
A Parallel Lagrangian-ACO Heuristic for Project Scheduling

Oswyn Brent, Dhananjay Thiruvady, Antonio Gómez-Iglesias, Rodolfo Garcı́a-Flores
CSIRO Computational Informatics

CSIRO
Clayton, Australia

{oswyn.brent, dhananjay.thiruvady, antonio.gomez, rodolfo.garcia-flores}@csiro.au

Abstract—In this paper we present a parallel implementa-
tion of an existing Lagrangian heuristic for solving a project
scheduling problem. The original implementation uses La-
grangian relaxation to generate useful upper bounds and
provide guidance towards generating good lower bounds or
feasible solutions. These solutions are further improved using
Ant Colony Optimisation via loose and tight couplings. While
this approach has proven to be effective, there are often large
gaps for a number of the problem instances. Thus, we aim to
improve the performance of this algorithm through a parallel
implementation on a multicore shared memory architecture.
However, the original algorithm is inherently sequential and
is not trivially parallelisable due to the dependencies between
the different components involved. Hence, we propose different
approaches to carry out this parallelisation. Computational ex-
periments show that the parallel version produces consistently
better results given the same time limits.

I. INTRODUCTION

The increasing popularity of multi-core processors offers
an attractive opportunity for improving the results of many
existing scientific applications without increasing the time
required to achieve those results. Alternatively, the possibil-
ity of attaining similar results in reduced time-frames is also
appealing. In order for programs to make full use of available
hardware, as well as scale into the future, they must be writ-
ten in a multi-threaded manner. There are several plausible
alternatives to achieve such a parallel implementation. In this
study, we consider a multicore shared memory approach.

Project scheduling is a topic of great interest, and has
been for decades. A typical project consists of a number
of tasks and the aim is to optimise an objective related to
the completion time and value of the tasks. More recently
there has also been interest in maximising the net present
value (NPV) of a project, which is the sum of the cash
flows of all completed tasks, discounted based on the time
of completion [4], [5], [6]. NPV is an important financial
concept, and represents the time adjusted value of a project.
The higher the NPV of a project, the more profitable it is
to the company.

In constraint optimisation, metaheuristics have been
widely used ([1]). However, when these techniques are
combined with other methods like Lagrangian relaxation
(LR), parallel approaches have not received much attention.
For example, in [2], the authors use a hybrid Lagrangian
- ant colony heuristic (AL-MMKP) to solve the multiple-
choice multidimensional knapsack problem, though they
only consider parallelising the Ant Colony Optimisation
(ACO) component to improve run times. There have also
been studies with parallel ACO [18] and parallel genetic

algorithms [19] for similar resource constrained problems.
However, to the best of our knowledge there has been no
prior work on parallelising such a hybrid algorithm for
project scheduling. Thus, in this study, we explore a parallel
implementation of a hybrid LR - ACO implementation to
efficiently solve the well-known project scheduling problem
([3]). We focus on the parallelisation of an existing imple-
mentation that has already proven to achieve excellent results
for this problem.

Lagrangian relaxation (LR) is a well-known technique
applied to integer programming problems ([7]). Many com-
putationally hard problems can be tackled by considering a
simpler version of the problem which relaxes one or more
sets of complicating constraints. The solution to the relaxed
problem can provide useful information related to the orig-
inal problem, in particular, upper bounds (for maximisation
problems) which provide performance guarantees. Addition-
ally, lower bounds may also be identified by repairing the
relaxed solutions. Kimms [3] showed how such a scheme
could be successful in the context of project scheduling.

ACO is a metaheuristic based on the foraging behaviour
of ants which has been successfully applied to various
combinatorial optimisation problems [8]. Furthermore, it has
proved to be effective on project scheduling problems [9],
[4], [6]. However, ACO and more generally metaheuristics
struggle in the presence of hard non-trivial constraints and
unlike LR, ACO focuses on building feasible solutions to the
original problem. Thus by combining the relative strengths
of each of these algorithms, [10] showed that such a hybrid
approach is effective for project scheduling.

In the current study, we parallelise the hybrid LR and
ACO (LR-ACO) heuristic. While LR-ACO is more effec-
tive than previous methods, its data dependencies make it
difficult to parallelise. Each iteration of LR depends on
the previous, and each iteration of ACO depends on the
LR (see Fig. 1) so OpenMP directives cannot be trivially
used. Many small sections within the algorithm have no
data dependencies could be easily parallelised. However,
they comprise a small proportion of the overall computation,
so parallelising them leads to minimal improvement in the
overall performance of the algorithm. In addition to this,
the large number of small components is unattractive to
parallelise and a higher level approach is preferred [11].

