
Cost-sensitive Texture Classification

Gerald Schaefer∗, Bartosz Krawczyk†, Niraj P. Doshi∗ and Tomoharu Nakashima‡
∗ Department of Computer Science, Loughborough University, Loughborough, U.K.

† Department of Systems and Computer Networks, Wroclaw University of Technology, Wroclaw, Poland
‡ Department of Computer Science and Intelligent Systems, Osaka Prefecture University, Japan

Abstract—Texture recognition plays an important role in
many computer vision tasks including segmentation, scene under-
standing and interpretation, medical imaging and object recog-
nition. In some situations, the correct identification of particular
textures is more important compared to others, for example
recognition of enemy uniforms for automatic defense systems,
or isolation of textures related to tumors in medical images.
Such cost-sensitive texture classification is the focus of this paper,
which we address by reformulating the classification problem as
a cost minimisation problem. We do this by constructing a cost-
sensitive classifier ensemble that is tuned using a genetic algo-
rithm. Based on experimental results obtained on several Outex
datasets with cost definitions, we show our approach to work
well in comparison with canonical classification methods and the
ensemble approach to lead to better performance compared to
single predictors.

I. INTRODUCTION

Texture recognition and classification play an important
role in many computer vision tasks. Examples include image
segmentation, content-based image retrieval, scene understand-
ing, medical imaging, defect detection and object recognition.
While in many applications no particular distinction is made
in terms of importance or preference of certain textures, this
is not the case in all situations. For example, for a military
application the correct recognition of enemy uniforms or
vehicles will be of higher relevance compared to identifying
building structures or other background areas. Similarly, in
medical diagnosis isolation of textures associated with tumors
would be of higher priority compared to other image areas.

In this paper, we address this issue and perform cost-
sensitive texture classification by reformulating the classifi-
cation problem as a cost minimisation task. Following this
approach, a classification system is constructed so as to lead
to minimal misclassification cost rather than maximal classifi-
cation accuracy, and hence able to emphasise certain textures
by associating higher costs with them. In particular, we employ
local binary pattern (LBP) [1] based texture descriptors which
have been shown to work well for texture classification. As
descriptors, we employ LBP, uniform LBP, and Compound
LBP [2], which in [3] were identified as the best performing
LBP features for basic texture classification.

For verification, we perform extensive experiments on
the TC03, TC04 and TC05 test suites of the Outex texture
benchmark database [4], which come with pre-defined costs
for different texture classes. To our best knowledge, we are
the first to perform dedicated cost-aware classification on these
datasets. Our results show, that by taking into account the cost
definitions, improved classification performance, in terms of
reducing misclassification costs, is possible, and thus set a
benchmark for these tested datsets.

II. LOCAL BINARY PATTERN TEXTURE DESCRIPTORS

Local binary patterns (LBP) have been shown to be a
simple yet effective texture analysis technique, and have been
employed in a variety of computer vision applications.

A. LBP

The original LBP [5] assigns, on a pixel basis, descriptors
that describe the neighbourhood of that pixel and then forms
a histogram of those descriptors. In detail, let

B =

(
g(−1,−1) g(−1,0) g(−1,1)

g(0,−1) g(0,0) g(0,1)

g(1,−1) g(1,0) g(1,1)

)
(1)

describe the 3 × 3 grayscale block of a pixel at location (0,0)
and its 8-neighbourhood. The first step is to subtract the value
of the central pixel and consider only the resulting values at
the neighbouring locations

LBP1 =
(

g(−1,−1) − ĝ g(−1,0) − ĝ g(−1,1) − ĝ
g(0,−1) − ĝ g(0,1) − ĝ
g(1,−1) − ĝ g(1,0) − ĝ g(1,1) − ĝ

)
, (2)

where ĝ = g(0,0) for convenience. Next, an operator

s(x) =
{

1 for x ≥ 0
0 for x < 0 (3)

is assigned at each location resulting in

LBP2 =
(

s(g(−1,−1) − ĝ) s(g(−1,0) − ĝ) s(g(−1,1) − ĝ)
s(g(0,−1) − ĝ) s(g(0,1) − ĝ)
s(g(1,−1) − ĝ) s(g(1,0) − ĝ) s(g(1,1) − ĝ)

)
.

