
Agile Earth Observing Satellites Mission Planning
Using Genetic Algorithm Based on High Quality

Initial Solutions
Zang Yuan∗†, Yingwu Chen∗ and Renjie He∗
∗College of Information System and Management

National University of Defense Technology
Changsha, China 410073

†Email: zang.yuan@nudt.edu.cn

Abstract—This paper presents an improved genetic algorithm
to solve the agile earth observing satellite mission planning
problem. We study how to rapidly generate high quality initial
solutions, and four generation strategies are proposed. The effect
of the settings of operator parameters on the performance of
the algorithm is analyzed. The experiment results show that the
genetic algorithm based on high quality initial solutions generated
by Hybrid Random Heuristic Strategy (HRHS) is more effective
in solving the agile satellite mission planning problem, but in a
certain time cost. We expect that our results will provide insights
for the future application of genetic algorithm to satellites mission
planning problems.

I. INTRODUCTION

Earth Observing Satellites (EOS) play an important role
in various fields of nowadays’ society, such as mapping,
environmental monitoring. The mission of EOS is to acquire
photographs of specified areas on earth surface to satisfy
the requirements of different users. The mission planning
process of EOS mainly refers to the selection of a set of
tasks and arrangement of their sequence to maximize the sum
of revenue. Different from traditional satellites, Agile Earth
Observing Satellites (AEOS), such as the American Ikonos
satellite and the French Pleiades ones, have three degrees
of freedom direction, i.e., roll, pitch and yaw, dramatically
improving its observing ability. However, such ability is at the
sacrifice of increasing the complexity of the mission planning
process. For instance, the observing time windows become
much longer, and the number of ways of observing a target
on the Earth surface may be infinite, for starting times of the
observation are free. As a result, agile satellite can observe
much more tasks than non-agile satellite. As shown in Fig.
1, non-agile satellite can only complete three observing tasks
while agile satellite can complete all the five observing tasks
because of its long time window. It turns the EOS mission
planning problem from only targets selection into both targets
selection and observing time determination. This leads to
significantly expanded feasible solution space and the more
difficulty of searching solution[1]. Thus, traditional scheduling
method for non-agile satellites is no longer applicable for agile
satellites.

Fig. 1. Non-agile EOS and Agile EOS

Lots of researches studying the agile satellites mission
planning problems have been reported in the literature. Wolfe
et al.[2] introduced their models after summarizing the EOS
scheduling problem. They proposed three methods to solve
the EOS scheduling problem: a priority dispatch method, a
look-ahead algorithm and a genetic algorithm. The priority
dispatch method is fast and simple. They used it to pro-
duce acceptable schedules most of the time. The look-ahead
algorithm redefines the best location rule to look ahead in
the sequence of tasks which are not scheduled. The genetic
algorithm can create near-optimal results but it takes more
time. The representation of the genetic algorithm is based on
permutation, so it is easier to execute mutation and crossover
operations.

Verfaillie et al.[3] studied task acceptance and scheduling
problem of AEOS for single satellite in PLEIADES project.
They built mathematical model and analyzed its NP-hard
feature. The paper presented different methods which had
been investigated in order to solve a simplified version of
the complete problem: a fast greedy algorithm, a dynamic
programming algorithm, a constraint programming approach
and a local search method. Their results showed that dynamic
programming algorithm is better and fast, greedy algorithm
is inferior but fast, constraint programming approach is also
inferior and local search method is best when all constraints
were taken into consideration.

603

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Mancel et al.[4] built integer programming model for
PLEIADES in France and solved it by column-generation
algorithm. The results showed that the performance is similar
to local search of Verfaillie when the data is small, but bad
when the data is big.

Bistra Dilkina et al.[5] approached a method combining
search based on arrangement and constraint propagation to
solve the AEOS problems. They used hill-climbing method
and simulated annealing to generate new arrangement first,
then determined if a task can be scheduled the arrangement
by constraint propagation.

