
A Levy Flight-Based Hybrid Artificial Bee Colony Algorithm for
Solving Numerical Optimization Problems

Hai Shan, Toshiyuki Yasuda, and Kazuhiro Ohkura

Abstract— An artificial bee colony (ABC) algorithm is one
of numerous swarm intelligence algorithms that employs the
foraging behavior of honeybee colonies. To improve the conver-
gence performance and search speed of finding the best solution
using this approach, we propose a levy flight-based hybrid
ABC algorithm in this paper. To evaluate the performance of
the standard and proposed ABC algorithms, we implemented
numerical optimization problems based on the IEEE Congress
on Evolutionary Computation 2013 test suite. The proposed
ABC algorithm demonstrated competitive performance on these
optimization problems as compared to standard ABC, differen-
tial evolution, and particle swarm optimization algorithms with
dimension sizes of 10, 30, and 50, respectively.

I. INTRODUCTION

Optimization is an applied science that determines the best
values of given parameters for a given problem. The aim
of optimization is to obtain the relevant parameter values
that enable an objective function to generate the minimum
or maximum value [1]. An objective function must be de-
signed to mathematically define the related problem. To solve
more difficult optimization problems, the IEEE Congress
on Evolutionary Computation(CEC) 2013 test suite [2] is
an invaluable resource; the CEC 2013 test suite includes
28 benchmark functions and does not make use of exact
equations. Effective and efficient optimization algorithms are
required to solve more difficult problems, including complex
real-world optimization problems.

In the past several years, swarm intelligence (SI), which is
a discipline of artificial intelligence, has attracted the interest
of many research scientists in related fields. Bonabeau [3]
defined SI as “any attempt to design algorithms or distributed
problem-solving devices inspired by the collective behavior
of social insect colonies and other animal societies”. Some
SI algorithms, inspired by the social behaviors of birds, fish,
bees, and insects, have been proposed to solve optimization
problems; such algorithms include particle swarm optimiza-
tion (PSO) [4], differential evolution (DE) [5], ant colony
optimization [6], artificial bee colony (ABC) [7], the firefly
algorithm (FA) [8], and cuckoo search (CS) [9]. A recent
study showed that the ABC algorithm performs significantly
better or at least comparably to other SI algorithms.

The ABC algorithm was introduced by Karaboga in 2005
as a technical report. Its performance was initially measured
using benchmark optimization functions [10], [11]. The ABC

Hai Shan is with the Faculty of Engineering, Hiroshima University,
Hiroshima, Japan (haishan@ohk.hiroshima-u.ac.jp)

Toshiyuki Yasuda is with the Faculty of Engineering, Hiroshima Univer-
sity, Hiroshima, Japan (yasu@hiroshima-u.ac.jp)

Kazuhiro Ohkura is with the Faculty of Engineering, Hiroshima Univer-
sity, Hiroshima, Japan (kohkura@hiroshima-u.ac.jp)

algorithm has been applied to several fields in various ways,
such as training neural networks [12], protein structure
prediction [13], sensor deployment [14], Wireless Sensor
Network [15], the redundancy allocation problem [16], and
engineering design optimization [17].

The ABC algorithm is superior to other algorithms in
terms of its simplicity, flexibility, and robustness. Karaboga
[18] implemented comparison experiments and the result
showed that the performance of ABC algorithm was better
or similar to genetic algorithm [GA] [19], DE, and PSO
algorithms. In addition, the ABC algorithm requires fewer
training parameters, so combining it with other algorithms
is easier. Given its flexibility, the ABC algorithm has been
revised in many recent studies. For example, Alatas [20]
proposed a chaotic ABC algorithm, in which many chaotic
maps for parameters adapted from the original ABC algo-
rithm were introduced to improve its convergence perfor-
mance. Zhu and Kwong [21] proposed a gbest-guided ABC
algorithm by incorporating the information of the global
best solution into the solution search equation to improve
the exploitation. In addition, Gao and Liu [22] proposed
a modified ABC (MABC) algorithm that used a modified
solution search equation with chaotic initialization; further
MABC excluded the onlooker bees and scout bees phases.

However, along with the advantages of the improved
versions of ABC, few disadvantages still exist. For exam-
ple, ABC algorithms have low convergence speeds, low
exploitation abilities, poor performance on initialization, and
are also easily trapped in local optima. To overcome these
disadvantages, we propose an improved ABC algorithm
inspired by levy flight [23], [24], a self-adaptive mechanism,
DE, PSO, and chaotic opposition-based learning (OBL) [25].

We implemented comparative experiments and set up
parameters for our proposed ABC algorithm to demonstrate
the efficacy of the algorithm; more specifically, we used
the CEC 2013 test suite benchmark problems. Finally, we
implemented comparative experiments using our proposed
ABC and the standard ABC, DE, and PSO algorithms.

In addition to this introductory section, the remainder of
this paper is organized as follows. The ABC algorithm is
introduced in Section II. In Section III, we describe our
proposed ABC algorithm. The experimental setup and results
are discussed in Section IV, and we conclude our paper in
Section V.