(4)
Thus, each pixel of the 8-neighbourhood is encoded as either
0 or 1, i.e. in a binary way. The resulting 8 bit sequence then
describes the texture property of the pixel at location (0,0).

B. Basic LBP variants

In the above procedure, the 8-neighbourhood of each pixel
is utilised. Clearly, four of these neighbours are at a different
distance (

√
2) than the other four. A circular neighbourhood

can be defined on which all neighbours are equidistant from
the centre pixel [1]; locations that do not fall exactly at the
centre of a pixel are obtained through interpolation.

Uniform LBP patterns [1] are patterns that have either no
change or two changes between 0s and 1s, that is patterns
that have at most one “run” of 0s and one of 1s. For eight
neighbours, there are nine rotation invariant uniform LBP
codes, two without any 0-1 changes (i.e., one with all 0s
and one with all 1s) and the remaining seven with {1, . . . , 7}
1s in sequence. It has been shown [1], that focussing on
these uniform patterns while aggregating all other (i.e., non-
uniform) patterns into a single group leads to improved texture
descriptors.

105

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

C. Compound LBP

The original LBP operator discards the magnitude informa-
tion of difference between the centre and neighbouring grey
values. In Compound LBP [2], a 2-bit code is used to encode
the local texture property of an image. The first bit represents
the sign of difference between the centre and neighbouring
grey values, while the second bit is used to encode the
magnitude of difference of neighbour pixels with respect to
a threshold value Mavg . Mavg is set to the average magnitude
of the difference between the centre and the neighbour grey
values in the local neighbourhood. If gp is a neighbouring pixel
and gc the centre pixel, the 2-bit code s(x) is obtained as

b(ip, ic) =

⎧⎪⎪⎨
⎪⎪⎩

00 if gp − gc < 0 and |gp − gc| ≤ Mavg

01 if gp − gc < 0 and |gp − gc| > Mavg

10 if gp − gc ≥ 0 and |gp − gc| ≤ Mavg

11 otherwise

,

(5)
generating a 16-bit code for 8 neighbouring pixels. This 16-bit
code is then divided into two 8-bit codes and two histograms
are generated from the two codes.

D. LBP image descriptors

Applying LBP operators on the whole image gives texture
descriptors at each image location. A histogram of these
descriptors is then built to describe the texture characteristics
of the image. These histograms then form the basis of a
subsequent classification stage and are hence the features that
are fed to the classifier.

III. COST-SENSITIVE CLASSIFICATION

A pattern recognition algorithm Ψ maps the feature space
X to the set of class labels M. This is typically established
on the basis of examples from a training set. The training
set consists of learning examples, i.e. observations of features
together with their correct classifications.

Multiple classifier systems (MCSs) can improve the per-
formance of the best base classifier, since they can exploit
the strengths and eliminate the weaknesses of the individ-
ual classifiers [6]. Let’s assume that we have n classifiers
Ψ(1), Ψ(2), ..., Ψ(n). For a given object x ∈ X , each of
them makes a decision regarding class i ∈ M = {1, ..., M}.
The combined classifier Ψ̄ makes a decision based on

Ψ̄
(
Ψ(1)(x), Ψ(2)(x), ..., Ψ(n)(x)

)
=

argmax
j∈M

n∑
l=1

δ
(
j, Ψ(l)(x)

)
w(l)Ψ(l)(x), (6)

where
δ (j, i) =

{
0 if i �= j
1 if i = j

, (7)

and w(l) is the weight assigned to the l-th classifier. Clearly,
the weights play a key role in establishing the quality of Ψ̄.

In this paper, the task we are addressing is how to select
individual classifiers of an ensemble with respect to misclassi-
fication cost so as to enable cost-sensitive texture classification.
Our aim is to create an ensemble with minimal classification

error P within the cost bounds of a cost matrix C, where C
defines the misclassification costs for all texture classes.

