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Abstract—This paper presents a new Differential Evolution 

(DE) strategy, named as FCDE, based on the constraint of 
classification of fitness function values. To ensure the 
population could move to the better fitness landscape, the 
global fitness value distribution information of the objective 
function are used and all points in the population are classified 
into three class by their fitness values in each generation, so the 
points in each class choose their donor vector and differential 
vector from the points in adjacent senior class to form the trial 
vector. This strategy could speed up the convergence to global 
optimal as well as avoid falling into the local optimal. Another 
attractive character of FCDE is the control parameters in this 
DE variant are self-adaptive. This method is tested on the 30 
benchmark functions of  CEC2014  special session and 
competition on single objective real-parameter numerical 
optimization. The experimental results showed acceptable 
reliability of this strategy in high search dimension. This paper 
will participate in the competition on real parameter single 
objective optimization    to compare with other algorithms. 

Keywords—Differential Evolution; Constraint optimization; 
Fitness Values; Classification  

I. INTRODUCTION  
Differential Evolution (DE) has been one of popular real 

coded optimization algorithm because of its simplicity but 
good performance in evolutionary computation. Now there 
are great deals of variants of the basic algorithm with 
improved performance since its inception in 1995, and recent 
advance of DE are comprehensively summarized by Neri 
and Tirronen [1] and by Das and Suganthan [2].  

In the standard DE computation frame, there are two key 
questions to be considered. One is what evolution strategy be 
used, and the other is how to determine the control 
parameters. For the second question, there are many works 
have made good contribution and significative try [3,4,5]. 
We know that the suitable values of three control parameters, 
including the mutation scale factor F, the crossover ratio CR, 
and the population size NP, depend on the complexity, 
dimensionality and scale of the question, and are selected 
generally by numerical experiment trial, prior experience or 
self-adaptive. The self-adaptation approach to dynamically 
determine control parameters are introduced more and more, 
usually is applied to tune the control parameters F and CR[6-
9]. One popular example is SaDE proposed by Qin [6]. In 
SaDE, both the trial vector generation strategies and their 

associated control parameters CR are gradually self-adapted 
by learning from their previous experiences of generating 
promising solutions, and the control parameters F is sampled 
by the presetting Gauss distribution. In many test functions 
and practice application, SaDE shows better performance 
than regular DE on difficult fitness landscapes. 

For the first question, there are main kinds of mutation 
scheme in DE to get a possible better solution, including 
DE/rand/1, DE/best/1, DE/target-best/1, DE/rand/2, 
DE/best/2 and so on. In the Das’ survey[2], the experiments 
performed by Mezura-Montes et al. indicate that 
DE/best/1/bin remained the most competitive scheme, 
regardless the characteristics of the problem to be solved, 
based on final accuracy and robustness of results. However, 
on multimodal and nonseparable functions, DE/rand/2/dir 
remained most competitive and slightly faster to converge to 
the global optimum. We can see that the fitness value of 
objective function, in these successful mutation schemes, is 
used indirectly or directly to form the trial vector. The idea is 
very strange that only depending on the differential vector 
between two random vectors, without regard for their fitness 
values, to get the best result.  

One advantage of DE is that the differential vector 
between the two or more points in population provides more 
possible evolution direction. How far to go in this direction 
and whether it is credible both need the fitness values 
information. All kinds of control parameters self-adaptation 
DE should be able to ‘learn’ the current conditions of the 
fitness landscape. As we know, if the direction to the 
position with the current best fitness value always be chosen 
in evolution process, the diversity of population will be 
decreased and it is easy to fall into the local optimal. 
However, if the points choose some other points with better 
fitness value totally random to form differential vector, it 
will be ruleless or slower evolution. To keep the good 
balance between the randomness and regularity,   this paper 
presents a new Differential Evolution (DE) strategy, named 
as FCDE, based on the constraint of classification of fitness 
function values. The points in each class with different 
fitness values choose their donor vector and differential 
vector from the points in adjacent senior class to form the 
trial vector. 

The remainder of this paper is organized follows: Section 
II outlines the main scheme of DE and its main variants; 
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Section III describes the strategy of FCDE and its scheme in 
details; Section IV gives the test results of FCDE in the 
different CEC14 benchmark functions in 10D and 30D, 
compared with other DE variants; Finally, Section V 
concludes the paper with discussion of results and 
suggestions for future work. 

II. SCHEME OF DE AND ITS VARIANTS 

A. Scheme of Standard DE 
For a real parameter single-objective optimization 

question, any possible solution x can be represented as a 
vector or point in D-dimension solution space. The DE uses 
the differential vector between two or more points to perturb 
one point in the same solution space to get the trial point. 
The original DE framework is remarkably simple, described 
as follow: 

1) Population 
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where NP denotes the number of solution vectors in 
population, g defines the generation counter, and D is the 
dimension of parameter space. 

