
Applying Evolutionary Computation for Evolving Ontologies

Oliviu Matei, Diana Contraş, Petricǎ Pop

Abstract— In this paper, we describe a novel application of
evolutionary computation, namely for evolving ontologies. The
general algorithm of evolutionary ontologies follow roughly
the same guidelines as any other genetic algorithms. However,
we introduced a new genetic operator, called repair, which is
needed in order to make the offspring viable. Experiments for
the generation of user centered automatically generated scenes
demonstrate the performance of the proposed approach.

I. INTRODUCTION

Artificial Intelligence (AI) has become nowadays more
critical and more pragmatic. Due to the fact that the actions
are becoming more complex and are taking more time, a lot
of interest falls on automated knowledge representation.

The genetic algorithms (GAs), which were formally in-
troduced in the 70th by John Holland at the University of
Michigan [1], represent an important part of AI with a wide
applicability in various fields: bioinformatics, computational
science, engineering, chemistry, economics, etc. Since their
introduction, GAs evaluated during time: if at the beginning
required binary strings as individuals, recently the float
representation of the chromosomes are claimed, if at the
beginning GAs used only one mutation operator in producing
the next generation, it was shown that each optimization
problem may require different mutation operators in order
to obtain better results, etc.

In computer science, an ontology formally represents
knowledge as a set of concepts within a domain, using
a shared vocabulary to denote the types, properties and
interrelationships of those concepts [2]. AI uses ontology
as a formal conceptualization of knowledge through repre-
sentation of the basic concepts and the relationships between
them.

In AI, the GAs and the ontologies followed separate paths
so far. We consider that one of the next steps in AI is
represented by evolutionary ontologies, meaning the use of
ontologies as individuals of GAs. The result will be a new
ontology, which means enriched knowledge, more entities,
more and more complex relations.

In this article we focus on a precisely ontology in order
to mark out the importance of ontologies in evolutionary
computation.

Charles Darwin proposed in his book, The Origin of
Species the concept of evolution based on the system of

Oliviu Matei and Petricǎ Pop are with the North University Center
of Baia Mare, Technical University of Cluj-Napoca, Romania (email:
oliviu.matei@holisun.com, petrica.pop@ubm.ro).

Diana Contraş is with Automation Department, University of Cluj-
Napoca, Romania (email: pdia17@yahoo.com

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme under grant agreement
No609143 Project ProSEco.

natural selection. The American zoologist, russian-born, Th.
Dobzhansky showed that the selection works at micromuta-
tion level which leads at population’s genes variation, there-
fore at their evolution. Dobzhansky succeeded in this way to
make the connection between genetics and Darwin’s book,
laying the foundation (with other biologists) of synthetic
theory of evolution.

The theory of evolution was taken over informatics ap-
pearing evolutionary computation. Nils Aall Barricelli, a
Norwegian-Italian mathematician laid the foundation of evo-
lutionary computation research in 1954. There are four
directions of evolutionary computation: genetic algorithms,
genetic programming, evolution strategies and evolution pro-
gramming. However, GAs have become popular only in
the 70s thanks to John Holland and his colleagues at the
University of Michigan [1].

In GAs a potential solution to an optimization problem
is represented as a set of parameters known as genes.
These parameters are joined together to form a string of
values known as a chromosome or individual. In the initial
algorithms, a gene was a sequence of bits.

Like in nature, the population evolves by applying three
genetic operators (used in any evolutionary technique):
• Crossover (recombination) between two random indi-

viduals;
• Mutation of a gene with a certain probability;
• Selection of a new population (epoch).
GAs have been developed further into evolution strategies

(ESs) by Ingo Rechenberg and Hans-Paul Schwefel. Ingo
Rechenberg is a specialist in aerodynamics who found that
the mechanism of evolution and natural selection can be
applied to technical problems such as aerodynamic wing de-
sign. Unlike the GAs, the ESs make use the floating numbers
as chromosomes, the mutation and crossover operators are
adaptive and depend on the fitness of each individual and
the selection is deterministic.

