with the agent’s score being the sum
of their player’s scores. The planning agents are permitted to
simultaneous reorder their players in each of several stages.
The reordering is termed competitive replanning. The resulting
framework is scalable by changing the number of players and
the complexity of the replanning process. The framework is
demonstrated using iterated prisoner’s dilemma on a set of
twenty players. The system is first tested with one agent unable
to change the order of its players, yielding an optimization
problem. The system is then tested in a competitive co-evolution
of planning agents. The optimization form of the system makes
globally sensible assignments of players. The co-evolutionary
version concentrates on matching particular high-payoff pairs
of players with the agents repeatedly reversing one another’s
assignments, with the majority of players with smaller payoffs
at risk are largely ignored.

I. INTRODUCTION

In a number of gaming situations, a commander must deploy
units in opposition to one another. The simplest version of this
requires a 1:1 matching of the units. This can be represented
by a specification of the available units and the order in
which those are placed in conflict. When agents can adjust
their player deployments competitively during the course of
a conflict, the agents are said to be engaged in competitive
replanning. This study presents a general framework for
competitive replanning and provides and example of matching
of units that play the iterated prisoner’s dilemma.

The work presented generalizes the competitive replanning
presented in [10]. competitive replanning is, itself, a gener-
alization of red teaming [15]. Red teaming is a technique
for highlighting vulnerabilities in systems or structures. Two
teams - Red and Blue - are posited or formed. The Red
Team is charged with attacking the system or structure being
defended by the Blue Team. Competitive replanning removes
the attacker/defender asymmetry to permit the treatment of a
broader variety of situations.

The remainder of this study is structured as follows. Section
II gives the formal definition of the general framework. Section
IIIspecifies the specific problem use to test and demonstrate
the framework. Section IV gives the experimental design while

The authors thank Edith Cowan University, the University of Guelph, and
the Canadian National Science and Engineering Research Council of Canada
(NSERC) for supporting this work.

section V gives and discusses results. Section VI outlines
possible future directions for the work.

II. FRAMEWORK

*-Tego is a framework for a family of scalable adversar-
ial planning problems, inspired by the strategy board game
Stratego. Each instance defines the following parameters:

• A base game, G, which is a simultaneous game.
• A finite set of players, Pi : i = 1..n.
• An integer t, which is the number of stages in the

instance.
• An integer s which is the number of player changes

allowed between stages.
We might call a particular instance G(n, s, t)-Tego, or

simply G-Tego when the other parameter choices are clear.
An encounter between agents competing at G-Tego proceeds
as follows:

1) Initialization:
a) Each agent is randomly assigned a permutation π1

of 1..n. This determines a sequential ordering of
the players Si : i = 1..n.

b) The base game G is played out between corre-
sponding players Sπ1

.
2) Stage:

a) Each agent may swap ≤ s pairs of players. Agents
make their choices of swaps simultaneously. Each
agent is informed after the fact what swaps the
other agent(s) made.

b) The base game G is played between corresponding
players with the new ordering.

3) t stages are played out.
4) The overall payoff for each agent is the sum of the

payoffs over all the base games, over all the stages.
The initialization stage is not counted in the payoffs unless

full information on the payoff matrix is given to both agents –
its function is to provide each agent with some information
about the sequence of players being played by the other
agent(s). On the basis of this information, each agent can
then attempt to obtain a better match-up of players, while
recognizing that the other agent(s) will be trying to do the
same, so as to maximize their overall payoff.

Each stage provides more information about the players
being played by the other agents. As a special case, if the
behaviours in the stage games should ever uniquely identify

13

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

the players of the other agent(s), then an optimal sequence of
swaps for the remaining stages can be calculated (in the sense
of a Nash equilibrium).

The intention of this design is to capture the following
features of an adversarial planning problem:

• A number of sides are competing.
• The competing sides find themselves in some situation,

about which they have partial information (initialization).
• On the basis of this information, each side constructs

a plan to deploy its resources, trying to anticipate the
actions of the other side, so as to obtain the best payoff
in the long term.

• As the scenario plays out, more information is gathered,
and there is the opportunity to replan - i.e. to redeploy
resources (stages).