Djamal Habet et al.[6, 7] solved single agile satellite plan-
ning problems using tabu search algorithm. The tabu search
algorithm explores a search space by consistent and saturated
configurations. They used effective constraint propagation to
ensure each new move is consistent in the search procedure.
They introduced a secondary problem: minimization of the
sum of the transition durations in a schedule in order to obtain
better solution. They also gave upper bounds on a relaxed
problem by dynamic programming algorithm.

Beaumet at al.[8] proposed their work about autonomous
decision making on board for AEOS equipped with a cloud
detection instrument. An online decision-making problem was
described to manage on board and a reactive/deliberative
architecture was provided. They also introduced an iterated
stochastic greedy search algorithm in the deliberative part.

We notice that few papers deeply researched genetic algo-
rithm on solving AEOS mission planning problems. Genetic
algorithm(GA) is an optimization heuristic based on stochastic
search, which is inspired by the biological process of natural
selection[9, 10]. They have been used to solve a wide range
of combinatorial optimization problems such as planning and
scheduling, traveling salesman problem (TSP), vehicle routing
problem (VRP), layout design and so on. GA has been used
to effectively solve a large number of complex problems with
multiple objectives and constraints[11–13].

In this paper, we use an improved genetic algorithm based
on high quality initial solutions generated by different s-
trategies to solve the agile earth observing satellite mission
planning problem. The parameters are determined by experi-
ments and compare it with heuristics and standard simulated
annealing. The results show that this method can improve
the performance of the algorithm for AEOS mission planning
problems.

II. MODEL

A. Problem Description and Assumption

In this paper, we consider a single satellite in one track,
during which each target can only be observed once. A satellite
can only observe a target during the limit time, visibility
window. However, there are too many target observing tasks
to be complete for the satellite. Then, the planning process
need to decide which tasks are selected and when to complete
the observing tasks.

B. Mathematical Model

The AEOS mission planning problem considered in this
study can be defined formally as follows. For one satellite,
there is a set of N observing tasks to be planned. Each task
i(i = 1, 2, . . . , N) is identified with the following attribute of
non-negative real number value:
ti: observing time, which is the necessary minimum time it

takes to complete the task;
tesi: earliest start visibility time, after which the target can

be observed;
tlei: latest end visibility time, after which the target cannot

be observed;
tlsi: latest start observing time, which can be defined by

tlsi = tlei − ti;
tvi: visibility time, which is equal to tlei − tesi;
tsi: real start observing time, which must between tesi and

tlsi;
ri: the revenue obtained from the completion of task i.
Given the above definitions, the objective is to find an

observing sequence of all selected tasks for one satellite that
maximizes the total revenue R, which can be formulated as:

maxR =
N∑
i=1

xiri (1)

where xi is an indicator that equals to 1 if task i is selected,
and 0 otherwise.

Despite there are many practical constraints for real
application[14], in this research, we only consider the follow-
ing three constraints.

1) Planning Period Constraint: This constraint ensure that
all planned execution of tasks must be in the planning period.
Specifically, the start time of task execution cannot be earlier
than the planning period start time Ts and the finish time of
the task execution cannot be later than the planning period end
time Te. The constraint is represented as follows:

Ts ≤ tsi < tei ≤ Te (2)

2) Task Time Window Constraint: This constraint indicates
that any task to be executed must be in its time window. It
means that the execution of task cannot be started before its
earliest start time or after its latest start time. The constraint
is represented as follows:

tesi ≤ tsi ≤ tlei (3)

3) Duration constraint: This constraint represents that at
any time point one satellite can only perform one task. In
other words, no overlapping exists between two tasks. The
constraint is represented as follows:

tsi + ti ≤ tsj(i 6= j and tsi ≤ tsj) (4)

Thus, if the start time of task j is not earlier than the task
i start time, the start time of task j is not earlier than the end
time of task i.