Based on GAs, John R. Koza [3] developed the genetic
programming (GP). The main difference between genetic
programming and genetic algorithms is the representation of
the solution, namely, genetic programming creates computer
programs in Lisp or scheme computer languages as the
solution while genetic algorithms create a string of numbers
that represent the solution.

All these evolutionary techniques have been developed to
use different representations for individuals, such as character
strings, coordinates, vectors, matrices, etc.

However the current research in the field of AI imposes
the use of ontologies for formally representing knowledge
as a set of concepts within a domain and the relationships
between concepts. They can be used also for reasoning about

1520

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

concepts. They allow a complex representation of the entities
and their relationships, including logical (AND, OR, NOT),
universal (ANY) and existential (EXISTS) operators. There-
fore the knowledge within an ontology is significantly more
powerful than the data within any classical data structure as
so is their expressive power.

An ontology consists of a number of different components.
According to Lord [4], these components can be divided
usually in two parts: those describing the entities of the
domain and those describing the ontology itself. Common
components of ontologies include:

• Individuals: are the base unit of an ontology and may
model concrete or abstract objects;

• Concepts: also called classes, types or universals are
the core component of most ontologies and represent a
group of individuals that share common characteristics;

• Relations: describe the ways in which the individuals or
the concepts can be related to one another;

• Attributes: describe the aspects, properties, features,
characteristics, or parameters that the individuals or the
concepts may have;

• Function terms: are complex structures formed from cer-
tain relations that can be used in place of an individual
term in a statement;

• Restrictions: formally stated descriptions of what must
be true in order for some assertion to be accepted as
input;

• Rules: statements in the form of an if-then (antecedent-
consequent) sentence that describe the logical inferences
that can be drawn from an assertion in a particular form;

• Axioms: represent the knowledge given as input de-
scribed in a logical form that together comprise the
overall theory that the ontology describes in its domain
of application. This definition differs from that of ax-
ioms in generative grammar and formal logic. In those
disciplines, axioms include only statements asserted as
a priori knowledge. As used here, axioms also include
the theory derived from axiomatic statements;

• Events: are changes that occur to attributes or relations.
While the previously described components are static,
the events are dynamic.

We believe that the evolutionary ontologies are the next
step of the evolutionary computation, making use of on-
tologies as individuals, rather than numbers, programs or
other data structures. The result is creation of new ontolo-
gies, which means enriched knowledge, i.e. more entities,
more (complex) relations. This is specifically important for
exploring the knowledge space by creating new concepts.

The aim of this paper is to apply the evolutionary prin-
ciples on ontologies. The rest of the paper is organized
as follows: section II presents some relevant articles about
evolutionary computation and ontologies, but we must to
emphasize that the two concepts have never been used
together. Section III shows the general concepts of genetic
algorithms applied on ontologies and section IV describe the
experiments used for testing the concepts.

II. RELATED WORK

This section gives an overview on the main results on
ontologies: types and operations and as well some GA ap-
proaches designed especially to ontology matching problem
and optimal ontology alignment.

Daum and Merten [5] identified four types of ontologies:

• top-level (also known as upper ontology or foundation
ontology) - describes very general concepts and are
serving the scopes of a large comunity;

• domain-related - are formal descriptions of classes of
concepts and the relationships between those concepts
that describe a specific area of knowledge (for example
computer industry or academia);

• task-related (also known as horizontal ontologies) - are
applied to a task or to a group of related tasks (for
example, the software requirement analysis) and provide
a mechanism to organize and standardize information
content;

• application-related - describe the concepts involved in
an application, referring to specialization of an domain-
related or task-related ontology.