The rest of this paper is organised as follows. The RCP
problem is briefly stated in Section II. LR-ACO and its
components are presented in Section III while in Section IV
we detail our parallelisation of the algorithm (Par-LR-ACO).
Experimental results and analysis are provided in Section

2985

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Fig. 1. Execution pattern of the original LR-ACO algorithm

LR LR

LR

ACO ACO

ACO

sc
he
du
le

sc
he
du
le

sc
he
du
le

post-ACO

V. Finally, Section VI concludes the paper and provides a
variety of perspectives.

II. PROBLEM FORMULATION

The RCP scheduling problem can be formally stated as
follows. There are a number of tasks, each with durations
and associated cash flows. Each cash flow is discounted
based on some discount rate, α and time of cash flow.
The constraints to be satisfied include task precedences,
resource limitations and a global deadline. We list notation
and formulae used.

T The set of tasks to be scheduled.
di The duration of task i.
cfit The cash flow of task i in period t.
ci The total cash flow of task i.

ci =
∑di
t=1 cfite

α(di−t)

si The start time of task i.
P The set of precedences. If a precedence exists

between task i and j, (i, j) ∈ P
R The set of resources. For k resources, R =

{R1, . . . , Rk}.
rik The amount of resource k required by task i.
δ The deadline that all tasks must be completed

by.
NPV The summed net present value of all tasks.

NPV =
∑n
i=1 cie

α(si+di)

The objective is to maximise the NPV as defined as
follows.

max.
n∑
i=1

cie
α(si+di) (1)

s.t. si + di ≤ sj ∀(i, j) ∈ P (2)∑
i∈S(t)

rik ≤ Rk k = {1, . . . ,m}, t = {1, . . . , δ}

(3)
si + di ≤ δ ∀i ∈ T (4)

where S(t) is the set of tasks executing at time t. Constraint
(2) specifies all tasks must start after their predecessors have
completed. Constraint (3) requires that all the resources are
satisfied and Constraint 4 requires that all the deadlines are
satisfied.

Alternatively, a solution can be represented by a permu-
tation of tasks π which can be mapped to schedule [10]. This
schedule can be made feasible by ensuring all the constraints
are satisfied. The only potential issue is the deadline which
may not be satisfied if the horizon is small. However, like
[3], we ensure the deadlines are large enough to always
generate deadline-feasible solutions.

III. THE HYBRID LR-ACO ALGORITHM

LR-ACO uses an adaptation of the Lagrangian model
used by [12] and an ACO model suggested in [13].

A. Lagrangian heuristic

For the sake of completeness, we briefly provide the
integer programming (IP) model used by [12] and describe
the associated Lagrangian relaxation. Let xjt be binary
variables such that xjt = 1 if task j completes by time
t and 0 otherwise. The model is specified as follows:

max.
n∑
i=1

δ∑
t=2

cie
−αt(xit − xit−1)

(5)
s.t. xit ≥ xit−1 ∀i ∈ T, t ∈ {1, . . . , δ} (6)

xiδ = 1 ∀i ∈ T (7)
xjt ≤ xit−dj ∀(i, j) ∈ P, t ∈ {1, . . . , δ} (8)
n∑
i=1

rit(xit − xit−di) ≤ Rkt ∀k ∈ R, t ∈ {1, . . . , δ}

(9)
xit ∈ {0, 1} ∀i ∈ T, t ∈ {1, . . . , δ} (10)

Constraint (6) enforces that a task stays completed once
it has finished and Constraint (7) requires that all tasks
complete. The precedences are enforced via Constraint (8)
and the resource constraints are specified by Constraint (9).

The Lagrangian relaxation by relaxing the resource
constraints and introducing multipliers λkt, k ∈ R, t ∈
{1, . . . , δ} [3]. The upper bound is then obtained by solving
the Lagrangian dual defined by:

LRR(λ) = max.
n∑
i=1

δ∑
t=2

cie
−αt(xit − xit−1)+

∑
k∈R

δ∑
t=1

λkt

Rkt − n∑
i=1

t+dj−1∑
t̂=t

rit̂(xit − xit−di)

 (11)

Terms and symbols used in the LR algorithm are as
follows:

π A permutation of tasks, as described in Section
II.