604

Fig. 2. Try to Schedule a Task

III. ALOGRITHM

The simple genetic algorithm (SGA) can be defined as a
tuple consisting of eight elements:

SGA = (C,E, P0,M,Φ,Γ,Ψ, T) (5)

where C is the coding mode for individual; E is the fitness
value; P0 is the initial solutions; M is the population size; Φ
is the selection operator; Γ is the crossover operator; Ψ is the
mutation operator and T is the terminal condition.

A. Coding Mode

As each task will not be observed repeatedly, our coding
mode is learnt from the use of genetic algorithm for traveling
salesman problem (TSP). For a problem with tasks, we use a
string of positive integers sequence from 1 to N to represent
an individual’s chromosome, which signifies the order of
tasks to be scheduled. Thus, different orders of the positive
integers represent different individuals. For example, there are
five tasks (from 1 to 5) to be planned. A string {1,2,3,4,5}
represents a chromosome and a string {3,2,5,4,1} represents
another chromosome.

B. Decoding Mode and Fitness Value

We use the total revenue R as an individual’s fitness value.
When we evaluate an individual’s fitness value, we try to
schedule all the tasks in accordance with the sequence of its
chromosome. We make xi equal to 1 if task i can be completed
without constraints violations, otherwise xi equal to 0, and
then try to schedule the next task in the sequence until the
last task.

As shown in Fig. 2, when we try to schedule a candidate
task i (the gray one in the figure), we try to insert the task
into each blank window. From the figure we can see that, task
time window constraints are not met for 1st, 3rd and 4th blank
window, while all constraints are met for 2nd blank window.
Thus we make xi equal to 1 and the real start time is set by
the end time of the 1st scheduled task. Then we schedule next
task in the string until all tasks have been tried to schedule
and the end of the sequence is reached.

After decoding a chromosome, the fitness value (total rev-
enue R) can be calculated according to Equ. (1). For example,
there is a chromosome string {3, 2, 5, 4, 1}. We schedule the
task 3 at first and then try to schedule task 2, task 5,. . . , until
task 1. If string {3, 5, 4} is decode, means that task 3, 5, and 4
can be executed in practice and the revenue R = r3 + r5 + r4.

C. High Quality Initial Solutions

Like other intelligent optimization algorithms, GA begin
with an initial set of solutions and find the optimal solution
at last by iteration. So the quality of the initial population
directly impacts the efficiency of the algorithm. Generally,
for an algorithm, we expect the solving process is fast and
the obtained solution is good. However speed and result are
usually contradictory. Therefore, how to effectively generate
high quality initial solutions is a problem worthy of further
study for most intelligent optimization algorithms including
GA.

In this paper, high quality initial solutions is defined as
follows. This initial solutions in the population must have high
average fitness value R and high population diversity, which
can be described by variance σ2 (or range d) of individual
fitness value. On the other hand, we must take the generation
time t into consideration, since the time is more important for
satellite mission planning because of its emergency.

We propose four strategies to generate initial solutions:
1) Random Strategy(RS): Generate M strings of positive

integers sequence randomly and use the strings as the initial
solutions directly, which is like the SGA.

2) Random No Duplicates Strategy(RNDS): In this paper,
we assume that the individuals with the same fitness value
are duplicate. So we generate a string of positive integers
sequence randomly and calculate the fitness value at first. The
new generated string is added into the population if the fitness
value is not equal to any other fitness value of existing initial
solutions. Otherwise the string is discarded and the process
above is repeated until the number of initial solutions in the
set reach M .

3) Hybrid Random Heuristic Strategy(HRHS): In this s-
trategy, half of the initial solutions are generate by random
strategy and the others are generated by mixing heuristic.
At first, half of the initial solutions are generate by random
strategy. After that we generate other half of initial solutions
by mixing original initial solutions as follows:

Step 1: Select a solution Si randomly from the set of original
initial solutions by selection probability which is according to
their fitness value.

Step 2: Select the first task form Si, put it into the string
sequence of new solution Snew if the task is not in Snew,
otherwise select the next task until a task is added into Snew.