2656

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

II. THE ARTIFICIAL BEE COLONY (ABC)
ALGORITHM

The ABC algorithm is a swarm-based meta-heuristic al-
gorithm introduced by karaboga [7] that has successfully ap-
plied to numerical optimization problems [10], [11], [12]. In
the ABC algorithm, the artificial bee colony comprises three
kinds of bees: employed bees, onlooker bees, and scout bees.
Employed bees search for food source sites by modifying
the site in their memory, evaluating the nectar amount of
each new source, and memorizing the more productive site
through a selection process; these bees share information
related to the quality of the food sources they exploit in the
“dance area”. Onlooker bees search for food sources based
on the information coming from employed bees. As such,
more beneficial sources have higher probability to be selected
by onlookers. Further, onlooker bees choose food sources
depending on the given information through probabilistic
selection and modify these sources. When the food source
is abandoned, a new food source is randomly selected by a
scout bee to replace the abandoned source. The main steps
of the algorithm are given below:

1. Initialize the population of solutions xij with

xij = xmin,j + rand[0, 1](xmax,j − xmin,j) (1)

Here, i ∈ 1, 2, ..., SN and j ∈ 1, 2, ..., D are randomly
selected indexes, SN is the number of food source, and D
is the dimension size.

2. Evaluate the population.
3. Initialize cycle to 1.
4. Produce new solutions vi for the employed bees by

using (1), then evaluate them as follows

vij = xij + φij(xij − xkj) (2)

where φij is uniformly distributed random number in
the range [-1,1]; i, k ∈ 1, 2, ..., SN are randomly selected
indexes with k different from i and j ∈ 1, 2, ..., D is a
randomly selected index.

5. Apply the greedy selection process for the employed
bees.

6. If the solution does not improve, add 1 to the trail,
otherwise, set the trail to 0.

7. Calculate probability values pi for the solutions using
(3) as

pi =
fiti∑SN

n=1 fitn
(3)

where fiti is the fitness value of solution i.
8. Produce new solutions for the onlooker bees from

solutions xi which is selected depending on pi then evaluate
them.

9. Apply the greedy selection process for the onlooker
bees.

10. If the solution does not improve, add 1 to the trail,
otherwise, set the trail to 0.

11. Determine the abandoned solution for the scout, if it
exists, and replace it with a new random solution using (1).

12. Memorize the best solution achieved so far.

13. Add 1 to cycle.
14. Repeat until cycle reaches a predefined maximum

cycle number (MCN).

III. PROPOSED ARTIFICIAL BEE COLONY (ABC)
ALGORITHM

One can recognize two common aspects in population-
based heuristic algorithms: exploration and exploitation [26].
Exploration is the ability to expand the search space, and
exploitation is the ability to find optima around a good
solution. Exploration and exploitation play key roles in
SI algorithms; They coexist in the evolutionary process of
algorithms such as PSO, DE, and ABC, but they contradict
each other.

Population initialization is a crucial step in SI algorithms
because it can affect convergence speeds and the quality of
the final solution. If no information about the solution is
available, then random initialization is the most commonly
used method for generating an initial population. To initialize
the population such that the search space information can
be extracted to increase population diversity, we introduced
a levy flight distribution. In the past, the flight behaviors
of animals and insects that exhibit important properties of
levy flight have been analyzed in various studies. This levy
flight behavior has been applied to optimization and search
algorithms, and reported results show its importance in the
field of solution search algorithms [9], [27]. Recently, Yang
proposed new meta-heuristic algorithms, such as FA and CS.
Levy flight is a random walk in which the step lengths have
a heavy-tailed probability distribution. Random step lengths
drawn from a levy flight distribution [28], [29] are shown as

L(s) ∼ |s|−1−β (4)

where β (0 < β ≤ 2) is an index and s is the step length.
Initialization for our proposed ABC using levy flight is

calculated as

xt+1
ij = xt

i,j + α ⊕ levy(β) (5)

where i ∈ 1, 2, ..., SN and j ∈ 1, 2, ..., D are randomly
selected indexes, t is the iteration number, α is uniformly
distributed number selected from U(0, 1). The product ⊕
means entry-wise multiplications.

The levy flight is calculated as

Levy(β) ∼ 0.01
(

u

|v|

)− 1
β

(xt
j − xt

i) (6)

where u and v are derived from normal distributions as

u ∼ N(0, σ2
u) v ∼ N(0, σ2

v) (7)

σu =
(

Γ(1 + β)sin(πβ/2)
βΓ[(1 + β)/2]2(β−1)2

)1/β

, σv = 1 (8)

To achieve a good optimization performance with higher
convergence speeds and without trapped in local optima, we
introduced a self-adaptive mechanism to change the search
range related with a cycle number, and then combined it with
DE to improve the performance of the employed bees. In the

2657

standard ABC algorithm, a random perturbation is added to
the current solution to produce a new solution. This random
perturbation is weighted by φij selected from [-1,1] and is a
uniformly distributed real random number in the standard
ABC. A low value of φij results in small steps to find
the optimal value, therefore achieving convergence slowly.
A high value of φij accelerates the search, but reduces the
exploration ability of the perturbation process.