As base classifier, we utilise a cost-sensitive classification
tree that has its roots in the idea of the EG2 algorithm [7]. EG2
uses the information cost function (ICF) to select an attribute.
For each attribute, the ICF is calculated. The attribute with the
highest ICF value is then used to partition the data at a certain
level of the tree. This is based on the misclassification cost rate
proposed in [8]. To have a representative pool of classifiers
we need to create a set of them. To do this, we use a random
subspace approach [9], which randomly divides the feature
space into several subspaces and trains individual classifiers
on each of them. This ensures that the pool is diverse and
contains heterogeneous rather than homogenous classifiers.

For selecting and combining individual classifiers for the
ensemble, we employ a genetic algorithm (GA) [10]. An
individual in the GA population represents a classifier en-
semble Ch = [W] where component W represents the
weights assigned to each of the base classifiers in a form
W = [W1, W2, ..., WL] and is a real-valued vector with values
in [0;1]. When a classifier is not selected in a particular

Algorithm 1 Cost-sensitive ensemble algorithm.
Input:
U → set of classifiers

Output:
Q → ensemble
W → set of weights assigned to classifiers
P → ensemble error
B → best solution

P = 1.0
B = empty

Create initial population
Select individuals for evaluation
for all selected individuals do

Evaluate individual’s fitness with weights from W
if fitness < P then

replace P
replace B

end if
end for

while termination conditions not satisfied do
Select pairs for crossover from best-ranked individuals
Apply crossover operator
Apply mutation operator
Select new individuals
for all selected individuals do

Evaluate new individual’s fitness with weights from W
if fitness < P then

replace P
replace B

end if
end for
Create new population

end while

106

Fig. 1. Sample texture images of each of the classes of the Outex test suite.

individual, its weight is set to 0.

The GA, which is outlined in Algorithm 1, proceeds in the
following stages:

• Population generation: The initial population is gen-
erated randomly.

• Population assessment: For each member of the pop-
ulation, a value of the fitness function is calculated.

• Choosing elite members: Members with the highest
fitness values are taken from the population and are
carried over to the descendant population without
mutation, crossover or selection.

• Mutation: The mutation operator changes a selected
(one at a time) member of the population by applying
some random changes to its chromosome. The chro-
mosome is altered with a probability that is changed
during the optimisation progress. In the early phase of
the optimisation, a special emphasis is put on search-
ing for possibly best areas of weight values, while later
on attention is shifted to exploring the most promising
area for optimal settings. Mutation involves adding a
vector of numbers randomly generated according to
a normal density distribution (with mean of 0 and
standard deviation of Δm).

• Crossover: The crossover operator generates one off-
spring member from two parents. Offsprings are ob-
tained according to the two-point rule.

• Formation of new population: A selection of indi-
viduals from the population is formed by merging
the descendant population and a set of individuals
created by mutation and crossover. The probability of
selection Ps of a particular individual is proportional
to the value of its fitness. A tournament selection
scheme is employed.

The ensemble misclassification cost, calculated on the
training set, serves as fitness function, and we thus reformulate
the classification problem into a cost minimisation problem.
Termination conditions can in principle be adjusted; we use
the number of iterations without result improvement.

IV. EXPERIMENTAL RESULTS

For our experiments, we used the TC03, TC04, and TC05
databases of the Outex texture benchmark suite [4]. Each
database comprises 24 texture classes captured under the same
conditions and without rotation, and 20 samples are provided
for each class. From Figure 1, which shows one sample image
for each of the 24 classes, it can be seen that the dataset
is not simple as several texture classes are rather similar. A
classifier is trained on half of the dataset (i.e., on 240 images)
and the remaining half is used for testing. For each database,
100 database splits are defined, while the image resolution is
different between the three different datasets.

What makes the selected three benchmark databases dis-
tinct from other texture classification datasets, is the fact that,
for each fold, costs for each of the texture classes are specified,
so that we can consequently take this cost information into
account during the classification task. To the best of our
knowledge, ours is the first work that explicitly uses the cost
information available in Outex TC03, TC04, and TC05.