In some cases, one application may use multiple ontolo-
gies, therefore some operations on ontologies are necessary
to be introduced so far. Some of the main operations on
ontologies summarized by Obitko [6] are described in what
it follows:

• Merge of ontologies - the creation of a new ontology
from other ontologies that already exist. The new on-
tology may contain all the knowledge from the original
ontologies or only a part of it if the ontologies are
not consistent. Also the new ontology may introduce
new concepts and relations destined to create a bridge
between terms from original ontologies.

• Mapping from one ontology to another - represents the
translation of concepts and relations from one ontology
to another one.

• Alignment - there are situations in which reality is
configured by different persons in different ways. Thus
appear heterogeneous ontologies which describe the
same domain of knowledge, but they are created inde-
pendently by experts that do not communicate with each
other. It requires that such ontologies to be mapped re-
sulting global ontology. This mapping process is called
alignment.

• Refinement - is the process of mapping from one on-
tology to another one such that every concept from the
original ontology has equivalent in the other ontology.
This operation defines a partial ordering of ontologies.

• Unification - represents the alignment of all of the
concepts and relations in ontologies so that inference
in one ontology can be mapped to inference in other
ontology and vice versa. Usually, this operation is made
as refinement of ontologies in both directions.

• Integration - is the creation of a new ontology from
two existing ontologies. Depending on the number of

1521

changes between the given ontologies during develop-
ment of the new ontology the level of integration can
range from alignment to unification.

• Inheritance - means that an ontology inherits every-
thing: concepts, relations and restrictions or axiom, from
another ontology.

In the literature, there have been introduced some GA
approaches to different ontologies: Wang et al. [7] pre-
sented a genetic algorithm based approach for solving the
ontology matching problem, by modeling the problem as
an optimization problem of a mapping between two com-
pared ontologies. Qazvinian et al. [8] used GA in order to
find the best mapping between concepts of two ontologies.
Martinez-Jil et al. [9] presented a mechanism in order to
compute the optimal ontology alignment function for a given
ontology input set, based on genetic algorithms. Naya et
al. [10] introduced a GA-based approach for automatically
align ontologies. Recently, Romero et al. [11] developed a
GA based approach for optimizing similarity aggregation in
ontology matching.

III. EVOLUTIONARY ONTOLOGIES

An ontological evolutionary algorithm is a genetic algo-
rithm in which the individuals are ontologies rather than any
other data structure. That is why we call them evolutionary
ontologies.

The evolutionary ontologies undergo an evolutionary pro-
cess, described in algorithm 1. The first step will be the
definition of the ontological space (see section III-A for more
details).

Algorithm 1 The Evolutionary Ontologies - pseudo code
showing the overall algorithm for evolutionary ontologies

1: OS = createTheOntoSpace()
2: population = createInitialPopulation()
3: currentEpoch = 0
4: while (currentEpoch ≤ maxNumberOfEpochs) and (is-

SuboptimalSolution) do
5: newPopulation = recombine(population)
6: mutate(newPopulation)
7: validate(newPopulation)
8: repair(newPopulation)
9: Population = select(population, newPopulation)

10: currentEpoch = currentEpoch + 1;
11: end while

The ontological space is defined in section III-A. The indi-
viduals, their representation and initial creation are described
in section III-B. The genetic operators, including the pseudo
code for them, are detailed in section III-E, III-D, III-F, III-C.

Like for any evolutionary program, a set of parameters
needs to be defined for the evolutionary ontologies:
• ontological space
• representation of the individuals
• initial population
• genetic operators

– selection
– mutation
– crossover

• fitness function.

A. Ontological space

We define the ontological space (onto-space) as an on-
tology describing a domain specific knowledge, containing
all the concepts along with their allowed and denied rela-
tionships. The onto-space defines the degrees of freedom as
well as the boundaries of the solution space to be searched
by the evolutionary process. Quite often, the solution space
is infinite and special algorithms are needed for exploring
it efficiently. An onto-space would be the ontology about all
electronic appliances and the solution required to be found is
a possible arrangement of a kitchen given some restrictions.

Formally, an onto-space OS = (C,P, I), where C is the
set of classes, P is the set of properties and I is the set of
instances.