πbs The best permutation found so far.
LB Current lower bound.
UB Current upper bound.
ST A set of start times for tasks.
λ The Lagrange multipliers over all time periods.
γ A scaling factor for the Lagrange multiplier.
gap The proportional gap between the upper and

lower bounds.

Alg. 1 shows pseudocode for the Lagrangian Relaxation
algorithm used.

2986

Algorithm 1: Lagrangian Relaxation
Data: RCP instance
Result: πbs
Initialise πbs ← NULL; λ, i← 0; γ ← 2;1
LB ← −∞; UB, gap←∞;
while γ, gap > 0.01 do2

ST ← Solve(λ,UB);3
π ← GenerateList(ST);4
ImproveLB(π);5

UpdateBest(πbs, π, γ);6

LB = NPV(πbs);7
UpdateMult(λ, LB∗, UB, ST, γ);8

gap← |UB−LBUB |;9
i← i+ 1;10

ImproveLB(π);11

a) Solve(λi, UB): Solves the relaxed problem using
Eq. 11, sets UB is set to LLR(λi) and returns an optimal
relaxed solution ST .

b) GenerateList(ST): Returns a complete list of
tasks, π by transforming ST .

c) ImproveLB(π): Maps π to a feasible schedule,
providing a lower bound, LB. This may be improved further
with an alternative method. The hybrid method is obtained
by using ACO here. An extended ImproveLB is called after
the main loop to help further improve the lower bound.

d) UpdateBest(πbs, π, γ): Updates πbs with π if
NPV(π) > NPV(πbs). Additionally if πbs has not been
updated in the last five iterations, γ := γ ÷ 2.

e) UpdateMult(λ, LB,UB, ST, γ): The multipliers
are updated for all time periods t ∈ {1, . . . , δ}

B. Ant Colony Optimization

ACO was first suggested by M. Dorigo [14] for combina-
torial optimisation and is based on the behaviour of foraging
ants. When an ant has found food it leaves a pheromone
path on its way back to the nest. Other ants looking for
food will choose between these trails based on the amount
of pheromones on the paths, in turn depositing their own
pheromones, creating a positive feedback loop. Once a food
source has been exhausted, returning ants no longer deposit
pheromones and the original trails evaporate, allowing the
colony to find better food sources over time [15].

In the context of the RCP problem, we consider a
pheromone model that is based on learning an ideal permu-
tation of the tasks. Here, the aim is to learn permutations of
the tasks which are then mapped using a scheduling scheme.
The ACO used is based on the model suggested in [13]
where the authors examine an ACO algorithm for the single
machine problem with the total weight tardiness objective.
The pheromones T consist of the pheromone values τij for
each task j and variable i or position in the sequence. The
variant of ACO used is the ant colony system (ACS) [16].

Terms and symbols additionally used in the ACO algo-
rithm (shown in Alg. 2) below are as follows:

T A pheromone matrix.

na The number of ants per iteration.
Siter The set of solutions generated in an iteration.
πib The iteration best solution.

Algorithm 2: Pseudocode of the ACS algorithm
Data: Pheromone matrix T
Result: πbs
Initialise πbs = NULL;1
while termination conditions not satisfied do2

Siter = ∅;3
for j ← 1 to na do4

πj = ConstructSolution(T);5
ScheduleTasks(πj);6
Siter = Siter ∪ {πj};7

πib = argmin{f(π)|π ∈ Siter};8

Update(πib, πbs);9

PheromoneUpdate(T , πbs);10

cf = ComputeConvergence(πib);11
if cf = true then12

initialise T ;13

a) ConstructSolution(T): A permutation π of tasks
is constructed by selecting a task for each variable starting at
π1. A random number q ∈ (0, 1] is generated and compared
with a pre-defined parameter q0 in order to select a task at
πi. If q < q0, k is deterministically selected. Otherwise, k
is probabilistically selected based on the pheromone matrix
and heuristic information [10] When a task j at variable i
is selected, the pheromones at τij are updated.

b) ScheduleTasks(π): Determines a schedule σ from
the given permutation of tasks. The schedule is always
resource feasible.

c) Update(πib, πbs): Sets πbs to πib if
NPV(σ(πib)) >NPV(σ(πbs)).

d) PheromoneUpdate(T , πbs): T is scaled down
(evaporation) then is updated for each (i, j) entry in πbs

with a constant reward amount.

e) ComputeConvergence(πib): If sampling the
pheromones repeatedly produces the same solution, the
pheromones are considered to have converged. A list of the
past θ solutions is maintained. If all θ solutions have the
same objective value, the pheromones are re-initialised and
normalised. The list is then cleared.