• The current plan restricts the possible choices for deploy-
ment of resources for the next stage (restriction on the
number of swaps), and each side can take advantage of
this limitation to its opponents plans.

By varying the properties of the game, the players (both
the number and nature of them), the number of stages and the
number of swaps allowed, it is possible to control:

• the size of the strategy spaces for the agents (the com-
plexity of the planning scenario,

• the amount of certainty (fog of war),
• how changeable plans can be (the degree to which current

choices restrict future choices).

III. COMPUTATIONAL EXAMPLE

This section defines the game used to demonstrate *-Tego.
Since the underlying game is prisoner’s dilemma, we are
playing PD-Tego and in fact will be using PD(20, 50,5)-Tego
for demonstration purposes. This means that two agents are
allowed up to fifty swaps of the order of their twenty players
in each of five planning stages. At the end of each collection
of swaps (planning stage) the score for playing 50 rounds
of iterated prisoner’s dilemma between each pair of matched
players is totaled. The agent’s fitness is the average score per
play over all five planning stages, twenty opponents, and fifty
rounds of play. The payoff matrix used is shown in Figure 1
so fitness values will be in the range 0-5.

The prisoner’s dilemma [9], [8] is a classic model in
game theory. Two agents each decide, without communication,
whether to cooperate (C) or defect (D). The agents receive
individual payoffs depending on the actions taken. The payoffs
used in this study are shown in Figure 1. The payoff for mutual
cooperation C is the cooperation payoff. The payoff for mu-
tual defection D is the defection payoff. The two asymmetric
action payoffs S and T , are the sucker and temptation payoffs,
respectively. In order for a two-player simultaneous game to
be considered prisoner’s dilemma, it must obey the following
pair of inequalities:

S ≤ D ≤ C ≤ T (1)

and
2C ≥ (S + T). (2)

In the iterated prisoner’s dilemma (IPD) the agents play
many rounds of the prisoner’s dilemma. IPD is widely used
to model emergent cooperative behaviors in populations of
selfishly acting agents and is often used to model systems in
biology [20], sociology [16], psychology [19], and economics
[14].

S
C D

P C 3 5
D 0 1
(1)

S
C D

P C C T
D S D
(2)

Fig. 1. (1)The payoff matrix for prisoner’s dilemma used in this study –
scores are earned by strategy S based on its actions and those of its opponent
P (2) A payoff matrix of the general two player game – C, T, S, and D are
the scores awarded.

A number of terms need to be defined to specify the
player strategies used to generate the optimization and co-
evolution targets in this study. The game will be played with
a collection of n = 20 players, each of which is a distinct
prisoner’s dilemma strategy. We begin by defining the novel
types of strategies used as players in this study. The strategies
are represented by finite state machines using the Mealy
architecture [7], [3], [4], [2].

Definition 1: A sugar strategy is defined in terms of a
final strategy S and a password from {c|d}∗. If an oppo-
nent executes the sequence of prisoner’s dilemma moves in
the password then the sugar strategy plays according to the
exploitable final thereafter. Any deviation from the password
returns the sugar strategy to its initial state. The final strategies
of a sugar strategy are chosen to be one that will cooperate or
permit themselves to be exploited.

A treasure hunt strategy has a few initial transitions that
choose a communicating class of the FSM defining the player’s
“treasures”. An interesting treasure hunt will have treasures
that are equivalent to agents with different margins of exploita-
tion.

Definition 2: A treasure hunt strategy has an initial set of
states structured as a tree. At each leaf of the tree is a strategy
that, once the leaf is reached, the agent will play thereafter.
Under the convention that the left branch is labeled by “c”
while the right branch is labeled with “d”, a treasure hunt
strategy is specified by a delimited binary tree. All responses
of a treasure hunt strategy before it enters a leaf are “c”. This
makes it impossible to tell the difference between treasure hunt
strategies until transitions reach a leaf. The notation for this
type of strategy is (TFT, (ALLD,ALLC)).