Therefore, we used a self-adaptive mechanism to balance
the exploration ability and the convergence speed of the algo-
rithm for employed bees. The self- adaptive ABC approach
has a very simple structure and is easy to implement. φij is
changed with the cycle number according to a random value
called rand in the range [0,1] for food searching process of
employed bee; φij is determined as

φij =

{
−e−3∗cycle/(25∗MCN), 0 ≤ rand ≤ 0.5
e−3∗cycle/(25∗MCN), 0.5 < rand ≤ 1

(9)

The DE algorithm has proved to be a simple yet powerful
and efficient population-based algorithm for many global
optimization problems. To further improve the performance
of the DE algorithm, researchers have suggested different
schemes of DE [30]. Like other evolutionary algorithms, DE
also relies on an initial random population generation and
then improves its population via mutation, crossover and
selection processes. The DE equation is shown below as
(10). The searching food source process in ABC algorithm
is similar to the mutation process of DE. And in DE, the
best solutions in the current population are very useful
for improving convergence performance. One scheme of
the mutations of DE, “DE/best/1” can effectively maintain
population diversity. We therefore combined the “DE/best/1”
mutation strategy with the food searching process of the ABC
algorithm to produce a new search equation (shown below
as (11)) and improved the convergence ability.

vi,G = xbest,G + F ∗ (xri
1,G − xri

2,G) (10)

where i ∈ 1, 2, ..., NP is a randomly selected index, NP is
the population number, G is the generation number, vi,G is
the donor vector, and ri

1 and ri
2 are random numbers chosen

from the range [1, NP].

vij = xbest,j + φij(xij − xkj) (11)

where i, k ∈ 1, 2, ..., SN are randomly selected indexes with
k different from i; j ∈ 1, 2, ..., D is a randomly selected
index and φij is the parameter given in equation (9).

To the best of our knowledge, the search ability of the
ABC algorithm is good at exploration, but poor in terms
of exploitation. Specifically, we can view the relationship of
employed bees and onlooker bees as focused on exploration
and exploitation, respectively. Employed bees explore new
food sources and send information to onlooker bees, and
onlooker bees exploit the food sources explored by employed
bees.

In the standard ABC algorithm, much time is required
to find the food source due to poor exploitation abilities

and lower convergence speeds. To improve the exploitation
ability of the algorithm, we incorporated PSO into the ABC
algorithm. PSO is based on the simulation of simplified
social animal behaviors. The equation governing PSO is
shown as (12) below. We modified the onlooker bee search
solution by taking advantage of the search mechanism of
PSO; our modified search equation for onlooker bees is
shown as (13) below.

vi,d = ωvi,d + c1r1(pi,d − xi,d) + c2r2(pg,d − xi,d) (12)

Here, d ∈ 1, 2, ..., D, i ∈ 1, 2, ...,M , M is the total
number of particles in the swarm, ω is the inertia weight,
r1, r2 are random numbers in the range [0,1], c1, c2 are
acceleration coefficients, pi,d is the personal best and pg,d

is the global best.

vij = xij + ϕij(xij − xkj) + ψij(xbest,j − xij) (13)

where i, k ∈ 1, 2, ..., SN are randomly selected indexes with
k different from i; j ∈ 1, 2, ..., SN is a randomly selected
index; xbest,j is the jth element of the best dominant solution,
and ϕij ∈ [−1, 1] and ψij ∈ [0, 1.5] are uniformly distributed
random numbers.

The concept of OBL was introduced by Tizhoosh [25] and
has been applied to accelerate reinforcement learning and
back-propagation learning in neural networks [31]. The main
idea behind OBL is to simultaneously consider an estimate
and its corresponding opposite estimate to achieve better
approximations for candidate solutions. According to [32],
OBL was introduced to DE and improved the convergence
performance. Therefore, to accelerate convergence speed, we
introduced chaotic OBL initialization to generate the popu-
lation of scout bees. Here, a sinusoidal iterator is selected,
and its equation is defined as

chkj = sin(πchk−1,j) (14)

where chk ∈ (0, 1) , k = 1, 2, ...,Max, j = 1, 2, ..., D
The initialization population for scout bees is shown as

xij = xmin,j + chkj(xmax,j − xmin,j) (15)

and the chaotic OBL equation is shown as

oxij = xmin,j + xmax,j − xij (16)

where ox indicates the opposition-based population.
We selected SN individuals from the set {X(SN) ∪

OX(SN)} as the initial scout bees population.
For our proposed ABC algorithm, we specifically modified

steps 1, 4, 8, and 11 of standard ABC algorithm. The
modification (5) substituted for step 1, modifications (9) and
(11) substituted for step 4, modification (13) substituted for
step 8, and modifications (14), (15), and (16) substituted for
step 11, respectively.

IV. EXPERIMENTS

A. Experimental setup

The CEC 2013 test suite extends its predecessor CEC
2005 test suite. In the CEC 2013 test suite, the previously

2658

proposed composition functions are improved, and additional
test functions are included. There are 28 numerical test
functions that are minimization problems categorized into
the following three groups: unimodal functions (F1-F5),
multimodal functions (F6-F20), and composition functions
(F21-F28). The functions and their names are summarized
in Table I. The detailed description of the CEC 2013 test
suite is available in [2].

All test functions are minimization problems defined as
follows:

To minimize f(x), x = [x1, x2, ...xD]T

where D is the number of dimensions.
Given o = [o1, o2, ...oD]T , the shifted global optimum dis-

tributed randomly in the range [−80, 80]D, all test functions
are shifted to o and are scalable. For convenience, the same
search ranges [−100, 100]D is defined for all test functions.