C. Hybridisation

ACO is incorporated in a straightforward manner into
the LR algorithm. In the LR algorithm, ImproveLB(π) can
be replaced with the algorithm previously described in Alg.
2. The core idea is to seed ACO with (π) to improve the
lower bound. π is used as the global best solution for ACO,
which biases the search towards this solution. Likewise the
final ImproveLB is replaced with an extended call to ACO,
which we call post-ACO. This post-ACO uses the converged
pheromone matrix information from LR to further improve
lower bounds [10].

2987

IV. PARALLELISATION AND OBSERVATIONS

As previously stated, only certain functionalities with
enough workload are suitable for an efficient parallelisation.
A traditional and natural approach is to parallelise the ants
in the ACO algorithm, since they can work almost indepen-
dently from each other and the effort required to parallelise
this model is usually low. For RCP, ACO is more effective at
improving solutions derived from LR than producing good
solutions standalone [10]. A direct implication from this is
that maximising the number of LR iterations run is central
to improving the speed of convergence of LR-ACO.

A. Parallelising Ants

We considered the implementation with parallel ants first.
The reason we chose this experiment first is that parallelising
ants in LR-ACO has been previously done [2], requires
minimal code modification, and can potentially provide good
speedup. We considered two approaches. Either we would
run multiple ants concurrently and reduce running time or
run k times as many ants in parallel, for k threads, and try to
improve the result for the same run time. We ran several tests
with differing numbers of ACO solutions generated per LR
iteration. We found that while a higher solution count greatly
improved lower bounds in early iterations, the difference
was minimal in later iterations. We saw that the increase
in runtime per iteration with higher solution counts led to
a slower convergence speed overall. Due to this we kept
the number of ants constant, and ran them across multiple
threads.

We parallelised the main loop in the ACS algorithm
(Alg. 2) with an OpenMP parallel for directive and added
critical sections for the update functions, since all the ants
share the same pheromone matrix and best ant. OpenMP has
critical constructs which provide a means to ensure multiple
threads do not update shared data simultaneously [11]. This
approach can be easily replicated by other technologies.
We gained sub-linear speedup in the ants alone due to the
proportion of work spent in the main loop and the rest of the
ACO algorithm. In addition to this, we found that especially
in earlier iterations, much of the run time was spent on
the Lagrangian, with up to 140% thread utilisation on 12
threads, far below the optimal 1200% (a 12 cores machine
was used for this test). This led us to focus on running LR
and ACO concurrently.

B. Concurrent LR-ACO

Our general approach was to restructure LR-ACO as
follows:

1) Run a single LR iteration to produce a π to seed
ACO.

2) Use OpenMP tasks to run LR on one thread and
ACO on another.

3) Remove ImproveLB() from LR and instead allow
the ACO thread to run on whatever π is available
continually.

The resulting model can be seen in Fig. 2. The algorithm
is no longer sequential as previously shown in Fig. 1, and
communication between LR and ACO is no longer serial. It

can be seen how in the original model after every single
instance of LR, there was a call to the ACO algorithm.
Now, in the parallel model, since the execution time of the
Lagrangian Relaxation method is longer than ACO, several
instances of the ACO algorithm can run during a single
execution of each LR.

Fig. 2. Execution pattern of the concurrent version

LR LR LR

ACO ACO ACO

Time

schedule post-ACO

ACO ACO ACO

schedule schedule

To achieve this we used parallel, single and task
OpenMP pragmas [11]. The parallel pragma defines a sec-
tion to be run in parallel. When a parallel section is encoun-
tered, all available threads execute the section. The parallel
pragma can take a parameter list of memory sharing patterns.
We use the shared parameter to share the pheromone matrix
between ants. The task pragma defines a section as a task.
When a task is encountered OpenMP assigns a thread to
execute it concurrently. The single pragma must be placed
within a parallel section, and ensures that only one thread
executes the following section.

The resulting code is as shown in Alg. 3.