Notice that, in a competitive environment, sugar strategies
with exploitable final strategies are quite unlikely to arise via
evolution. Treasure hunt strategies might be competitive, and
so could arise via evolution, but are unlikely to do so because
their intrinsic connectivity is very unlikely. To see this notice
the number of pairs of states within the same leaf strategy
as opposed to the number of pairs in which both are not
in the same leaf strategy. The first type of pair have a size

14

proportional to the sum of the squares of the numbers of
states in the leaf strategies while the second are proportional
to the square of the number of states in the machine as a
whole. This means that a majority of possible mutations must
not occur to preserve the treasure hunt strategy. In a tree
with multiple treasures a majority of mutations that affect
transitions disrupt the structure of the player to something
outside of the definition of a treasure hunt.

We now list the 20 player strategies that form the collection
of players available to the PD-Tego agents being evolved.
Some of the strategies are well known, others are sugar or
treasure hunt strategies defined above.

1) Always cooperate (ALLC). This strategy always coop-
erates.

2) Always defect (ALLD). This strategy always defects.
3) Tit-for-tat (TFT). This strategy cooperates initially and

then repeats its opponent’s last action thereafter.
4) Tit-for-two-tats (TF2T). This strategy cooperates unless

its opponent’s last two actions are defects.
5) Two-tits-for-tat (2TFT). This strategy only cooperates if

its opponents last two actions are both cooperates.
6) Pavlov (PAV). This strategy cooperates initially and,

thereafter, cooperates if its action and its opponent’s
action on the previous round of play are the same.

7) Fortress 3 (Fort3). This strategy defects until its oppo-
nent defects twice in a row. The strategy then cooperates
and continues to do so if the opponent does so as well.
Any deviation from cooperation resets the machine to
its initial state.

8) Fortress 4 (Fort 4). This strategy is like Fortress 3 except
it defects three times in a row instead of two.

9) Fortress 5 (Fort 5). This strategy is like Fortress 3 except
it defects four times in a row instead of two.

10) Sugar, password DDD, strategy ALLC.
11) Sugar, password CDC, strategy ALLC.
12) Sugar, password DDD, strategy TF2T.
13) Sugar, password CDC, strategy TF2T.
14) Sugar, password DDD, strategy TFT.
15) Sugar, password CDC, strategy TFT.
16) Treasure hunt (TFT,(ALLD,ALLC)).
17) Treasure hunt ((TF2T,2TFT)ALLC).
18) Treasure hunt ((TF2T,2TFT),ALLD).
19) Treasure hunt ((ALLD,ALLC),(TF2T,2TFT)).
20) Treasure hunt (Fort3,PAV).
The situation treated is thus co-evolutionary optimization of

the order in which to place the 20 player strategies. Each agent
is working on their own order while aware of the opponent’s
order.

IV. EXPERIMENTAL DESIGN

A number of choices must be made in setting up an instance
of *-Tego. In the initial demonstration on PD-Tego we chose,
somewhat arbitrarily, use 50 swaps and 5 planning stages
yielding PD(20,50,5)-Tego. In addition to the co-evolutionary
evolution we performed a baseline study in which the oppo-
nent’s order was held fixed. This is intended to verify that the

States:8.
Start:C->4

If C |If D

0)D-> 0|D-> 6
1)C-> 5|C-> 1
2)D-> 3|C-> 0
3)D-> 6|C-> 1
4)C-> 4|D-> 3
5)D-> 3|C-> 2
6)C-> 6|D-> 2
7)C-> 0|C-> 2

Fig. 2. An example of an evolved finite state prisoner’s dilemma player.

agent representation can solve the problem in the relatively
clean environment of an optimization problem. It also serves
as a baseline study that establishes an upper bound on an
agent’s performance in planning against an opponent that is
helpless (that cannot plan).

0) if(Swap(9,7)>8.06815)go 27 else go 63
1) if(Swap(17,19)>8.07613)go 9 else go 23
2) if(Swap(15,18)>20.1899)go 33 else go 75
3) if(Swap(12,5)>0.903448)go 11 else go 71
4) if(Swap(10,8)>3.21103)go 122 else go 113
5) if(Swap(8,2)>18.1873)go 125 else go 105
6) if(Swap(7,6)>2.01642)go 109 else go 105
7) if(Swap(4,13)>13.9161)go 27 else go 25
8) if(Swap(19,18)>6.74807)go 12 else go 126
9) if(Swap(19,15)>17.939)go 103 else go 49

10) if(Swap(11,1)>-10.0888)go 29 else go 32
11) if(Swap(19,11)>5.39423)go 30 else go 108

...
126) if(Swap(8,16)>3.82702)go 108 else go 117
127) if(Swap(6,3)>-12.367)go 120 else go 91

Fig. 3. Shown is a partial listing of an evolved BDA.