TABLE I
CEC 2013 TEST FUNCTIONS

Function Number Function Name
F1 Sphere
F2 Rotated High Conditioned Elliptic
F3 Rotated Bent Cigar
F4 Rotated Discus
F5 Different Powers
F6 Rotated Rosenbrock
F7 Rotated Schaffers F7
F8 Rotated Ackley
F9 Rotated Weierstrass
F10 Rotated Griewank
F11 Rastrigin
F12 Rotated Rastrigin
F13 Non-Continuous Rotated Rastrigin
F14 Schwefel
F15 Rotated Schwefel
F16 Rotated Katsuura
F17 Lunacek Bi Rastrigin
F18 Rotated Lunacek Bi Rastrigin
F19 Expanded Griewank’s Plus Rosenbrock
F20 Expanded Scaffer F6
F21 Composition Function 1 (n=5,Rotated)
F22 Composition Function 2 (n=3,Unrotated)
F23 Composition Function 3 (n=3,Rotated)
F24 Composition Function 4 (n=3,Rotated)
F25 Composition Function 5 (n=3,Rotated)
F26 Composition Function 6 (n=5,Rotated)
F27 Composition Function 7 (n=5,Rotated)
F28 Composition Function 8 (n=5,Rotated)

In this paper, we evaluated both the standard ABC al-
gorithm and our proposed ABC algorithm for all 28 test
functions defined in the CEC 2013 test suite with parameters
selected by comparing experiments at three dimension sizes,
i.e., 10, 30, and 50. The 28 test functions were executed
51 times with respect to each test function at each problem
dimension size. The algorithms were terminated when the
MCN was reached for function evaluations or when the
error value was smaller than 10−8. In our experiments, we set
maximum evaluation sizes to 100,000, 300,000, and 500,000
for problem dimension sizes of 10, 30, and 50, respectively.
We also performed the Wilcoxon signed rank test with signif-
icance level of 0.05, and conducted comparative experiments

for the standard and proposed ABC algorithms at first and
then broadened our experiments to include the DE [33], and
PSO [34] algorithms.

We used the C language for our experiments on a Linux
system with an Intel Core i3 CPU 540 @3.07GHz * 4 with
64-bit processing.

B. Experimental results

TABLE II
PARAMETER ADJUSTMENT EXPERIMENTS

Limit/NP 20 50 100 150 200 300
50 -/-/- -/-/- -/-/- -/-/- -/-/- -/-/-
100 -/-/- -/-/- 10/30/- 10/-/50 -/-/- -/-/-
150 -/-/- 10/30/- 10/30/50 10/-/50 10/-/50 -/-/-
250 -/-/- 10/30/- 10/30/- -/30/50 -/30/50 -/-/-
400 -/-/- 10/-/- -/30/50 -/-/50 -/-/- -/-/-

Table II shows our parameter adjustment experiment re-
sults with NP representing population size. In this table,
“-/-/-” indicates competitive performance of our algorithm
on the three dimension sizes 10, 30, and 50. “-” indicates
that its performance was significantly worse than others on
that dimension size.

From Table II, we observe that the ABC is not very
sensitive to the choice of parameters given much lower
or much higher population sizes and limits. We therefore
selected a limit of 150 and population size of 100.

After implementing comparative experiments on our pro-
posed ABC algorithm, the standard ABC algorithm, the DE
algorithm, and the PSO algorithm, we listed, in Table III, the
number of better, similar, and worse performances of mean
values of these algorithms on 28 test functions.

Tables IV, V, and VI illustrate the function error of mean
values of our proposed ABC algorithm, the standard ABC
algorithm, the DE algorithm, and the PSO algorithm for
100,000, 300,000, and 500,000 evaluations of dimension size
of 10, 30, and 50, respectively. The symbols of “+”, “-”, “=”,
and “≈” indicate better, worse, equal, or similar performance
of these standard ABC, DE and PSO algorithms compared
to our proposed ABC algorithm.

TABLE III
COMPARISON PERFORMANCE OF MEAN VALUES OF OUR PROPOSED

ABC ALGORITHM TO STANDARD ABC, DE, AND PSO ALGORITHMS

Proposed ABC VS (10D) ABC DE PSO
Better 9 19 23
Similar 16 3 5
Worse 3 6 0

Proposed ABC VS (30D) ABC DE PSO
Better 10 13 19
Similar 13 8 7
Worse 5 7 2

Proposed ABC VS (50D) ABC DE PSO
Better 12 14 17
Similar 11 5 7
Worse 5 9 4

When the dimension sizes increased, the number of
functions in our proposed ABC algorithm with better and

2659

similar performance decreased as compared to the other
algorithms for the function error of mean values. From
these comparative tables, we conclude that the better or
similar performance of our proposed ABC algorithm is very
competitive as compared to the other algorithms, especially
in comparison with PSO algorithm.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
10
0

20
0

30
0

40
0

Function Evaluations

Fu
nc

tio
n

E
rr

or
 o

f M
ea

n
V

al
ue

F7_ABC_10D
F7_Proposed ABC_10D
F7_ABC_30D
F7_ Proposed ABC_30D
F7_ABC_50D
F7_ Proposed ABC_50D

Fig. 1. Comparative convergence for function F7 on 10D, 30D, and 50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
50
0

10
00

15
00

20
00

25
00

Function Evaluations

Fu
nc

tio
n

E
rr

or
 o

f M
ea

n
V

al
ue

F12_ABC_10D
F12_Proposed ABC_10D
F12_ABC_30D
F12_Proposed ABC_30D
F12_ABC_50D
F12_Proposed ABC_50D

Fig. 2. Comparative convergence for function F12 on 10D, 30D, and 50D

Figures 1–8 illustrate the convergence performance for
function error of mean values on both the standard ABC
algorithm and our proposed ABC algorithm with increasing
function evaluations on dimension sizes of 10, 30, and 50.
According to Figures 1–4, the performance of our proposed
ABC algorithm was much better than that of the standard
ABC algorithm; note that the same results were achieved by
both algorithms for functions F2, F3, F4, and F6.