Step 3: Repeat Step 1 and 2 until all the tasks have been
added into Snew. Thus a new initial solution is generated.

Step 4: Repeat Step 1 to 3 until the number of initial
solutions reach M .

For example, we generate three original initial solutions by
three heuristic: S1={1,2,3,4,5|R=3}, S2={3,2,5,1,4|R=5} and
S3={4,2,1,5,3|R=2}. As shown in Fig. 2, S2is selected first
and task 3 is put into Snew. Then S3 is selected second and
task 4 is put into Snew. And so on, task 2,1 and 5 is put into
Snew respectively.

Here we define six heuristic based on greed rules:
Greed Rule 1: Arrange the task in an ascending sort order

of earliest start time.

605

Fig. 3. An Example to Generate Initial Solutions by HRHS

Fig. 4. An Example for Same-Sit-Copy-First Principle

Greed Rule 2: Arrange the task in a descending sort order
of revenue.

Greed Rule 3: Arrange the task in an descending sort order
of unit revenue r̃i = ri/ti.

Greed Rule 4: Arrange the task in an ascending sort order
of observing time.

Greed Rule 5: Arrange the task in an ascending sort order
of visibility time.

Greed Rule 6: Arrange the task in an ascending sort order
of blank visibility time tbvi = tvi − ti.

4) Filtrate Strategy(FS): Generate M+ = wM (w is a
positive integer) solutions by random strategy and sort them
by their fitness value in descend order. Then select the M
solutions every w solutions as initial solutions at the beginning
with 1st solution.

D. Genetic Operators

1) Selection Operator: In selection operator, we select a
pair of solutions from parent randomly and then preserve
the solution with greater fitness value as a next generation
individual until the number reaches the population size.

2) Crossover Operator: In this paper, we use the crossover
operator based on Same-Sit-Copy-First Principle[15] by the
crossover probability Pc, which can keep the gene in both
absolute location and relative location.

For example in Fig. 4, we select two parent individuals
according to Pc and two cross locations randomly. At first, we
copy the gene in the same location if they are the same (such
as 9,4 and 7). Then we copy the gene from parent individual
1 between random cross location (such as 1,5 and 8). At last,
we copy the other gene in parent individual 2 as its sequence.
Thus a new individual is generated.

3) Mutation Operator: In this paper, we select a solution
by the mutation probability Pm and exchange the values of
two randomly chosen gene locations.

For example in Fig. 5, we select a parent individual and two
cross location randomly. Then we generate the new children
individual by exchanging the gene in the cross location.

Fig. 5. Mutation Operator by Exchange of Two Gene Location

Fig. 6. Tasks in Test Problem with 50 tasks

E. Termination Rule

The algorithm is terminated when the number of iterations
reach the maximum number of iterationsGmax.

IV. RESULTS AND DISCUSSION

A. Test Problems

In the experimental study, test problems were generated
randomly. We generated 5 sets of test problems with the same
planning period T and the number of task are 10, 30, 50,
70 and 90, respectively. Tasks in each set of test problems
can be generated as follows. The earliest start visibility time
tesi is drawn from a uniform distribution(0, T). The observing
time ti is drawn from a normal distribution (6,1). The latest
start visibility time tlsi equals to earliest start time adding the
absolute value of the random number drawn from a normal
distribution (5,1). The revenue pi is drawn from a uniform
distribution (0,1). Tasks in each set of test problems are
numbered by earliest start time order.

Fig. 6 shows tasks distribution with N = 50. The vertical
axis represents time (in seconds) and the horizontal axis
represents the number of tasks. The solid lines represent ti
and the dashed lines mean the time windows. We can see the
50 tasks during the planning period and violent conflict among
them from the figure intuitively.

B. Parameter Study and Results

In this section, we study the effect of different parameters
(population size M , crossover probability Pc and mutation
probability Pm) on the algorithm by controlling variables and
find the best parameter combination (M = 100, Pc = 0.8 and
Pm = 0.0006). Here we use the test problem with N = 50
and generate initial solutions by Random Strategy.