A. Agent Representation

The agents used in this study are a type of augmented finite
state machine called a binary decision automata (BDA). The
transitions of the automata are driven by Boolean variables. A
partial example is shown in Figure 3. In the past BDAs have
been used as agents in a model of stress in the workplace [18]
and as player agents for a simple card game [5]. BDAs use
the Mealy architecture that associates actions with transitions.
BDAs are capable of dealing with a large number of different
possible inputs via the abstraction of those inputs into Boolean
form and, because of their finite state structure, remembering
simulation context in the form of state information. They are a
relatively simple agent representation given their high degree
of generality. BDAs are a simplified form of GP-automata [1].

In this study the possible actions of the BDAs are to
swap the positions two of the twenty players in the agent’s

15

lineup. Both agents have the full payoff matrix for 50 plays
of IPD between any two of the twenty players available.
The Swap(x, y) primitive returns the amount that exchanging
players x and y would change the agent’s score against its
opponents current lineup of players. If it exceeds the constant
in the if clause, making the Boolean value true, then those
player’s orders are exchanged. In addition, there are are two
transitions. The first is followed if the Boolean value is true,
the second is followed in the Boolean value is false. When
initial populations of agents are generated, the values of the
two players to consider swapping and the threshold value are
generated at random. The constant for comparison is chosen
uniformly at random in the rage [-25,50], a reasonable range
given the values in the payoff matrix.

The agents used have 128 states, a number chosen by
preliminary experimentation. This number must be large be-
cause each state can only swap one pair of agents. There are(
20
2

)
= 190 possible pairs of players that can be swapped.

Group theory [17] tells us that a minimum of nineteen avail-
able pairwise swaps are available to achieve any permutation
of the agents, but these individual swaps may need to be re-
used several times. Using 128 states gives the machine many
pairs of exchanges it can use.

B. Analysis Techniques

The best outcome of a *-Tego simulation is always an as-
signment of one agent’s players to the other agent’s players. A
permutation scattergram is a way of displaying the ensemble
assignment across many experiments. The scattergram is a
matrix with rows indexed by the first agent’s players and
column’s indexed by the second agent’s players. The entries of
the matrix are disks whose size is proportional to the number
of times the player indexing the row was assigned to the player
indexing the column. The radii of the disks are proportion to
the natural log of the number of times that one player was
matched against another.

The largest disk in a row indicates the most popular choice.
In the baseline experiments, a large disk indicates that having
the player indexing the row play the player indexing the
column is a good choice. Having an player play itself, a
fixed point of the permutation and a diagonal entry of the
matrix, gives neither agent an advantage in the co-evolutionary
version of *-Tego. In the baseline optimization problem, it
shows that the player in question plays better against itself
than anything any other available player. Evolved players often
have passwords like those used in the sugar strategies. This
recognition-of-self property makes assignments of players of
this type to themselves a natural choice.

C. Evolutionary Algorithm Specification

Two very similar evolutionary algorithms were used whose
design follows those in [7], [3], [4], [2]. A population of agents
plays a round-robin tournament of PD-Tego. An elite consist-
ing of two-thirds of the population is saved and the remainder
of the population is replaced. Pairs of parents are chosen
from the elite by fitness-proportional selection. The parents

are duplicated, the duplicates undergo two point crossover
of their lists of states, and then 1-15 point mutations are
performed with the number of mutations selected uniformly
at random. A point mutation modifies a single state, changing
a single parameter. The parameters that can change are the
players selected for comparison, the threshold value used for
comparison, and the two transitions for the true and false
Boolean outcomes. The algorithm is run for 250 generations.

The algorithms differ in that the population size for the
baseline experiment was set to 30 and the baseline used
PD(20,50,1)-Tego. The lack of additional planning states fol-
lows from the fact that the opponent in the baseline study
cannot change the order of its players, so there is no need for
additional planning stages - the agent rapidly attains a desired
order and stops moving players. The full, co-evolutionary ver-
sion of the algorithm with competing agents used a population
size of 120. Two collections of thirty independent runs were
performed for the baseline and full PD(20,50,5)-Tego game.