Algorithm 3: Concurrent LR-ACO
Initialise π;1
LR(π);2
#pragma omp parallel shared(p)3
{4

#pragma omp single5
{6

#pragma omp task7
{8

while !finished do9
LR(π);10

}11
#pragma omp task12
{13

while !finished do14
ACO(π);15

}16
}17
postACO(π);18

}19

This led to more LR iterations for the same run time,
producing better upper bounds. These better upper bounds,
subsequently led to better lower bounds, as the ACO has
better targets.

We identified that this approach was not inherently
scalable, as the iterative nature of LR formed a bottleneck,
and we could not further increase the speed of LR through
parallelisation. We saw earlier that parallelising ants was in-
effective, so we decided to run multiple colonies in parallel,
to attempt to improve results further.

2988

C. Parallel Colonies

Since now LR and ACO were not sequentially run,
reducing ACO runtime is less important. By parallelising at
a higher level, each thread does more work and so overheads
are minimised. We extended our task framework to now
run multiple ant colonies parallel, in an attempt to improve
the probability of at least one colony finding a better lower
bound in a given iteration. This has been omitted from the
code structure for clarity. The resulting code can be seen in
Alg. 4.

Algorithm 4: Concurrent LR-ACO with parallel
colonies

Initialise π;1
int numThreads = omp get num threads();2
int numAco = numThreads - 1;3
LR(π);4
#pragma omp parallel shared(p)5
{6

#pragma omp single7
{8

#pragma omp task9
{10

while !finished do11
LR(π);12

}13
for i = 0 to numAco do14

#pragma omp task15
{16

while !finished do17
ACO(π);18

}19

for i = 0 to numThreads do20
postACO(π);21

}22
}23

In addition to running ACO on all but one of the threads
in the tasks, we ran a separate colony on each thread for
post-ACO as well (including the thread originally running
LR). A barrier pragma is used to ensure all the LR-ACO
tasks have finished before postACO starts.

V. EXPERIMENTS AND RESULTS

We ran two sets of experiments and compared the fully
parallelised version in Section IV against the original se-
quential version. Experiment (a) consisted of 1080 instances
from PSPLIB1 with job counts of 60 and 120 each and
experiment (b) consisted of a subset of 24 instances, chosen
for specific measures and run 30 times each. This subset
was used with the cash flows from [10] to ensure that results
produced were in the same range.

Since parallelisation can introduce added overheads, we
ran each of the subset instances 10 times on each of the
parallel versions. The fully parallelised version performed
better than the other two versions on average, and the gaps

1http://www.om-db.wi.tum.de/psplib/main.html

normalised against the parallel ants version is shown in Fig.
3.

0

0.5

1

no
rm

al
is

ed
ga

p

ants concurrent concurrent + colonies

Fig. 3. Normalised gaps for the three parallel versions

For the subset 3 instances per measure and job count
combination were used and the measure are found in Table
I. The instances differ in network complexity (NC), resource
factor (RF), resource strength (RS), and number of tasks.
Network complexity indicates the proportion of precedences
incorporated in the instance, with a larger value implying a
larger number of precedences. Resource factor specifies how
many resources are required by an activity in proportion to
the total number of resources available. Resource strength
measures the scarceness of resources with low values, im-
plying that resources constraints are tight.

Instance NC RF RS Tasks

37 2.1 0.5 0.2 60
38 2.1 0.5 0.5 60
45 2.1 1.0 0.2 60
46 2.1 1.0 0.5 60
47 2.1 0.5 0.2 120
50 2.1 0.5 0.5 120
57 2.1 1.0 0.2 120
60 2.1 1.0 0.5 120

TABLE I. PARAMETERS FOR SUBSET INSTANCES

All runs were given a maximum of 5 minutes of comput-
ing time for the main LR-ACO algorithm and a flat 5 minutes
for post-ACO optimisation. The subset experiments were run
on a Xeon X7350 2.93Ghz. The full set experiments were
run on a Xeon L7545 1.866Ghz. All experiments were run
using the maximum number of compute threads available, 4
and 12 respectively. We used the same running parameters
as [10] and discount rate α = 0.01.

We provide an overview comparison of results in Table
II. Listed here, are the absolute values for gap, the average
lower and upper bounds over all instances, the average of
the best lower and upper bounds per instance, the average
number of LR iterations run over all instances and the
proportional percentage improvement of Par-LR-ACO over
LR-ACO. This overall result shows that the parallel method
provides improved gaps across all the runs. Specifically, we
see improvements in both lower and upper bounds implying
that both the LR and ACO components are more effective
in this setting.