According to Figures 5–6, the performance of our pro-
posed ABC algorithm was better than that of the standard
ABC algorithm, but was not obvious; further, note that the
same results were achieved by both algorithms for functions
F14, F19, and F22.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
50
0

10
00

15
00

20
00

25
00

Function Evaluations

Fu
nc

tio
n

E
rr

or
 o

f M
ea

n
V

al
ue

F13_ABC_10D
F13_Proposed ABC_10D
F13_ABC_30D
F13_Proposed ABC_30D
F13_ABC_50D
F13_Proposed ABC_50D

Fig. 3. Comparative convergence for function F13 on 10D, 30D, and 50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
50
0

10
00

15
00

20
00

25
00

Function Evaluations

Fu
nc

tio
n

E
rr

or
 o

f M
ea

n
V

al
ue

F18_ABC_10D
F18_Proposed ABC_10D
F18_ABC_30D
F18_Proposed ABC_30D
F18_ABC_50D
F18_Proposed ABC_50D

Fig. 4. Comparative convergence for function F18 on 10D, 30D, and 50D

Very similar performance was achieved for both algo-
rithms as shown in Figure 7, and the same results were
achieved for functions F20, F26, and F27. Convergence
performance was the same for both algorithms, as shown
in Figures 8. Further, the same were achieved by both algo-
rithms for functions F1, F5, and F11, however, these three
functions have the best performance because all function
error values reached zero. For functions F10, F15, F16, F17,
F21, F23, and F28, the performance of our proposed ABC
algorithm was not better than that of the standard ABC
algorithm on the same dimensions. More specifically, the
performance of our proposed ABC algorithm was not better
than that of standard ABC algorithm for functions F15 and
F21 with 10, 30, and 50 dimensions; the performance of
our proposed ABC algorithm was not better than that of
the standard ABC algorithm for functions F10, F16, and
F17 with 30 and 50 dimensions; and the performance of
our proposed ABC algorithm was not better than that of the
standard ABC algorithm for function F28 with 10 and 30
dimensions.

2660

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
10
0

20
0

30
0

40
0

50
0

60
0

Function Evaluations

Fu
nc

tio
n

E
rr

or
 o

f M
ea

n
V

al
ue

F24_ABC_10D
F24_Proposed ABC_10D
F24_ABC_30D
F24_Proposed ABC_30D
F24_ABC_50D
F24_Proposed ABC_50D

Fig. 5. Comparative convergence for function F24 on 10D, 30D, and 50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

Function Evaluations

Fu
nc

tio
n

E
rr

or
 o

f M
ea

n
V

al
ue

F25_ABC_10D
F25_Proposed ABC_10D
F25_ABC_30D
F25_Proposed ABC_30D
F25_ABC_50D
F25_Proposed ABC_50D

Fig. 6. Comparative convergence for function F25 on 10D, 30D, and 50D

According to the above tables and figures, our proposed
ABC algorithm and the standard ABC algorithm were not
very effective at solving unimodal functions, especially func-
tions F2, F3, and F4. For all evaluations, functions F1, F5,
and F11 achieved the best performance because the error
values of the function-target pair reached zero. Moreover,
function F8 had the same performance for all evaluation
stages.

V. CONCLUSIONS

In this paper, we implemented comparative experiments
of our proposed ABC and the standard ABC algorithm
using benchmark problems from the CEC 2013 test suite.
We introduced levy flight initialization, chaotic OBL scout
initialization, and incorporated DE and PSO into the stan-
dard ABC algorithm to form our proposed ABC algorithm.
We selected the best parameter settings through a number
of initial comparative experiments and then evaluated the
performance of both algorithms with dimension sizes of
10, 30, and 50. In addition, we implemented comparative
experiments of our proposed ABC algorithm with that of the

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
20

40
60

80

Function Evaluations

Fu
nc

tio
n

E
rr

or
 o

f M
ea

n
V

al
ue

F9_ABC_10D
F9_Proposed ABC_10D
F9_ABC_30D
F9_Proposed ABC_30D
F9_ABC_50D
F9_Proposed ABC_50D

Fig. 7. Comparative convergence for function F9 on 10D, 30D, and 50D

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

20
.0

20
.5

21
.0

21
.5

22
.0

Function Evaluations

Fu
nc

tio
n

E
rr

or
 o

f M
ea

n
V

al
ue

F8_ABC_10D
F8_Proposed ABC_10D
F8_ABC_30D
F8_Proposed ABC_30D
F8_ABC_50D
F8_Proposed ABC_50D

Fig. 8. Comparative convergence for function F8 on 10D, 30D, and 50D

DE and PSO algorithms. From our results, we conclude that
the performance of our proposed ABC algorithm equals or
exceeds that of the standard ABC, DE, and PSO algorithms.