V. RESULTS AND DISCUSSION

Figure 4 shows examples of the evolution of agent fitness
over time for both the baseline and PD-Tego experiments. The
baseline experiment is, in effect, an optimization experiment
in which the agent refines its deployment against a helpless
opponent. The fitness plots show that this is in fact what
is happening. The maximum fitness remains constant for a
substantial portion of evolution suggesting that the choice not
to run multiple rounds of updating in the baseline experiment
was a correct one. In any case, the baseline shows that the
agent representation is functioning in a nominal fashion in a
simple environment.

Comparison of the fitness plots of the baseline with those
of the co-evolving agents shown that the baseline scores are
a weak upper bound on the co-evolved scores. In addition,
while the baseline maximum fitness shows the fitness ratchet
of an elitist algorithm (which the baseline algorithm is) the co-
evolved agents usually show a decline in average fitness, and in
the later generations, maximum fitness. This contrast suggests
that robust competition is taking place during evolution.

The decline of the average fitness in the co-evolved agents
is barely visible in the plots shown in Figure 4 so Figure
6 shows a close-up of one of the average fitness plots. This
behavior is typical but not universal. Two of the thirty PD-Tego
evolutionary runs showed trends that had no clear direction;
twenty-eight trended downward.

The large difference between maximum and average fitness
suggests that the population is maintaining a diversity of
behaviors. This is probably made possible by the use of agents
with a large number of states - required because of the large
number of possible swaps - but this in turn suggests that 250
generations is simply not enough time for agents with such
large genomes to converge.

Examining the permutation scatterplots in Figure 5 gives
us more information. Different runs of the baseline algorithm
yielded different results, but with a number of common
features. This suggests that the fitness landscape has multiple

16

Fig. 4. Shown are plots of fitness over evolution of the agent populations for three exemplary runs from the baseline (left) and PD(20,50,5)-Tego (right)
experiments.

17

Fig. 5. Shown are permutation scattergrams of the matchings made in three exemplary runs from the baseline (left) and PD(20,50,5)-Tego (right) experiments.
The scattergrams are in row-chooses-column as opponent order.

18

Fig. 6. Average fitness for one run of the PD-Tego runs with the fitness scale
adjusted to make the trend easier to observe.

local optima, but that these contain common choices of player
matching in common. All three permutation scatterplots shown
match the Fortress players against themselves with high prob-
ability. Treasure hunt strategy 20 plays better against itself
than any other available strategy, something all three depicted
runs found, albeit to different degrees. Matching 18, a treasure
hunt with always cooperate is a 2:3 majority choice; a sensible
outcome as always cooperate can induce cooperative behavior
from strategy 18.

If the population in a baseline run had converged to a single
agent type then the corresponding permutation scatterplots
would have one dot in each row and each column. While there
is often a large dot, most rows have multiple non-trivial dots.
This is additional evidence that the population is converging
on a final genotype quite slowly.

The permutation scatterplots for the PD-Tego runs show
a far greater diversity of matchings than the baseline runs.
They also show a fairly high weight on the diagonal of
the scattergram. While the fitness in the baseline runs was
absolute, the fitness in the PD-Tego runs is relative. This means
that matching a player against itself yield no advantage to
either agent. Juxtapose this against the fact that some player
mismatches are worth more than others and it is clear that
leaving players matched against themselves is a safe place to
put the less critical players while the agents work on getting
the high-value mismatches in place.

Since agents are co-evolving in a single population it is
likely that there will be genetic transformation of informa-
tion about which mismatches are highly desirable or, from
the opponent perspective, undesirable. This means that the
adversarial planning steps include a good deal of exchanges
that are performed simply to counter one another. The large
jump in fitness in PD-Tego runs represents the discovery of
a critical mismatch that an opponent does not have access
to. The large genome size, together with the fact that most
states are accessed by a series of “false” Boolean outcomes,

means that genetic transmission of information is inefficient.
In biological terms, when an agent arises with a good exploit,
that exploit is not all that heritable, leading to a creature that
can happily eat most of its young.