2) Population initialization 

UjLjUjjij bbbrandx ,,,0,, )(*)1,0[ +−=                   (2) 

For a D-dimensional initialization vector iX , bL and bU 

indicate the lower and upper bounds of the parameter ,j iX
. 

The random number generator, [0,1)jrand , returns an 
uniformly distributed random number from within the range 
[0,1).The subscript, j, indicates that a new random value is 
generated for each parameter. 

3) Mutation with Difference Vectors 

)(* ,3,2,1, grgrgrgi XXFXV −+=                          (3) 

The perturbation of a base vector 1,r gX  by using a 
difference vector between other two random vectors will 
generate a new mutation donor vector. In above equation, F 
is the mutation scale factor. The three vectors in mutation are 
all randomly chosen from population and each should be 
mutually exclusive. 

4) Crossover for Diversity Enhancement 
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where ,i gU   is the trial vector which mixes parameters of 

the donor vector ,i gV   and the so-called target vector ,i gX  in 
order to enhance the diversity of population. CR is the 
crossover ratio.  

5) Selection 

DE uses simple one-to-one survivor selection where the 
trial vector ,i gU  competes against the target vector ,i gX . The 
vector with the lowest objective function value survives into 
the next generation g+1. 
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B. Popular DE Variants 
1) Mutation Strategy 

The mutation scheme used in different DE-variants leads 
to the different performance in different fitness function. The 
notation to classify the various DE-variants is defined by 
DE/x/y/z where x denotes the base vector, y denotes the 
number of difference vectors used, and z representing the 
crossover method. Mostly used notations are listed as 
following: 
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2) Self-Adaptive DE 
Here we summarize the main scheme use in SaDE as an 

example Self-Adaptive DE.  

SaDE selects mutation strategies “DE/rand/1” and 
“DE/current to best/1” in Eq.(6) as candidates, and produces 
the trial vector based on the probability to decide which 
mutation strategy is selected. The probability is learned from 
those offspring successfully entering the next generation 
after some iteration.  

In SaDE, mutation scale factor F in ith generation is self-
adaptive sampled from a Gaussian distribution: 

)3.0,5.0(ii NF =                                            (7) 

SaDE allocates a CR for each individuals in ith 
generation according to: 

)1.0,( mii CRNCR =                                          (8) 

where CRm is learned from those offspring successfully 
entering the next generation after some iteration. 

III. SCHEME OF FITNESS CLASSIFICATION CONSTRAINT 
DE 

As mentioned above, the differential vector provides a 
possible evolution direction in the D dimension search space. 
A good direction will lead the population move to the 
optimal. There lies a dilemma when the point move to the 
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optimal because we don’t know this optimal is local or 
global. So if the point moves to the one has the best fitness 
value, maybe it will fall into the local optimal; meanwhile 
when it moves to the one has better fitness value, the 
possible candidate direction maybe are nimiety and the time 
going to the global optimal will be much longer. 

Without loss of generality, some points belong to the 
same class will have similar character while they belong to 
the different class will have different character. Similar with 
social rank, if the points in population are classified 
according to their fitness values, it could choose some points 
in senior class to generate evolution direction, regardless that 
points in same class even with better fitness values. So we 
propose a new Differential Evolution (DE) strategy, named 
as FCDE, based on the constraint of classification of fitness 
function values. 

 
When the mutation direction is determined, the mutation 

scale factor F in ith generation is sampled from a Gaussian 
distribution like used in SaDE. Because the mutation strategy 
of FCDE will generate donor point with better fitness value 
with high possibility, so the crossover should be more. The 
crossover ratio CR is preset to 0.9.  

The basic structure of FCDE algorithm is shown as 
follows: 

 

 

 

  

 

 

Algorithm of FCDE 

1: generate an initial population 
],,,[ 21 NPXXXP = , Ω∈iX  distributed uniformly. 

2:   evaluate Fitness value of objective function 

NPiXf i ,,2,1),( =  

3: classify all points in population into 3 classes by their 
fitness value. The lower class index is corresponding to 
the better fitness.  

]3,2,1[,)( ∈= kkXf iC  

4: while stopping condition not reached do 

]3.0,5.0[=F  

 9.0=CR  

Generation: 1+= gg   

5:  for i = 1 to NP do 

6:  get the corresponding class index num ( )Cf i  

7:  generate a donor vector 

    

( ) 1 ( ) ( ) 1 ( )

1 ( ) 2 ( )

( ) ( )
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   Where r means sample randomly point in given class. 