In order to get the reliable experiment results, we repeat
the experiments ten times for each study. We compare the
results in terms of average total revenue R̄, the number of
completed tasks N̄c and processing time T̄p (in CPU seconds).
Test programs are coded in MATLAB 2010a and ran on a
Lenovo computer with an Intel Core 2 1.66GHz processor.

606

TABLE I
RESULTS OF DIFFERENT M

M R̄ N̄c T̄p

10 6.9644 9 34.288

50 8.4787 10.3 170.306

100 10.4822 14.7 349.098

150 11.0184 14.8 523.069

200 11.399 15 672.423

Fig. 7. The Evolution Curve in Different M

TABLE II
RESULTS OF DIFFERENT Pc

Pc R̄ N̄c T̄p

0.0 8.2738 11.0 45.271

0.2 8.0114 11.3 77.313

0.4 8.8428 13.4 109.98

0.6 9.7004 13.8 146.203

0.8 99975 13.2 174.393

1.0 8.9885 12.4 201.256

1) Population Size: We keep other parameters the same and
repeat the experiments with M= 10, 20, 50, 100, 150, 200.
The results and evolution curve are shown in Table I and Fig.
7, respectively.

From the table and figure we can see that population size
has a great influence on the results. As the population size
increases, convergence speed and total revenue increase, while
processing time becomes longer. Since the population size
is positively related to processing time, there is a tradeoff
between results and processing time when we are to determine
the population size. The figure shows that the increase speed
of total revenue decreases gradually as the population size
increases. Therefore we set M=100 in terms of time and
performance.

2) Crossover Probability: We keep other parameters and
repeat the experiments with Pc = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0.
The results and evolution curve is shown in Table II and Fig.
8.

We can see that crossover probability has a great influence
on the results but they are not monotonous related. As the
crossover probability increases, the total revenue first rises
and then falls and processing time takes longer. So there is

Fig. 8. The Evolution Curve in Different Pc

TABLE III
RESULTS OF DIFFERENT PM

Pm R̄ N̄c T̄p

0.000 5.377 8.4 120.246

0.002 8.7866 12.2 138.435

0.004 9.282 12.3 153.27

0.006 9.8138 13.1 163.051

0.008 7.7393 10.4 176.343

0.010 6.7996 9.3 201.693

Fig. 9. The Evolution Curve in Different Pm

a tradeoff between results and processing time when we are
to determine crossover probability. In this sample the result is
best with Pc = 0.8.

3) Mutation Probability: We keep other parameters the
same and repeat the experiment with Pm = 0.000, 0.002, 0.004,
0.006, 0.008, 0.010. The results and evolution curve is shown
in Table III and Fig. 9.

We can see that mutation probability has a huge influence
on the results but mutation probability and fitness value are not
monotonous related, too. As the mutation probability increas-
es, the total revenue first rises and then falls and processing
time becomes longer. When mutation operator is not used (Pm

= 0.000), the algorithm loses the ability of search. So there is
also a tradeoff between results and processing time when we
are to determine the mutation probability. In this sample the
result is best with Pm = 0.006.

C. Solutions Initialization Strategy Study and Results

In this section, we run the algorithm with four different
strategies to generate initial solutions in order to study whether

607

TABLE IV
RESULTS OF DIFFERENT SOLUTIONS INITIALIZATION STRATEGIES

Strategy T̄g
Fitness Value

Mean Max. Min. Range Var.

RS 0.204 8.0417 11.4002 4.3578 7.0425 1.9448

RNDS 0.213 8.0297 11.2550 4.4622 6.7928 1.7586

HRHS 0.319 9.6745 13.1538 4.6106 8.5432 4.8844

FSa 3.827 8.1717 12.7482 4.8444 7.9038 1.8541

FSb 37.513 8.1892 13.1835 4.9801 8.2034 1.9370
a means select 100 solutions from 1000 solutions.
b means select 100 solutions from 10000 solutions.