Within the ontology OS, there are two disjunctive sub-
ontologies OSe = (Ce, Pe, Ie) and OSf = (Cf , Pf , If),
with

OSe ∪OSf = OS (1)

OSe is the sub-ontology which will undergo the evolutionary
process and OSf is the fixed sub-ontology, e.g. which will
not change under the evolutionary process.

The concepts described in this article are exemplified on
an ontology used for scene generation. This way, the relation-
ships defined in the ontology are very visible and tangible.
On the other hand, the ontology has the power of dealing with
various and complex relations between individuals, such as
above, top, left, top left.

Every scene has a frame and a content. Therefore the
superclasses of the ontology are Content and Frame.

Any scene can take place either in an indoor area or in an
outer one. For the class Frame should be chosen subclasses
Exterior and Interior. Consistent with them will be chosen
as subclasses of the class Content: ExteriorContent and
InteriorContent.

The main elements found in an outside area are land and
water. Based on this, the class Exterior has two subclasses:
Land, Water and the class ExteriorContent has two sub-
classes: LandContent, WaterContent.

Each item, whether it is land or water, can be populated
with objects, plants, animals. So, the class LandContent
has as subclasses Car, LandAnimal, LandPlant and the
class LandWater has as subclasses: Algae, WaterAnimal,
WaterObject.

Customizing the class LandAnimal with the most rep-
resentative living animals on earth we choose subclasses:
LandBird, Mammal, Reptile.

Proceeding the same way for the class LandPlant we
establish subclasses: HighPlant and SmallPlant. Further, we
devide both classes in another two classes: Bush and Tree for
class HighPlant, Flower and Grass for class SmallPlant.

1522

We use the same pattern to customize the class WaterAni-
mal, which has two subclasses Fish, WaterBird and the class
WaterObject which has two subclasses Boat, Ship.

An inner area can be populated with objects and specific
plants. Therefore, the class InteriorContent has two sub-
classes: InteriorObject and InteriorPlant.

We go ahead and we choose two types of InteriorObjects:
Furniture and Picture. For the class Furniture we establish
three subclasses: Chair, Locker and Table.

The hierarchical structure of the classes lead to a tree
structure and figure 1 illustrates such a structure.

Fig. 1. Class hierarchy

B. Representation of individuals

An individual is a a subset of the ontology, represented as
Ch = (Ci, Pi, Ii), where Ci ⊂ C is a subset of classes in
OS, Pi ⊂ P is a subset of properties in OS and Ii ⊂ I is a
subset of instances in OS. Further on, a genetic individual
consists of an evolving part Che = (Cie, Pie, Iie), which
will be changed during the evolutionary process, and a
fixed part Chf = (Cif, Pif, Iif). The two parts fulfill the
following relations:

Che ∪ Chf = Ch (2)
(3)

Moreover:

Che ⊂ OSe (4)
Chf ⊂ OSf (5)
Ch ⊂ OS (6)

A population consists of a given (µ) such individuals and
does not necessarily cover the entire onto-space, therefore⋃

i Chi ⊂ OS.

In our case, an individual is a possible scene represented
as an ontology, which has the same class structure as the
onto-space presented in section III-A. However, with respect
to the instances, there is a difference: unlike the onto-space,
which contains all the instances, a scene may contain only
several of them, based on the object properties defined in
the onto-space. For instance, a valid scene cannot have an
instance belonging to Frame/Interior class as well as
instances belonging to Content/ ExteriorContent/
WaterContent/ WaterObject/ Ship class
due to the property isInterior(x, y)={∃ x ∈
InteriorContent ∃y ∈ Interior} defined in the
onto-space, which not include a ship in an interior frame.

The class tree for individuals is illustrated by the Figure
2 and Figure 3:

Fig. 2. Individuals

1523

Fig. 3. Individual Ship1

In Figure 2, the second column represents the instances
belonging to the classes.