If   01)( =−ifC
, 

bestifcr XX =−∈ 1)(
 

8:  generate a trial vector 
,i gU       

9:  evaluate objective function 
,( )i gf U  

10:  if 
, ,( ) ( )i g i gf U f X≤  then 

  insert 
,i gU  into new generation g+1 

 else 

 insert 
,i gX into new generation g+1 

11: end for 

12: update the 
Cf  

13: end while 
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Fig. 1. Mutation strategy of FCDE 
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IV. EXPERIMENT RESULTS 
PC Configuration: 

System: Windows XP; CPU: 3.40GHz 

RAM:  2.00 GB; 

Language: Matlab 2012a  

Algorithm: FCDE 

Parameters Setting: 

a) Parameters to be adjusted:  
F, CR, NP,FEs 

b)  Corresponding dynamic ranges:  
NP:10*Dimension of test Function 

Max_FES: 10000*D 

c) Guidelines on how to adjust the parameters 
Mutation scale factor F in ith generation is self-adaptive 

sampled from a Gaussian distribution: (0.5,0.3)i iF N= . 

d)  Actual parameter values used. 
0.9CR =  

Experiments are progressed over a suite of 30 single 
objective real parameter optimization benchmark functions   
of CEC 2014[10]. For each function, the FCDE is run 51 
times. The computation complexity is given in Table I and 
Tables II-III reports the results. The predefined tolerance 
value for the 30 test functions is 1e-8.  

 
 

TABLE II             RESULTS FOR 10D 

F Best Worst Median Mean Std 

1 0.00E+00 1.56E-02 0.00E+00 3.06E-04 2.18E-03 
2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
4 0.00E+00 3.47E+01 3.47E+01 1.92E+01 1.66E+01 
5 1.49+01 2.04+01 2.03E+01 2.02E+01 7.57E-01 
6 2.60E-01 6.28E+00 3.13E+00 3.15E+00 1.45E+00 
7 2.95E-02 1.06E+00 1.91E-01 2.18E-01 1.61E-01 
8 2.98E+00 3.28E+01 1.49E+01 1.68E+01 6.94E+00 
9 7.96E+00 5.07E+01 2.29E+01 2.21E+01 8.38E+00 

10 3.12E-01 7.98E+02 2.39E+02 2.54E+02 1.93E+02 
11 1.42E+02 1.39E+03 6.97E+02 7.22E+02 2.87E+02 
12 1.28E-01 1.40E+00 7.04E-01 7.24E-01 3.29E-01 
13 9.90E-02 8.01E-01 3.44E-01 3.61E-01 1.43E-01 
14 1.07E-01 1.15E+00 3.08E-01 4.07E-01 2.75E-01 
15 6.54E-01 2.95E+00 1.47E+00 1.62E+00 6.74E-01 
16 2.12E+00 3.62E+00 3.14E+00 3.10E+00 3.30E-01 
17 1.02E+01 7.12E+02 3.00E+02 3.04E+02 1.84E+02 
18 2.21E+00 5.49E+01 2.05E+01 2.40E+01 1.49E+01 
19 8.34E-02 7.24E+00 1.93E+00 2.56E+00 1.72E+00 

20 1.03E-01 5.00E+01 1.08E+01 1.51E+01 1.32E+01 
21 1.96E-01 5.46E+02 1.25E+02 1.54E+02 1.31E+02 
22 9.66E-02 6.02E+01 2.12E+01 2.40E+01 9.74E+00 
23 3.29E+02 3.29E+02 3.29E+02 3.29E+02 2.66E-13 
24 1.20E+02 1.80E+02 1.34E+02 1.38E+02 1.37E+01 
25 1.36E+02 2.03E+02 1.99E+02 1.84E+02 2.07E+01 
26 1.00E+02 1.01E+02 1.00E+02 1.00E+02 1.59E-01 
27 3.33E+00 4.00E+02 7.93E+00 2.55E+01 7.77E+01 
28 3.57E+02 7.09E+02 4.85E+02 4.90E+02 9.61E+01 
29 2.10E+02 3.12E+06 2.34E+02 2.06E+05 7.25E+05 
30 4.60E+02 1.90E+03 7.40E+02 8.87E+02 3.48E+02 
 