Fig. 10. The Evolution Curve in RS and HRHS

and how different solutions initialization strategies have an
effect on algorithm performance. In order to get the reliable
experiment results, we repeat the experiments ten times for
each strategy. The results are shown in Table IV. In the table,
T̄g is the time of initial solutions generating. Mean, maximum
and minimum values, range and variance of the fitness value
are listed as well. Mean, maximum and minimum values can
represent the quality of the initial solutions and range and
variance can indicate their diversity.

From Table IV, we can see that, in HRHS, the average
fitness value is the biggest, the population diversity is better
(variance and range is bigger) and processing time is much
shorter than FS. FS is better than first two strategies in average
fitness value and diversity but it takes too much time. RS is
slightly better than RNDS.

We draw the evolution curves of GA with HRHS and RS in
Fig. 10. We can find that, for the algorithm with HRHS, the
convergence speed is faster and result is better that with RS.
So the GA with this strategy of generating initial solutions can
find better solutions rapidly by smaller number of iterations.

D. Comparison Study and Results

In this section, the results obtained by genetic algorithm
based on five strategies of initial solutions and simulated
annealing (SA) are compared. The parameters of GA are
M = 100, Pc = 0.8, Pm = 0.006, Gmax = 50, the test
problems have 10, 30, 50, 70 and 90 tasks, respectively. We
run ten times for each test set to ensure the reliable results.
The results are shown in Table V.

From the table we can see that, for the small-scale data,
all the algorithms and strategies have the same mean total

TABLE V
RESULTS OF DIFFERENT ALGORITHM

Test Set Algorithm R̄ N̄c T̄p

10

RS 3.9782 10.0 9.923
RNDSa — — —
HRHS 3.9782 10.0 9.746

FS1 3.9782 10.0 10.908
FS2 3.9782 10.0 20.722
SA 3.9782 10.0 30.738

30

RS 8.1286 15.9 18.478
RNDS 8.3283 16.1 19.266
HRHS 8.4465 16.3 18.400

FS1 8.3346 16.1 20.868
FS2 8.3283 16.2 41.670
SA 8.3549 16.2 51.330

50

RS 14.2060 22.3 27.553
RNDS 14.3405 21.9 27.022
HRHS 15.0225 23.8 27.960

FS1 14.4068 22.7 30.760
FS2 15.0070 23.1 63.954
SA 14.8016 22.9 70.496

70

RS 20.9655 32.6 36.753
RNDS 20.1638 32.4 36.893
HRHS 21.1788 32.3 37.024

FS1 21.1176 32.8 42.319
FS2 20.3420 34.4 90.685
SA 20.4024 30.7 95.117

90

RS 20.0290 33.4 44.783
RNDS 20.0290 32.6 44.154
HRHS 21.8689 37.6 46.260

FS1 20.1245 33.4 49.726
FS2 20.3433 33.9 109.420
SA 20.7596 36.8 116.392

a For small-scale data, generating initial solutions with
RNDS takes too long time so we discard the results.

revenue and number of completed tasks. However, for large-
scale data, the algorithm with HRHS has greater advantages
on total revenue and processing time.

V. CONCLUSION

In this paper, we present a genetic algorithm based on high
quality initial solutions to solve the AEOS mission planning
problem. Four strategies are designed to generate high qual-
ity initial solutions. Chromosome representation and genetic
operators are designed for the problem. The sensitivities of
parameters, such as population size, crossover and mutation
rates, are investigated in the experiments. Experimental results
show that the genetic algorithm with initial solutions generated
by HRHS performs is better than others for AEOS mission
planning problem. Experimental results also suggest that high
quality initial solutions have a great effect on improving the
performance of GA.

608

ACKNOWLEDGMENT

This research is supported by the National Natural Science
Foundation of China (No.71101150 and 71101013).