A semantic network representation of the properties of
the individual Interior, Table1, Chair1, FlowerPot1, Locker1,
Picture1, Picture2 would be like the one presented in the next
figure.

Fig. 4. Semantic network representation

C. Selection

Selection is the stage of a genetic algorithm in which
individuals are chosen from a population for later breeding
(crossover or mutation). Any selection operator may be used
within the process, whether it is based on Monte Carlo tech-
nique or it is deterministic. Monte Carlo (or roulette wheel)
technique assumes that the parents are selected according to
their fitness: the better the chromosomes, the better chances
to be selected they have.

The deterministic selection process is strictly based on
fitness of the population. In the case of (µ, λ)-selection, µ
parent produce λ (λ > µ) and only the offspring undergo
selection. In other words, the lifetime of every individual is
limited to only one generation. The limited life span allows

to forget the inappropriate internal parameter settings. This
may lead to short periods of recession, but it avoids long
stagnation phases due to unadapted strategy parameters.

Choosing a (µ+λ)-selection, the population may get stuck
into local optima. However, the convergence is significantly
improved.

For a more detailed discussion about the selection operator
we refer for example to [12].

D. Mutation

The mutation operator is applied for each individual with
a probability pm and requires different treatment for classes,
for instances, respectively for properties.

The pseudo code for mutation is shown in algorithm 2.

Algorithm 2 The Mutation - pseudo code describing the
mutation procedure

1: procedure mutate(newPopulation)
2: for all ind ∈ newPopulation do
3: choose a random number r ∈ [0, 1)
4: if r < pm then
5: choose a random integer number

rm ∈ 1, 2
6: if rm = 1 then
7: applyInstanceMutation(ind)
8: else
9: applyClassMutation(ind)

10: end if
11: end if
12: end for
13: end procedure

1) Instance Mutation: Instance mutation means replacing
a randomly selected instance i belonging to a class C (i ∈ C)
with another individual i′ ∈ C from the onto-space OS. This
operator preserves the number of ontological instances in an
individual.

Fig. 5. Instance mutation

1524

2) Class Mutation: A class means replacing all the in-
stances in a class C by other individuals belonging to a
random subclass SC ⊆ C in the onto-space. The process
is described in algorithm 3:

Algorithm 3 The Class Mutation - pseudo code showing the
class mutation

1: procedure mutate(indidivual)
2: select a random class C in the individual
3: select a random class SC ∈ OS and SC ⊆ C
4: select r random individuals i′k ∈ SC, k = 1, r
5: replace all individuals ip ∈ C with the individuals i′k
6: end procedure

This operator alters the number of ontological individuals
in an individual.

In Figure 6 is used a semantic network to represent some
classes of the ontology.

Fig. 6. Class representation

The two classes marked in Figure 6 occur in the class
mutation algorithm. The result can be seen in Figure 7.

Fig. 7. Class mutation

3) Property Mutation: The property mutations may be
approached separately for data properties, respectively for
object properties.

Data properties are relations between instances and RDF
literals or XML schema datatypes. An example would be
Picture1 hasHeight 20 cm. Mutating a data prop-
erty implies, actually, to apply a classical mutation operator
suitable for the datatype. For instance, mutating a boolean
data property means flipping data from TRUE to FALSE or

from FALSE to TRUE. Mutating real valued data properties
means adding (normally or uniformly distributed) random
values [13].

E. Crossover

In algorithm4 we describe the pseudo code for the
crossover operator.

Algorithm 4 Crossover - pseudo code showing the crossover
operator

1: procedure recombine(population)
2: newPopulation = ∅
3: parentPopulation = select λ individuals randomly
4: for all ind1 and ind2 ∈ parentPopulation do
5: choose a random cutting point (in the tree formed by

the classes)
6: create two offspring by preserving the ordering posi-

tion of symbols in the corresponding sequences of the
parents

7: adjust the object properties according to the new class
structure

8: add the two offspring to the newPopulation
9: end for

10: end procedure

F. Repair

Ontologies represent a complex structure and they are
very susceptible of being corrupted by the classical genetic
operators: crossover and mutation. We introduced a new
operator, called repair, which is a deterministic operator. It
can be applied on the population each time another genetic
operator is used or only once, after crossover and mutation.
Repairing an individual means adjusting its instances and
properties so that they respect all the rules defined in the
onto-space.