VI. CONCLUSION AND NEXT STEPS

This study presents the *-Tego framework for adversar-
ial planning and demonstrates it on prisoner’s dilemma as
PD-Tego. Baseline experiments show that the optimization
problem itself is complex with multiple optima. The PD-
Tego co-evolution demonstrate that the agents are engaged in
competition, not cooperation, with matching players against
copies of themselves a common strategy. The ration of swaps
per planning stage, 50, seemed large during the planning stages
of this experiment but, in retrospect, may actually be small.
This results from the fact that different player type mismatches
can have substantially different associated payoff differentials.
This means that agents can get into a dogfight over critical
players and, largely, ignore the others. This places a parameter
study on the number of swaps per planning stage in the early
part of the queue for additional work.

Prisoner’s dilemma was chosen for the initial demonstration
of *-Tego because both authors have a great deal of experience
with the game. The framework being general for competitive
games, there is a need to test it for other games. Natural
choices include other mathematical games such as rock-paper-
scissors or the snow-drift game. Small board games like
dodgem or hex with a small board would also make interesting
experiments.

A. The Number of States

The choice to use a large number of states was made
because it was assumed that it should be easy for agents to
achieve almost any permutation of their players. Each state en-
codes only one pairwise swap and making an agent use many
states to achieve a particular order seemed burdensome. At
least for the set of players used in this initial demonstration, the
fact that only some pairs of players were of interest suggests
that the agents are indifferent to much of the ordering. This
indifference manifests as equivalence classes of permutations
which, in turn, would permits agents to function efficiently
with far fewer states. Reducing the number of states could
be used as a probe to discover critical pairs. With a limited
number of states, the critical pairs would be those that the
states have the ability to move at all.

B. Genetic Convergence

Even the baseline runs in this study have residual genetic
diversity at 250 generations. This is clear evidence, somewhat
contradicting the flat maximum fitness plot, that evolution
might beneficially be run for a longer time in the baseline runs.
The PD-Tego runs are strongly competitive and so unlikely to
converge at all. These runs are subject to negative density
dependent selection [13], in which traits are valuable in direct
proportion to their rarity. If an agent finds an exploit, in the
form of a player pairing other agents cannot interfere with,

19

that grants it substantial fitness. As that trait in inherited by
offspring the trait becomes less valuable.

In evolutionary optimization there is selection for high
fitness, but also a secondary selection for heritability of
that fitness. In the situation in the PD-Tego simulation an
almost opposite effect occurs. The fact that a behavior may
require many or few state-transitions to engage means that
the heritability of particular variables is both highly variable
and evolvable. If a high value trait is difficult to inherit then
the agent possessing it may have a very long lifespan. This
peculiar situation is currently hypothetical, but consistent with
the persistent difference between mean and maximum PD-
Tego fitness. Testing this hypothesis is a topic for future
research.

C. Automatic Analysis

In [2], [6] techniques such as fingerprinting and agent-
case embeddings are developed for the automatic analysis of
evolved structures. Give the large number of states potentially
required in agents for PD-Tego, and probably *-Tego for other
games, automatic behavioral analysis techniques are badly
needed. These techniques could be used to figure out how
many different agent types there are. Given the similarities in
different results in the baseline study, it is likely that evolution
is discovering similar strategies. The BDA encoding, however,
is almost ludicrously many-one with a given strategy have an
entire combinatorial space of different encodings. Agent-case
embeddings are constructively representation independentwith
the assessment of an agent being based purely on its behavior
for different cases of the problem its solving. For *-Tego, the
cases are other agents, yielding a natural avenue for automatic
analysis.

D. Genetic Isolation

It seems likely that the sharing, by opponents in a compet-
itive game, of genetic information has the potential to cause
problems. This can easily be addressed by using genetically
distinct populations. An example of this type of technique is
the multiple worlds algorithm [11], [12]. Multiple worlds has
multiple populations. Fitness evaluations use one agent from
each population but all reproduction takes place within the
worlds. This means that each population is genetically isolated
from the others. An item on the agenda for future research
is comparing results from experiments on well mixed and
genetically isolated populations.