TABLE III             RESULTS FOR 30D 

F Best Worst Median Mean Std 

1 5.36E+03 2.65E+05 5.46E+04 6.54E+04 4.90E+04 
2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
3 1.70E-05 8.56E+02 4.03E-01 3.51E+01 1.26E+02 
4 1.60E-06 1.62E+02 8.82E-01 1.62E+01 3.23E+01 
5 2.07E+01 2.10E+01 2.09E+01 2.09E+01 7.23E-02 
6 1.51E+01 2.89E+01 2.20E+01 2.20E+01 3.36E+00 
7 0.00E+00 3.65E-01 1.72E-02 2.89E-02 5.41E-02 
8 4.28E+01 1.47E+02 9.25E+01 9.44E+01 2.46E+01 
9 7.26E+01 2.22E+02 1.31E+02 1.33E+02 2.89E+01 
10 5.87E+02 3.51E+03 2.33E+03 2.24E+03 5.02E+02 
11 2.30E+03 4.63E+03 3.33E+03 3.40E+03 5.99E+02 
12 4.36E-01 2.73E+00 1.49E+00 1.56E+00 5.83E-01 
13 3.52E-01 9.61E-01 5.83E-01 5.98E-01 1.16E-01 
14 1.88E-01 1.31E+00 3.38E-01 4.60E-01 2.82E-01 
15 3.69E+00 4.15E+01 1.41E+01 1.59E+01 7.64E+00 
16 1.07E+01 1.29E+01 1.21E+01 1.21E+01 5.74E-01 
17 4.91E+02 1.39E+04 3.01E+03 4.00E+03 3.17E+03 
18 2.10E+01 3.58E+02 1.17E+02 1.21E+02 6.62E+01 
19 6.47E+00 6.92E+01 1.09E+01 1.33E+01 1.16E+01 
20 2.44E+01 5.50E+02 1.17E+02 1.45E+02 9.98E+01 
21 1.43E+02 1.27E+04 1.06E+03 1.88E+03 2.37E+03 
22 1.46E+02 1.02E+03 5.62E+02 5.44E+02 2.35E+02 
23 3.15E+02 3.15E+02 3.15E+02 3.15E+02 1.67E-12 
24 2.30E+02 2.66E+02 2.51E+02 2.50E+02 6.82E+00 
25 2.03E+02 2.12E+02 2.05E+02 2.05E+02 2.29E+00 
26 1.00E+02 1.01E+02 1.01E+02 1.01E+02 1.10E-01 
27 4.00E+02 1.04E+03 4.49E+02 6.18E+02 2.32E+02 
28 1.02E+03 2.71E+03 1.40E+03 1.50E+03 3.75E+02 
29 5.33E+02 1.37E+07 7.92E+02 1.06E+06 3.28E+06 
30 8.28E+02 4.73E+03 2.39E+03 2.53E+03 9.82E+02 
 

The computational complexity of FCDE and its test 
results for benchmark function are listed in TABLE Ⅰ,Ⅱ
andⅢ. As can be seen from the results, FCDE shows a good 
performance for most test function, no matter in 10D or 30D. 

The convergence maps of a random run for function 
No.01~ No.30 are given in Fig.2. The results show that our 
approach is able to find a very good feasible solution quickly 
among those 30 test functions. It  shows our mutation 
strategy with constraint of fitness classification could keep 
the good balance between the randomness and regularity and 
speed up the convergence to global optimal; meanwhile, 
avoid falling into the local optimal in 10D, in spite of not 
perform very well in high dimension situation.  

TABLE I.  COMPUTATIONAL COMPLEXITY 

 T0 T1 2
∧
T  0/)12( TTT −

∧

10D 0.1563 2.50E+00 4.07E+01 2.45E+02 
30D 2.00E+00 2.59E+02 1.65E+03 
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Fig. 2.  Convergence Maps of FCDE for Functions No.1~ No.30 
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The comparison of convergence maps between FCDE 
and other DE variants are given in Fig.3, in which a random 
run for function No.01, No.11, No.30 as a example. The 
better performance is generated by the FCDE in most 
functions and its convergence speed is acceptable even in 
30D.  

The test result also indicates for some complex functions 
such as Function 1,10 and 11, The FCDE is not good enough 
to find the global optimal point. It indicates although FCDE 
has good convergence performance but it need to be 
improved for global search ability. 

V. CONCLUSION 
In this paper, we propose a new DE mutation strategy to 

improve the performance, named as FCDE, based on the 
constraint of classification of fitness function values was 
proposed to solve single objective rained real parameter 
optimization problems. In this method, all control parameter 
are not need to be preset for specific case. According to the 
new mutation strategy, all points in the population are 
classified into three classes by their fitness values in each 
generation by considering the global fitness value 
distribution information of the objective function to ensure 

the population could move to the better fitness landscape. 
The test results of FCDE on 30 competition benchmark 
functions of CEC 2014 indicate it has good performance in 
balance between explo- rative and exploitative, especially in 
high search dimension. 

In this paper, the class number of population classifying 
with their fitness value is set to 3.  It is groundless, but just 
intuitive. In the future work, we will compare the effect with 
different class number to optimization result.  

In this research, we don’t considering the neighborhood 
information of every point. In the future work, we will 
combine the neighborhood information to generate the donor 
vector to improve  its global explorative performance. In a 
word, FCDE is on its initial stage, there are lots of works to 
do. The following research will be focused on improving 
FCDE. 
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Fig. 3.  Comparison of convergence maps between FCDE and other DE variants 
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