The repair algorithm is depicted in what it follows:

G. Fitness function

Every solution has a fitness value assigned to it, which
measures its quality. This function depends on the problem
to be solved. However, such a complex representation of the
individuals allows not only numerical fitness functions, but
also complex relationships.

1) the first one represents the number of user preferences
met by each individual

2) in the second stage, the fitness is given by the user
herself, meaning how much she likes a specific scene

IV. EXPERIMENTAL RESULTS

The concept of evolutionary ontologies has been applied
for the generation of user centered automatically generated
scenes. Gero [14] used the genetic algorithms for creating
Mondrian-styled paintings, but they are different in the way
that they are contained colors rectangles and lines, rather
than scenes.

1525

Algorithm 5 The repair operator
1: procedure repair(population)
2: for all ind ∈ population do
3: for all property ∈ ind.objectProperties do
4: if property needs to be repaired then
5: let obj1 P obj2 be the property between object

obj1 and obj2
6: if obj1 needs to be repaired then
7: let C1 be the most specific super-class of obj1

which holds the property R
8: end if
9: if obj2 needs to be repaired then

10: let C2 be the most general super-class obj2
which holds the property R

11: end if
12: if C1 = ∅ or C2 = ∅ then
13: remove property
14: end if
15: end if
16: end for
17: end for
18: end procedure

The scenes are generated randomly at the beginning and
represent the initial population. Based on some user pref-
erences (such as inside or outside, with or without humans
etc.) the scenes evolve until the preferences are met. Then
the user marks each scene with a level of satisfaction, on a
scale from 0 to 10. Based on these marks, the population
evolves until at least one scene is graded 10.

The experiments have been carried out on 10 subjects,
based on the following methodology. The size of the pop-
ulation has been set to 10, which means that the subject is
presented 10 scenes each generation.

1) a list of scenes are generated randomly
2) the user grades them on a scale from 1 to 10, based

on how much she likes them
3) the evolutionary process runs for maximum 20 epochs,

using a Monte Carlo-based selection operator, in which
the grade plays the role of the fitness function.

4) the process stops when at least one scene is graded 10.

The results of the experiments are described in table I.
Column Initial shows the results for the initial population
(representing the randomly generated scenes) and column
Final shows the results at the end of the evolutionary process,
which is done when at least one scene is graded 10 or
the maximum number of 20 epochs is reached. Columns
Best represents the best grades, whereas Avg are the average
grades for each generation (initial, respectively final).

TABLE I
THE EXPERIMENTAL RESULTS

Subject Initial Final
Best Avg Best Avg # epochs

Subject 1 8 7.4 10 8.9 5
Subject 2 9 7.2 10 9.3 7
Subject 3 10 8.6 10 8.6 0
Subject 4 6 3.6 9 7.9 20+
Subject 5 7 5.5 10 8.7 14
Subject 6 7 6.3 10 8.8 18
Subject 7 8 6.9 10 7.8 8
Subject 8 9 8.0 10 9.0 9
Subject 9 5 2.4 7 4.4 20+
Subject 10 5 4.0 10 6.7 17

As can be seen in table I, one subject (Subject 3) graded a
scene with 10 and there was no evolution. Other two subjects
(Subject 4 and Subject 9) have graded 10 none of the scenes,
not even 20 epochs. All the others trials ended between 5
and 18 generations. We want to emphasize that this has not
been a psychological experiment, but it was rather meant for
researching the evolutionary ontologies.