REFERENCES

[1] P. Civicioglu and E. Besdok. “A conceptual comparison of the
cuckoo-search, particle swarm optimization, differential evolution
and artificial bee colony algorithms.” Artificial Intelligence Review,
vol.39(4), pp. 315-346, 2013.

[2] J. J. Liang, B. Y. Qu, P. N. Suganthan, and A. G. Hernández-
Dı́az, “Problem definitions and evaluation criteria for the CEC 2013
special session on real-parameter optimization,” Computational Intell.
Lab., Zhengzhou University, Zhengzhou, China, Tech. Rep. 201212,
Nanyang Technological Univ., Singapore, Tech. Rep. 2013.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence:
From Natural to Artificial Systems. New York: Oxford University
Press, 1999, pp. 1-21.

[4] J. Kennedy and R. Eberhart. “Particle swarm optimization,” IEEE
International Conference on Neural Networks, pp. 1942-1948, 1995.

[5] R. Storn and K. Price. “Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces.” Journal of
Global Optimization, vol. 11(4), pp. 341-359, 1997.

[6] M. Dorigo, M. Birattari, and T. Stützle. “Ant colony optimization:
artificial ants as a computational intelligence technique.” IEEE Com-
putational Intelligence Magazine, vol. 1(4), 2006.

2661

TABLE IV
FUNCTION ERROR OF MEAN VALUES FOR OUR PROPOSED ABC

ALGORITHM, THE STANDARD ABC ALGORITHM, THE DE AND PSO
ALGORITHMS IN 10D

F./Eva. Proposed ABC ABC DE PSO
F1 0.00e+00 0.00e+00(=) 0.00e+00(=) 0.00e+00(=)
F2 2.20e+04 4.91e+05(-) 2.42e+03(+) 2.83e+05(-)
F3 7.27e+03 1.42e+05(-) 1.41e+00(+) 6.19e+05(-)
F4 3.50e+03 3.57e+03(≈) 2.71e+01(+) 6.76e+03(-)
F5 0.00e+00 0.00e+00(=) 0.00e+00(=) 0.00e+00(=)
F6 1.62e-03 3.77e-02(≈) 3.29e+00(-) 4.03e+00(-)
F7 3.72e+00 1.15e+01(-) 1.44e-03(+) 1.01e+01(-)
F8 2.02e+01 2.02e+01(=) 2.04e+01(≈) 2.03e+01(≈)
F9 2.61e+00 2.68e+00(≈) 1.14e+00(+) 3.47e+00(-)
F10 4.96e-01 4.68e-01(≈) 4.92e-02(+) 4.58e-01(≈)
F11 0.00e+00 0.00e+00(=) 1.14e+00(-) 4.83e+00(-)
F12 5.67e+00 9.23e+00(-) 8.24e+00(-) 1.09e+01(-)
F13 5.08e+00 1.03e+01(-) 1.21e+01(-) 1.83e+01(-)
F14 0.00e+00 0.00e+00(=) 2.20e+02(-) 2.91e+02(-)
F15 3.07e+02 2.71e+02(+) 1.13e+03(-) 5.93e+02(-)
F16 5.10e-01 3.29e-01(≈) 1.01e+00(-) 6.18e-01(≈)
F17 2.02e+00 2.13e+00(≈) 1.78e+01(-) 1.55e+01(-)
F18 2.23e+01 2.25e+01(≈) 3.16e+01(-) 2.64e+01(-)
F19 1.00e-06 1.00e-06(=) 1.07e+00(-) 6.56e-01(-)
F20 1.92e+00 2.13e+00(-) 2.36e+00(-) 2.73e+00(-)
F21 8.00e+01 1.43e+01(+) 3.73e+02(-) 2.59e+02(-)
F22 0.00e+00 1.73e-03(≈) 2.23e+02(-) 2.65e+02(-)
F23 3.50e+02 4.53e+02(-) 9.77e+02(-) 6.99e+02(-)
F24 1.09e+02 1.12e+02(≈) 2.02e+02(-) 2.00e+02(-)
F25 1.18e+02 1.19e+02(≈) 2.02e+02(-) 2.03e+02(-)
F26 1.07e+02 9.39e+01(+) 1.67e+02(-) 1.18e+02(-)
F27 3.20e+02 3.36e+02(-) 3.37e+02(-) 4.09e+02(-)
F28 4.80e+01 5.49e+01(-) 2.92e+02(-) 2.61e+02(-)

[7] D. Karaboga. An idea based on honey bee swarm for numerical
optimization, Erciyes Univ. Press, Erciyes, Tech. Rep. TR06, 2005.

[8] X. S. Yang. “Firefly algorithm, stochastic test functions and design
optimization.” International Journal of Bio-Inspired Computing, vol.
2 (2), pp. 78-84, 2010.

[9] X. S. Yang and S. Deb. “Cuckoo search via Lévy flights,” in Proc.
of World Congress on Nature & Biologically Inspired Computing,
2009, pp. 210-214.

[10] D. Karaboga and B. Basturk. “A powerful and efficient algorithm
for numerical function optimization: Artificial bee colony(ABC)
algorithm.” Journal of Global Optimization, vol. 39(3), pp. 459-471,
2007.

[11] D. Karaboga and B. Basturk. “On the performance of artificial bee
colony (ABC) algorithm.” Applied Soft computing, vol. 8, pp. 687-
697, 2008.