REFERENCES

[1] G. Beaumet, G. Verfaillie, and M.-C. Charmeau, Estima-
tion of the minimal duration of an attitude change for an
autonomous agile earth-observing satellite. Springer,
2007, pp. 3–17.

[2] W. J. Wolfe and S. E. Sorensen, “Three scheduling algo-
rithms applied to the earth observing systems domain,”
Management Science, vol. 46, no. 1, pp. 148–166, 2000.

[3] M. Lemaı̂tre, G. Verfaillie, F. Jouhaud, J.-M. Lachiver,
and N. Bataille, “Selecting and scheduling observations
of agile satellites,” Aerospace Science and Technology,
vol. 6, no. 5, pp. 367–381, 2002.

[4] C. Mancel and P. Lopez, “Complex optimization prob-
lems in space systems,” in 13Th International Confer-
ence on Automated Planning & Scheduling (ICAPS’03),
Conference Proceedings.

[5] B. Dilkina and B. Havens, “Agile satellite scheduling via
permutation search with constraint propagation,” 2005.

[6] D. Habet, M. Vasquez, and Y. Vimont, “Bounding
the optimum for the problem of scheduling the
photographs of an agile earth observing satellite,”
Computational Optimization and Applications, vol. 47,
no. 2, pp. 307–333, 2008. [Online]. Available: ¡Go to
ISI¿://WOS:000281698100006

[7] D. Habet, Tabu Search to Solve Real-Life Combinatorial
Optimization Problems: A Case of Study, ser. Studies in
Computational Intelligence. Springer Berlin Heidelberg,
vol. 203, ch. 6, pp. 129–151.

[8] G. Beaumet, G. Verfaillie, and M.-C. Charmeau,
“Feasibility of autonomous decision making on
board an agile earth-observing satellite,” Computational
Intelligence, vol. 27, no. 1, pp. 123–139, 2011. [Online].
Available: ¡Go to ISI¿://WOS:000287401200008

[9] D. E. Goldberg and J. H. Holland, “Genetic algorithms
and machine learning,” Machine learning, vol. 3, no. 2,
pp. 95–99, 1988.

[10] L. D. Chambers, Practical handbook of genetic algo-
rithms: complex coding systems. CRC press, 2010,
vol. 3.

[11] L. T. Bui, M. Barlow, and H. A. Abbass, “A multi-
objective risk-based framework for mission capability
planning,” New Mathematics and Natural Computation,
vol. 5, no. 02, pp. 459–485, 2009.

[12] J. Xiong, K. Shafi, and H. A. Abbass, “Multi-uncertainty
problems (mup) with applications to managing risk in
resource-constrained project scheduling,” in Evolutionary
Computation (CEC), 2012 IEEE Congress on. IEEE,
Conference Proceedings, pp. 1–8.

[13] J. Xiong, J. Liu, Y. Chen, and H. Abbass, “A knowledge-
based evolutionary multi-objective approach for stochas-
tic extended resource investment project scheduling prob-
lems,” pp. 1–1, 2013.

[14] J. Liu, W. Zhong, and L. Jiao, “A multiagent evolutionary
algorithm for constraint satisfaction problems,” IEEE
Trans Syst Man Cybern B Cybern, vol. 36, no. 1, pp.
54–73, 2006, liu, Jing Zhong, Weicai Jiao, Licheng
eng Evaluation Studies Research Support, Non-U.S.
Gov’t 2006/02/14 09:00 IEEE Trans Syst Man Cybern
B Cybern. 2006 Feb;36(1):54-73. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/16468566

[15] L.-N. Xing, Y.-W. Chen, K.-W. Yang, F. Hou, X.-S.
Shen, and H.-P. Cai, “A hybrid approach combining an
improved genetic algorithm and optimization strategies
for the asymmetric traveling salesman problem,” Engi-
neering Applications of Artificial Intelligence, vol. 21,
no. 8, pp. 1370–1380, 2008.

609