In our experiments, we employed three types of LBP
features, standard (circular) LBP calculated at 3 radii (1,3,5),
uniform LBP calculated at the same radii, and Compound LBP,
which in the study of [3] were found to be the most effective
LBP features for basic texture classification.

For our ensemble, we trained a total of 50 cost-sensitive
decision tree classifiers using the random subspace approach,
consisting of 40% of the original feature space. The parameters
used for the weight optimisation were set as follows: Nc (the
upper limit of algorithm cycles) to 1000, Np (the population
quantity) to 50, β (the mutation probability) to 0.7, γ (the
crossover probability) to 0.3, Δm (the mutation range factor)
to 0.2, and V (the upper limit of algorithm iterations without
quality improvement) to 20.

To put our results into context, we also performed classifi-
cation using a single cost-sensitive decision tree, and a single
C4.5 decision tree classifier [11]. We further implemented an
ensemble of C4.5 decision trees that is created in the same
fashion as our cost-sensitive ensemble, i.e. by optimising the
weights through a genetic algorithm but with classification
accuracy as fitness criterion.

Classification results are given, in terms of classification
accuracy and misclassification cost as averages over 10 runs,

107

TABLE I. CLASSIFICATION RESULTS FOR THE TC03 DATASET. FOR
EACH METHOD RESULTS ARE GIVEN IN TERMS OF CLASSIFICATION
ACCURACY AND MISCLASSIFICATION COSTS. EVERY SECOND LINE

INDICATES THE METHODS COMPARED TO WHICH THE EXAMINED ONE WAS
FOUND TO BE STATISTICALLY SIGNIFICANTLY BETTER.

LBPR={1,3,5} LBPu2
R={1,3,5} CLBP

C4.5 accuracy 85.32 86.11 88.29
- - -

cost 90.60 103.20 85.09
- - -

CSTree accuracy 93.25 92.91 94.05
C4.5,C4.5Ens C4.5,C4.5Ens C4.5,C4.5Ens

cost 48.34 58.29 44.35
C4.5,C4.5Ens C4.5,C4.5Ens C4.5,C4.5Ens

C4.5 Ensemble accuracy 90.23 91.28 92.61
C4.5 C4.5 C4.5

cost 60.11 65.25 59.04
C4.5 C4.5 C4.5

Cost-sensitive Ensemble accuracy 99.41 99.29 99.97
all other methods all other methods all other methods

cost 21.96 24.50 20.02
all other methods all other methods all other methods

in Table I for TC03, Table II for TC04, and Table III for
TC05. We also carried out a statistical test, namely an F-test
with a significance level of 0.05, to judge which methods work
statistically better than others, and present the results in the
same tables.

Looking at the results for the TC03 dataset in Table I, we
can first of all notice that the standard C4.5 classifiers did
not do very well, neither in terms of classification accuracy
nor in terms of misclassification costs. Application of a cost-
sensitive decision tree (CSTree) for classification immediately
leads to a significant drop of misclassification cost, while also
leading to improved classification accuracy. The results of the
C4.5 ensemble demonstrate that a multiple classifier system
can yield significantly better classification performance. At
the same time, we can notice that nevertheless even a single
CSTree classifier leads to lower misclassification costs than the
C4.5 ensemble. Finally, inspecting the results of our proposed
cost-sensitive classifier ensemble, it is apparent that it clearly
gives the best results for all feature types, both in terms of costs
and accuracy while the results of the F-test indicate that our
approach is statistically superior to all other tested methods.

Turning to the results for TC04 (Table II) and TC05
(Table III), we see that they are similar to those obtained for
TC03. While in general the performance is lower, indicating
that these datasets are somewhat more challenging, for all
features and both datasets, our cost-sensitive ensemble is
shown to give the best results, both for misclassification costs
and classification accuracy, and to statistically outperform all

TABLE II. CLASSIFICATION RESULTS FOR THE TC04 DATASET, LAID
OUT IN THE SAME FASHION AS TABLE I.