[12] D. Karaboga and B. Akay. “An artificial bee colony (abc) algorithm
on training artificial neural networks,” in 15th IEEE Signal Process-
ing and Communications Applications, 2007, pp.1-4.

[13] C. V. Benı́tez and H. Lopes. “Artificial bee colony algorithm ap-
proaches for protein structure prediction using the 3dhp-sc model.”
Intelligent Distributed Computing IV, pp. 255-264, 2010.

[14] S. K. Udgata, S. L. Sabat, and S. Mini. “Sensor deployment in
irregular terrain using artificial bee colony algorithm,” in IEEE
Congress on Nature & Biologically Inspired Computing, 2009, pp.
1309-1314.

[15] S. Okdem, D. Karaboga, and C. Ozturk. “An application of wireless
sensor network routing based on artificial bee colony algorithm,” in
IEEE Congress on Evolutionary Computation, 2011, pp. 326-330.

[16] W. C. Yeh and T. J. Hsieh. “Solving reliability redundancy allocation
problems using an artificial bee colony algorithm.” Computers &
Operations Research, vol. 38, pp. 1465-1473, 2010.

[17] B. Akay and D. Karaboga. “Artificial bee colony algorithm for large-
scale problems and engineering design optimization.” Journal of
Intelligent Manufacturing, vol. 23(4), pp. 1001-1014, 2010.

[18] D. Karaboga and B. Akay. “A comparative study of artificial Bee

TABLE V
FUNCTION ERROR OF MEAN VALUES FOR OUR PROPOSED ABC

ALGORITHM, THE STANDARD ABC ALGORITHM, THE DE AND PSO
ALGORITHMS IN 30D

F./Eva. Proposed ABC ABC DE PSO
F1 0.00e+00 0.00e+00(=) 0.00e+00(=) 0.00e+00(=)
F2 4.83e+06 4.89e+06(≈) 1.54e+05(+) 5.02e+06(-)
F3 1.73e+07 5.07e+07(-) 3.65e+06(+) 2.85e+08(-)
F4 4.36e+04 4.73e+04(≈) 4.62e+02(+) 1.92e+04(+)
F5 0.00e+00 0.00e+00(=) 3.09e-05(≈) 0.00e+00(=)
F6 1.11e-02 3.29e+00(-) 1.98e+01(-) 2.38e+01(-)
F7 5.94e+01 7.54e+01(-) 1.58e+00(+) 6.45e+01(-)
F8 2.08e+01 2.08e+01(=) 2.09e+01(≈) 2.09e+01(≈)
F9 2.41e+01 2.45e+01(≈) 9.17e+00(+) 2.70e+01(-)
F10 2.18e-01 1.10e-01(≈) 7.62e-02(≈) 1.55e+00(-)
F11 0.00e+00 0.00e+00(=) 1.42e+01(-) 5.65e+01(-)
F12 1.17e+02 1.65e+02(-) 1.14e+02(≈) 9.05e+01(+)
F13 1.55e+02 2.15e+02(-) 1.53e+02(≈) 1.48e+02(≈)
F14 0.00e+00 1.65e-01(-) 5.72e+02(-) 1.95e+03(-)
F15 3.48e+03 2.91e+03(+) 7.01e+03(-) 4.00e+03(-)
F16 1.33e+00 9.26e-01(+) 2.45e+00(-) 1.70e+00(-)
F17 3.04e+01 2.92e+01(≈) 5.62e+01(-) 1.01e+02(-)
F18 1.98e+02 2.32e+02(-) 1.99e+02(≈) 1.88e+02(≈)
F19 9.53e-02 1.36e-01(≈) 3.93e+00(-) 6.29e+00(-)
F20 1.23e+01 1.25e+01(≈) 1.19e+01(≈) 1.18e+01(≈)
F21 2.10e+02 1.35e+02(+) 3.07e+02(-) 2.10e+02(=)
F22 4.00e+01 1.28e+01(+) 4.44e+02(-) 2.19e+03(-)
F23 4.15e+03 3.61e+03(+) 7.11e+03(-) 4.53e+03(-)
F24 2.45e+02 2.71e+02(-) 2.17e+02(+) 2.74e+02(-)
F25 2.71e+02 2.89e+02(-) 2.48e+02(+) 2.87e+02(-)
F26 2.00e+02 2.00e+02(=) 2.37e+02(-) 2.29e+02(-)
F27 4.00e+02 4.00e+02(=) 4.95e+02(-) 1.02e+03(-)
F28 1.08e+02 1.23e+02(-) 3.00e+02(-) 2.96e+02(-)

colony algorithm.” Applied Mathematics and Computation, vol.
214(1), pp. 108-132, 2009.

[19] D. Whitley. “A genetic Algorithm tutorial.” Statistics and Computing,
vol. 4, pp. 65-85, 1994.

[20] B. Alatas. “Chaotic bee colony algorithms for global numerical
optimization.” Expert Systems with Applications, vol. 37, pp. 5682-
5687, 2010.

[21] G. Zhu and S. Kwong. “Gbest-guided artificial bee colony algorithm
for numerical function optimization.” Applied Mathematics and Com-
putation, vol. 217, pp. 3166-3173, 2010.

[22] W. Gao and S. Liu. “A modified artificial bee colony algorithm.”
Computers & Operations Research, vol. 39, pp. 687-697, 2012.

[23] C. T. Brown, L. S. Liebovitch, and R. Glendon. “Lévy flights in
Dobe Ju /’ hoansi foraging patterns.” Human Ecology, vol. 35, pp.
129-138, 2007.