2989

Result Par-LR-ACO LR-ACO %∆

Subset
gap 0.113305 0.118497 4.582
lb-average 13912.185 13876.512 0.257
lb-best-av 14016.875 13980.864 0.258
ub-average 15703.226 15766.809 0.405
ub-best-av 15644.543 15686.511 0.268
Iterations 41.536 31.171 33.253
Full Run
gap 0.085759 0.088608 3.322
lb-average 15239.187 15203.957 0.232
ub-average 16653.345 16673.857 0.123
Iterations 75.588 56.861 32.934

TABLE II. OVERVIEW COMPARISON BETWEEN PAR-LR-ACO AND
LR-ACO. NOTE THAT SINCE EACH INSTANCE IN THE FULL RUN WAS

ONLY RUN ONCE, THERE IS NO BEST RUN PER INSTANCE.

Figure 4 shows the average progress of serial and parallel
implementations over-time for the subset. We see that even
early on that the parallel implementation has a significant
advantage but by about 125 seconds the two algorithms have
converged. The parallel implementation again improves after
about 175 seconds suggesting that with increased iterations
the LR component provides better upper bounds.

0 50 100 150 200 250 300

0.15

0.2

0.25

0.3

Time (s)

ga
p

parallel
sequent ial

Fig. 4. Gap over time for the subset run

Now we consider the results of experiment (a), and in
particular the instances with 120 jobs since they do not
necessarily converge in the allowed time-frame. Figures 5, 6,
7 show the average results for instances with 120 jobs, split
by resource strengths, resource factors and network com-
plexities. We see the same pattern here as the overall result
shown previously. This shows that over varying problem
characteristics, the parallel implementation is always useful.

Par-LR-ACO always performs better, providing smaller
average gaps than the sequential version across all problem
characteristics. Looking more closely, the parallel version
provides increasing improvements with decreasing resource
strengths and increasing resource factor. This means that for
more tightly constrained problems we see greater improve-
ments. This is not surprising since the parallel version runs
significantly more LR iterations than the sequential, and LR
is designed to deal with constraints effectively. So when

conditions favour LR, the difference in gap between parallel
and sequential is accentuated.

0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

Resource Strength

ga
p

parallel sequential

Fig. 5. Average results for all problem instances with 120 jobs, split by
resource strength

0.25 0.5 0.75 1
0

0.05

0.1

Resource Factor

ga
p

parallel sequential

Fig. 6. Average results for all problem instances with 120 jobs, split by
resource factor

VI. CONCLUSIONS

In this study, we investigate a parallel implementation
of a hybrid LR-ACO heuristic for project scheduling. Our
results show that such a parallelisation can be effective,
outperforming the serial version in the same time-frame. Fur-
thermore, we see increasing gains relative to the constraints
being relaxed in the LR component of the algorithm.

LR-based algorithms, being iterative in nature, rely on
a large number of iterations to converge to good solutions.
Thus, the main reason for the improvement seen here is
attributable to the increase in the number of LR iterations.
Specifically, we see up to 33% increase in the same time-
frame across all instances. This results in parallel LR-
ACO producing a significantly smaller gap between lower
and upper bounds, with 3-5% smaller gap on average. In
addition, the parallel version converged more quickly.

There are several future directions related to this study.
Firstly, Par-LR-ACO could be applied to other problems

2990

1.5 1.8 2.1
0

0.05

0.1

Network Complexity

ga
p

parallel sequential

Fig. 7. Average results for all problem instances with 120 jobs, split by
network complexity

which are effectively solved using hybrid Lagrangian-ACO.
For example, the multiple-choice multidimensional knapsack
problem [2] could benefit from such a parallel implemen-
tation. In general, where LR and ACO are effective, such
a parallel implementation could be designed to provide
improvements over its serial counterpart.

Here, we have considered a multicore shared memory
architecture. Additionally, we see the potential for parallel
LR-ACO with up to 12 cores in this study. However, dif-
ferent architectures with many more cores/processors could
potentially provide more significant improvements. For ex-
ample, with GPUs and Intel’s Xeon Phi [17], a heterogenous
parallelisation could produce even better performance. To
fully leverage the available hardware, a heterogenous par-
allelisation could involve running LR on the host CPU in
parallel with ACO (or other heuristic) on the co-processor
could as well as managing memory sharing between the two
processors. We plan to investigate this in the near future.

