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Abstract—Feature Selection in high dimensional feature 

space is the main challenge in statistic learning field. In this 
paper, a novel feature selection method based on manifold 
learning is proposed. The distance metric weight vector are 
optimized to maximize the multi-class margin in the manifold 
embedded in low dimension space, as well as minimize its L1-
norm. This multi objectives optimization problem is solved by 
a Differential Evolution (DE) with dynamic constraint -
handling mechanism. And a criterion to determine the best 
feature subset based on the optimal weight vector is given.  The 
test result for selecting the optimal feature subset of UCI 
breast tissue dataset indicates that this real coded feature 
selection method could find some feature subset which has 
good classification robustness. 

Keywords—Feature Selection; Manifold-Learning; Dynamic 
Constraint; Differential Evolution 

I. INTRODUCTION  
Feature selection means selecting a subset of d features 

from a set of D dimensional features space, generally d<D. 
There are three main objective of feature selection: 
improving the prediction performance of the features, 
providing faster or cost-effective features, and providing a 
better understanding of the underlying process that generated 
the data. With the feature dimension increasing more and 
more in many practice problem, the feature selection in high-
dimensional space need more new theory and methods [1, 2]. 

Feature selection mainly based on optimization criterion. 
Most feature selection methods aim to find the feature subset 
which has good classification ability. But in a high-
dimensional feature space, there are only finite training 
sample, that doesn’t reflect any statistic rules. So many 
classifying features may perform well on the training data, 
but few may generalize well [3-5]. A good feature subset 
should keep better classification correctness and keep the 
intrinsic structure separable relationship underlying the 
original data.  

For the classification question of few sample in high 
dimension, support vector machine (SVM) is the most 
popular method to find the maximum-margin hyper plane 

which has the largest separation margin between the two 
classes, and embody optimal stability. It should be noted that 
the computation of margin is based on the used distance 
metric. It is possible that you will get totally different results 
if you use different distance metric[6]. 

Manifold learning (ML) is a popular approach to non-
linear dimensionality reduction in recent decade[7, 8]. The 
idea of ML is the dimensionality of many data sets is only 
artificially high, and the relationship between the points in 
high dimension space will be hold in an embedded low 
dimension space.  So if there lies a manifold in original high 
dimensional data, we can observe and analysis the same data 
structure information in a low dimensional space. In ML, the 
reasonable distance metric is the key factor. Here let’s take 
the ISOMAP algorithm for example, as one of the typical 
approaches to manifold learning; it uses the geodesic 
distances metric to seek a lower-dimensional embedding 
which maintains the geodesic distances all points.  An idea is 
generated naturally that since the manifold embedding in low 
dimension keeps the structure relation of data, so the project 
of original data maybe reflect some rule in statistic sense. So 
we can find the maximum-margin in manifold space, which 
should have better classification ability than in high 
dimensional feature space.     
    Recently, LASSO(Least Absolute Shrinkage and Selection 
Operator) methods are used to feature selection[9]. The main 
idea of LASSO is to minimize the L1-norm of feature weight 
vector. It shrinks some feature weight and sets others to zero 
and hence tries to retain the good features of both subset 
selection and ridge regression. This property is good for most 
feature selection problem. So in this work, the L1-norm 
minimization will be used as a constrained condition. 

 When the optimization objective function is created, in 
order to discover the most informative and least redundant 
feature subset among the whole feature space, the ‘space 
search’ strategies to select features is important. Swarm 
intelligence algorithms have been used widely [10-12]. The 
genetic algorithm (GA) shows advantages for feature 
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selection in many published literatures. Binary coded Particle 
Swarm optimization (PSO) and Ant colony optimization 
(ACO) also have been utilized in feature selection for their 
promising performance to solve the combinatorial 
optimization problems. But the binary coded mode, in which 
one feature will be used or deleted before evaluating the 
optimization objective function, is too rigid to lose the 
complementary information inter-features. In our previous 
work, we proposed a real coded feature selection method to 
optimize the weight vector of distance metric to get the 
maximum class margin in original feature space based on the 
global distance metric learning, without any constrained 
condition [13]. 

In this paper, we will try to make the maximum class 
margin in embedding low dimensional manifold space, under 
the constraint of minimizing the L1-norm of the weight 
vector of distance metric. In order to solve this multi-
objective optimization problem, a differential evolution 
algorithm with dynamic constraint-handling mechanism 
(DCDE) is used[14].  This method will be tested finally by 
the UCI breast tissue dataset. The rest of this paper is 
organized as follows: Section II outlines the concept of 
distance metric learning and ISOMAP method, and the 
optimization objective function is introduced in Section III. 
A detailed description of DCDE is given in Section IV. The 
section V gives the test experiment result of feature selection 
using the UCI dataset. At last, discussion and conclusion are 
given in Section VI. 