[24] I. Pavlyukevich. “Lévy flights, non-local search and simulated an-
nealing.” Computational Physics, vol. 226, pp. 1830-1844, 2007.

[25] H. R. Tizhoosh. “Opposition-based learning: a new scheme for
machine intelligence,” in Proc. of International Conference on Comp.
Intell. for Modeling, Control and Automation, 2005, col. 1, pp.695-
701.

[26] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi. “GSA: a grav-
itational search algorithm.” Information Science, vol. 179(13), pp.
2232-2248, 2009.

[27] X. S. Yang and S. Deb. “Multiobjective cuckoo search for design
optimization.” Computers & Operations Research, vol. 40(6), pp.
1616-1624, 2013.

[28] X. S. Yang. Engineering optimization: an introduction with meta-
heuristic applications. New Jersey: John Wiley and Sons, 2010, pp.
153-161.

[29] G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev et al. “Lévy flight
search patterns of wandering albatrosses.” Nature, vol. 381, 1996.

[30] D. Swagatam and P. N. Suganthan. “Differential evolution: a survey
of the state-of-the-art.” IEEE Trans. on Evol. Computation, vol. 15(1),
2011.

2662

TABLE VI
FUNCTION ERROR OF MEAN VALUES FOR OUR PROPOSED ABC

ALGORITHM, THE STANDARD ABC ALGORITHM, THE DE AND PSO
ALGORITHMS IN 50D

F./Eva. Proposed ABC ABC DE PSO
F1 0.00e+00 0.00e+00(=) 0.00e+00(=) 0.00e+00(=)
F2 1.51e+07 9.86e+06(+) 4.91e+05(+) 1.13e+07(+)
F3 2.99e+07 3.53e+07(-) 1.97e+07(+) 3.25e+09(-)
F4 9.85e+04 1.04e+05(-) 1.83e+03(+) 2.96e+04(+)
F5 0.00e+00 0.00e+00(=) 1.34e-04(≈) 0.00e+00(=)
F6 1.17e-01 2.98e+01(-) 4.46e+01(-) 4.65e+01(-)
F7 1.10e+02 1.30e+02(-) 1.24e+01(+) 1.17e+02(≈)
F8 2.10e+01 2.10e+01(=) 2.11e+01(≈) 2.11e+01(≈)
F9 5.11e+01 5.24e+01(≈) 2.94e+01(+) 5.57e+01(-)
F10 2.26e-01 1.16e-01(≈) 1.37e-01(≈) 1.01e+01(-)
F11 0.00e+00 0.00e+00(=) 3.64e+02(-) 1.20e+02(-)
F12 3.60e+02 5.35e+02(-) 2.94e+02(+) 2.24e+02(+)
F13 3.26e+02 5.79e+02(-) 3.50e+01(+) 3.54e+02(-)
F14 0.00e+00 1.42e+00(-) 1.25e+03(-) 3.69e+03(-)
F15 8.29e+03 6.64e+03(+) 1.38e+04(-) 8.85e+03(-)
F16 1.90e+00 1.47e+00(+) 3.25e+00(-) 2.49e+00(-)
F17 5.08e+01 4.89e+01(≈) 9.52e+01(-) 2.32e+02(-)
F18 2.00e+02 6.03e+02(-) 3.95e+02(-) 4.03e+02(-)
F19 4.38e-01 5.03e-01(≈) 5.89e+00(-) 1.83e+01(-)
F20 2.27e+01 2.35e+01(≈) 2.18e+01(≈) 2.15e+01(≈)
F21 4.55e+02 2.06e+02(+) 7.05e+02(-) 3.13e+02(+)
F22 0.00e+00 1.17e+01(-) 1.23e+03(-) 4.54e+03(-)
F23 8.32e+03 7.88e+03(+) 1.36e+04(-) 9.70e+03(-)
F24 3.35e+02 3.53e+02(-) 2.50e+02(+) 3.48e+02(-)
F25 3.70e+02 3.91e+02(-) 2.92e+02(+) 3.74e+02(≈)
F26 2.00e+02 2.01e+02(≈) 3.21e+02(-) 3.18e+02(-)
F27 3.83e+02 4.01e+02(-) 8.34e+02(-) 1.75e+03 (-)
F28 4.00e+02 4.00e+02(=) 5.16e+02(-) 4.00e+02(=)

[31] M. Ventresca and H. R. Tizhoosh. “Improving the convergence of
back-propagation by opposite transfer functions,” in Proc. of IEEE
World Congress Computation Intell., 2006, pp. 9527-9534.

[32] S. Rahnamayan, R. T. Hamid, and M. A. S. Magdy. “Opposition-
based differential evolution.” in IEEE Trans. of Evolution Computa-
tion, vol. 12(1), pp. 64-79, 2008.

[33] A. K. Qin and X. Li. “Differential evolution on the CEC-2013 single-
objective continuous optimization testbed,” in Proc. IEEE Congress
on Evolutionary Computation, Cancun, Mexico, 2013, pp. 1099-1106.

[34] C. Stephen, M. James, and B. R. Antonio. “Standard Particle Swarm
Optimization on the CEC2013 Real-Parameter Optimization Bench-
mark Functions,” School of Information Technology, York University,
Tech. Rep., 2013.

2663