REFERENCES

[1] C. Blum, A. Roli, “Metaheuristics in Combinatorial Optimisation:
Overview and Conceptual Comparison”, ACM Computing Surveys,
vol. 35, pp. 268–308, 2003

[2] Z. Ren, Z. Feng, and A. Zhang, “Fusing ant colony optimization
with lagrangian relaxation for the multiple-choice multidimensional
knapsack problem,” Inf. Sci., vol. 182, no. 1, pp. 15–29, Jan. 2012.

[3] A. Kimms, “Maximizing the net present value of a project under
resource constraints using a lagrangian relaxation based heuristic
with tight upper bounds,” Annals of Operations Research, vol. 102,
no. 1-4, pp. 221–236, 2001.

[4] W. Chen, J. Zhang, H. S. Chung, R. Huang, and O. Liu,
“Optimizing discounted cash flows in project scheduling: An ant
colony optimization approach,” Trans. Sys. Man Cyber Part C,
vol. 40, no. 1, pp. 64–77, Jan. 2010.

[5] M. Vanhoucke, “A scatter search heuristic for maximising the net
present value of a resource-constrained project with fixed activity
cash flows,” International Journal of Production Research, vol. 48,
no. 7, pp. 1983–2001, 2010.

[6] Y. Shou, “Ant colony algorithm for scheduling resource constrained
projects with discounted cash flows,” in Machine Learning and
Cybernetics, 2006 International Conference on, 2006, pp. 176–180.

[7] M. Fisher, “The Lagrangian Relaxation Method for Solving Integer
Programming Problems”, Management Science, vol. 50, no. 12, pp.
1861–1871, INFORMS, 2004.

[8] M. Dorigo and T. Stützle, Ant Colony Optimization. Scituate, MA,
USA: Bradford Company, 2004.

[9] D. Merkle, M. Middendorf, and H. Schmeck, “Ant colony op-
timization for resource-constrained project scheduling,” in IEEE
Transactions on Evolutionary Computation. Morgan Kaufmann,
2000, pp. 893–900.

[10] D. Thiruvady, M. Wallace, H. Gu, and A. Schutt, “A lagrangian
relaxation and aco hybrid for resource constrained project schedul-
ing with discounted cash flows,” Journal of Heuristics, p. To be
published, 2014.

[11] B. Chapman, G. Jost, and R. Pas, Using OpenMP: Portable Shared
Memory Parallel Programming (Scientific and Engineering Compu-
tation). The MIT Press, 2007.

[12] G. Singh and A. T. Ernst, “Resource constraint scheduling with a
fractional shared resource,” Operations Research Letters, vol. 39,
no. 5, pp. 363 – 368, 2011. [Online].

[13] M. Besten, T. Sttzle, and M. Dorigo, “Ant colony optimization for
the total weighted tardiness problem,” in Parallel Problem Solving
from Nature PPSN VI, ser. Lecture Notes in Computer Science,
M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. Merelo,
and H.-P. Schwefel, Eds. Springer Berlin Heidelberg, 2000, vol.
1917, pp. 611–620.

[14] M. Dorigo, Optimization, learning and natural algorithms. Ph. D.
Thesis, Politecnico di Milano, Italy, 1992.

[15] S. Camazine, N. R. Franks, J. Sneyd, E. Bonabeau, J.-L. Deneubourg,
and G. Theraula, Self-Organization in Biological Systems. Princeton,
NJ, USA: Princeton University Press, 2001.

[16] M. Dorigo and L. M. Gambardella, “Ant colony system: A
cooperative learning approach to the traveling salesman problem,”
Trans. Evol. Comp, vol. 1, no. 1, pp. 53–66, Apr. 1997.

[17] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Perfor-
mance Programming. Morgan Kauffman, 2013.

[18] D. Thiruvady, A. T. Ernst and G. Singh, “Parallel Ant Colony
Optimization for Resource Constrained Job Scheduling,” Annals of
Operation Research, Springer US, pp. 1–18, 2014.

[19] U. Kohlmorgen and H. Schmeck and K. Haase, “Experiences with
Fine-grained Parallel Genetic Algorithms,” Annals of Operation
Research, vol. 90, no. 0, pp. 203-219.

2991