LBPR={1,3,5} LBPu2
R={1,3,5} CLBP

C4.5 accuracy 87.21 88.03 89.61
- - -

cost 120.89 108.00 99.75
- - -

CSTree accuracy 91.24 90.75 95.06
C4.5 C4.5 C4.5,C4.5Ens

cost 57.50 60.25 39.50
C4.5,C4.5Ens C4.5,C4.5Ens C4.5,C4.5Ens

C4.5 Ensemble accuracy 94.28 94.42 94.11
C4.5,CSTree C4.5,CSTree C4.5

cost 89.75 87.55 54.90
C4.5 C4.5 C4.5

Cost-sensitive Ensemble accuracy 98.60 98.72 99.02
all other methods all other methods all other methods

cost 32.60 33.50 27.80
all other methods all other methods all other methods

TABLE III. CLASSIFICATION RESULTS FOR THE TC05 DATASET, LAID
OUT IN THE SAME FASHION AS TABLE I.

LBPR={1,3,5} LBPu2
R={1,3,5} CLBP

C4.5 accuracy 80.24 80.97 82.64
- - -

cost 185.90 174.50 159.80
- - -

CSTree accuracy 88.24 87.86 90.66
C4.5 C4.5 C4.5

cost 68.45 70.00 53.75
C4.5 C4.5 C4.5

C4.5 Ensemble accuracy 92.63 93.12 94.57
C4.5,CSTree C4.5,CSTree C4.5,CSTree

cost 66.90 62.50 50.55
C4.5 C4.5,CSTree C4.5,CSTree

Cost-sensitive Ensemble accuracy 95.34 95.02 96.12
all other methods all other methods all other methods

cost 45.80 47.25 40.30
all other methods all other methods all other methods

other methods. This impressively demonstrates the efficacy of
our proposed technique and the usefulness of cost-sensitive
methods for texture classification.

V. CONCLUSIONS

In this paper, we have addressed the problem of cost-
sensitive texture classification which associates misclassifica-
tion costs with texture classes to prioritise the correct identifi-
cation of certain textures. We approached this by constructing
an ensemble of cost-sensitive decision tree classifiers where
classifier selection and fusion is optimised using a genetic
algorithm. Experimental results on three Outex test dataset
with defined misclassification costs confirm the efficacy of our
proposed approach and show it to statistically outperform both
single cost-sensitive classifiers and a canonical decision tree
ensemble.

REFERENCES

[1] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, pp.
971–987, 2002.

[2] F. Ahmed, E. Hossain, A. S. M. H. Bari, and A. Shihavuddin, “Com-
pound local binary pattern (CLBP) for robust facial expression recogni-
tion,” in 12th IEEE Int. Symposium on Computational Intelligence and
Informatics, 2011, pp. 391–395.

[3] N. P. Doshi and G. Schaefer, “A comparative analysis of local binary
pattern texture classification,” in Visual Communications and Image
Processing, 2012.

[4] T. Ojala, T. Maenpaa, M. Pietikainen, J. Viertola, J. Kyllonen, and
S. Huovinen, “Outex – new framework for empirical evaluation of
texture analysis algorithms.” in 16th Int. Conference on Pattern Recog-
nition, 2002, pp. 1:701–706.

[5] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study for
texture measures with classification based on feature distributions,”
Pattern Recognition, vol. 29, pp. 51–59, 1996.

[6] L. I. Kuncheva, Combining pattern classifiers: Methods and algorithms.
Wiley-Interscience, New Jersey, 2004.

[7] M. Nuenz, “The use of background knowledge in decision tree induc-
tion,” Machine Learning, vol. 6, pp. 231–250, 1991.

[8] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifica-
tion and regression trees. Chapman and Hall, 1984.

[9] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 20, pp. 832–844, 1998.

[10] J. H. Holland, Adaptation in Natural and Artificial Systems. University
of Mitchigan Press, 1975.

[11] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

108