E. Potential Cooperation

While the agents in PD-Tego are clearly in a state of
adversarial competition, there is no reason that *-Tego must
be adversarially competitive. Suppose we have players each
of which yields the highest score when playing against a copy
of itself.

In that case, the agents are engaged in a matching game
and obtain the best score by cooperating. This means that the
*-Tego framework can be used to assess the degree to which
a group of players of strategies is naturally cooperative or
competitive.

REFERENCES

[1] D. Ashlock. Evolutionary Computation for Opimization and Modeling.
Springer, New York, 2006.

[2] D. Ashlock, E.Y. Kim, and W. Ashlock. Fingerprint analysis of the noisy
prisoner’s dilemma using a finite state representation. IEEE Transactions
on Computational Intelligence and AI in Games, 1(2):157–167, 2009.

[3] D. Ashlock, E.Y. Kim, and L. Guo. Multi-clustering: avoiding the natural
shape of underlying metrics. In C. H. Dagli et al., editor, Smart Engi-
neering System Design: Neural Networks, Evolutionary Programming,
and Artificial Life, volume 15, pages 453–461. ASME Press, 2005.

[4] D. Ashlock, E.Y. Kim, and N. Leahy. Understanding representational
sensitivity in the iterated prisoner’s dilemma with fingerprints. IEEE
Transactions on Systems, Man, and Cybernetics–Part C: Applications
and Reviews, 36(4):464–475, 2006.

[5] D. Ashlock and E. Knowles. Deck-based prisoner’s dilemma. In
Proceedings of the 2012 Conference on Computational Intelligence in
Games, pages 461–478, Piscataway NJ, 2012. IEEE Press.

[6] D. Ashlock and C. Lee. Agent-case embeddings for the analysis of
evolved systems. IEEE Transactions on Evolutionary Computation,
17(2):227–240, 2013.

[7] D. Ashlock and B. Powers. The effect of tag recognition on non-
local adaptation. In Proceedings of the 2004 Congress on Evolutionary
Computation, volume 2, pages 2045–2051, Piscataway, NJ, 2004. IEEE
Press.

[8] R. Axelrod. The Evolution of Cooperation. Basic Books, New York,
1984.

[9] R. Axelrod and W. D. Hamilton. The evolution of cooperation. Science,
211:1390–1396, 1981.

[10] Daniel Beard, Philip Hingston, and Martin Masek. Using monte carlo
tree search for replanning in a multistage simultaneous game. In
Proceedings of the IEEE Congress on Evolutionary Computation, pages
1–8, 2012.

[11] J. A. Brown. Multiple worlds evolution for motif discovery. In Proceed-
ings of the 2012 IEEE Symposium on Bioinformatics and Computational
Biology, page 9299, 2012.

[12] J. A. Brown. More multiple worlds evolution for motif discovery.
In Proceedings of the 2013 IEEE Symposium on Bioinformatics and
Computational Biology, pages 168–175, 2013.

[13] S. A. Dudley and J. Schmitt. Testing the adaptive plasticity hypothesis:
Density dependent selection on manupulated stemp length in impatiens
capensis. The American Naturalist, 147(3):445–465, 1996.

[14] M. Hemesath. Cooperate or defect? Russian and American students in a
prisoner’s dilemma. Comparative Economics Studies, 176:83–93, 1994.

[15] P. Hingston and M. Preuss. Red teaming with coevolution. In
Proceedings of the 2011 Congress on Evolutionary Compuation, pages
1155–1163, 2011.

[16] J. M. Houston, J. Kinnie, B. Lupo, C. Terry, and S. S. Ho. Com-
petitiveness and conflict behavior in simulation of a social dilemma.
Psychological Reports, 86:1219–1225, 2000.

[17] T. W. Hungerford. Albegra. Springer-Verlag, New York, 1974.
[18] M. Page and D. Ashlock. Binary decision automata modelling stress in

the workplace. In Proceedings of the 2013 Congress on Evolutionary
Computation, pages 3331–3338, Piscataway NJ, 2013. IEEE Press.

[19] D. Roy. Learning and the theory of games. Journal of Theoretical
Biology, 204:409–414, 2000.

[20] K. Sigmund and M. A. Nowak. Evolutionary game theory. Current
Biology, 9(14):R503–505, 1999.

20