V. CONCLUSIONS

In this article we present the approach of applying the
evolutionary computation for evolutionary ontologies. A gen-
eral algorithm of evolutionary ontologies follow roughly the
same guidelines as any other genetic algorithm. However, we
consider that a new genetic operator - repair - is needed to
making the offspring viable. Otherwise the risk of having no
viable individuals after only a few epochs is high.

Although the evolutionary ontologies seem very similar to
genetic programming because the hierarchy of the classes
represented as a tree structure, there are significant differ-
ences between the two concepts, such as:
• the only relationship between a class and a subclass

within an ontology is a is a relationship, whereas the
GP works with programs (structured as trees). In this
case, the nodes are operations or instructions, except
for the leaves, which are operands;

• the genetic operators are completely different in the case
of EO, respectively GP;

• more operators may be further defined and derived the
case of EO’s. For instance, a very powerful operator
would be the inference, which is not at all the case of
GP’s;

• the genetic operators do not deal with semantics in the
case of GP.

The evolutionary ontologies have been applied for auto-
matically generating scenes. The concept have been applied
on a specific ontology built in this scope. The advantage of
using scene for researching evolutionary ontologies is that
the ontologies as well as the results of the genetic operators
have a visual equivalent.

1526

REFERENCES

[1] J. Holland, Adaptation in Natural and Artificial Systems. University
of Michigan Press, 1975.

[2] T.R. Gruber, ”A translation approach to portable ontology specifica-
tions,” Knowledge Acquisition, vol. 5(2), pp. 199-220, 1993.

[3] J.R. Koza, Genetic Programming. The MIT Press, 1992.
[4] P. Lord, ”Components of an Ontology,” Ontogenesis,

http://ontogenesis.knowledgeblog.org/514, 2010.
[5] B. Daum, U. Merten, System Architecture with XML. Elsevier Science,

2003.
[6] M. Obitko, Ontologies and semantic web. Translations between On-

tologies in Multi-Agent Systems, PhD thesis,Faculty of Electrical
Engineering, Czech Technical University in Prague, 2007.

[7] J. Wang, Z. Ding and C. Jiang, ”GAOM: Genetic Algorithm based
Ontology Matching,” in Proc. of IEEE Asia-Pacific Conference on
Services Computing, 2006.

[8] V. Qazvinian, H. Abolhassani, S.H. Haeri and B. Hariri, ”Evolution-
ary coincidence-based ontology mapping extraction,” The Journal of
Knowledge Engineering, vol. 25(3), pp. 221-236, 2008.

[9] J. Martinez-Gil, E. Alba and J. Aldana-Montes, ”Optimizing Ontology
Alignments by Using Genetic Algorithms,” in Proc. of Workshop on
nature based reasoning for the semantic Web, Karlsruhe, Germany
2008.

[10] J.M.V. Naya, M.M. Romero, J.P. Loureiro, C.R. Munteanu and A.P.
Sierra, ”Improving Ontology Alignment through Genetic Algorithms,”
Soft Computing Methods for Practical Environment Solutions: Tech-
niques and Studies, pp. 241-259, 2010.

[11] M.M. Romero, J.M.V. Naya, F.J. Novoa, G. Vasquez and J. Pereira
, ”A Genetic Algorithms-Based Approach for Optimizing Similarity
Aggregation in Ontology Matching,” Lecture Notes in Computer
Science, vol. 7902, pp. 435-444, 2013.

[12] O. Matei, Evolutionary Computation: Principles and Practices Riso-
print, Romania, 2008.

[13] N. Hansen, A., Ostermeier and A. Gawelczyk, ”On the Adaptation of
Arbitrary Mutation Distributions in Evolution Strategies: The Generat-
ing Set Adaptation,” in Proc. of 6th Int. Conf. on Genetic Algorithms,
pp. 57-64, 1995.

[14] J.S. Gero, ”Extensions to evolutionary systems in design from genetic
engineering and developmental biology,” in Proc. of Evolutionary
Computation, Vol. 1, 1999.

1527