II. DISTANCE METRIC LEARNING AND ISOMAP 

A. Distance Metric Learning 
In M-dimension feature space, the distance between 

points Mx R∈  and My R∈  is defined as: 

)()(),( 22 yxAyxyxyxd T
AA −−=−=               (1) 

The typical problem of distance metric learning is the 
learning of the weighted matrix MMRA ×∈ . For some 
classifier like K Nearest Neighbor (KNN), its performance 
depends heavily on the distance metric weight information. 

For a given collection of pair of similar and dissimilar 
points in supervised learning, a good distance metric will 
keep all the data pairs in the same class close while 
separating those in the different classes. So in order to learn a 
distance metric A from training data in the input feature 
space, a criterion to evaluate classification performance of A 
should be given first. Any linear manifold learning 
algorithm, which learns a linear transformation, in fact is 
equivalent to distance metric learning. 

B. ISOMAP 
As a global structure preserved nonlinear manifold 

method, ISOMAP use the geodesic distances metric 
substitute for tradition Euclidean distance of two points in 
feature space, and the distance matrix of all pair point are 
used with multidimensional scaling (MDS) to compute the 
reduced-dimensional positions of all the points.  

The complete ISOMAP algorithm has three steps: 

1)  Construct neighborhood graph 
The first step is to determine which points are neighbors 

on the manifold M and define the neighborhood graph. 
According to the distances

( , )X i jd  between pairs of points i, j 
in the input space X , the neighborhood relations can be 
represented as a weighted graph G over the data points with 
edges of weight ( , )X i jd between neighboring points. 

2) Compute shortest paths  
Secondly, ISOMAP estimates the geodesic distances 
( , )M i jd  between all pairs of points on the manifold M by 

computing their shortest path distances ( , )G i jd  in the graph 
G. the Floyd–Warshall algorithm often is used to compute 
the pair-wise distances between all other points. 

3) Apply MDS and estimate the manifold 
The final step applies classical MDS to the matrix of 

graph distances ( , )G i jd , constructing an embedding of the 
data in a D-dimensional Euclidean space Y that best 
preserves the manifold’s estimated intrinsic geometry. 

The detail about ISOMAP could be seen in [8]. 

III. OPTIMIZATION OBJECTIVE FUNCTION 
In our consistent research, we take the feature selection 

problem as the real coded optimization. We think feature 
selection is also a problem of distance metric learning. The 
contribution of each feature for classifying or clustering both 
could be represented with the distance metric weight vector. 
In the optimization process, features weights are adjusted 
adaptively for each training point to reflect the importance of 
features in determining its class label, and finally we can set 
a threshold of weights vector to determine which features 
should be selected. So we can use real coded optimization 
algorithm to get the optimal or sub-optimal feature weights. 

The distance metric weighted matrix A could be 
represented by: 
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Where ],,[ 1 mwwW =  is weight vector to be 
optimized, in which each element  represents the weight of 
corresponding feature.  

We still use the class margin as the evaluation criterion of 
classification performance of distance metric matrix A. 
Given a distance function, the two nearest neighbors of any 
sample nX , one is in the same class (called nearest hit or 
NH) and the other in the different class (called nearest miss 
or NM), could be found. So the class margin of nX  is 
defined as: 

),(),( 22
nn XnAMXnAM NHXdNMXdCM =       (3) 
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Clearly, the distance metric A will be a good choice 
when the corresponding CM is larger. It means the large 
between- class distance and the small within-class distance. 
In this study, we don’t estimate the class margin in the 
original input space, but in the embedding manifold space, so 
the character M in subscript represents manifold found by 
ISOMAP. If there is no embedding manifold in high 
dimensional input space, so the original feature space could 
be taken as manifold space.   

In order to get the robust classification, the global multi-
class margin is used: 

),,,,min( minmin
1
min

c
M

i
MMmcM CMCMCMM =    (4) 

Where superscript i means the ith class in totally C 
classes, and i

MCM min
 is the minimum class margin from all 

points in the same class i in manifold space. 

 It is expected to find the optimal features weight vector 
to maximize the multi-class margin meanwhile under the 
considering of using the minimum number of features. So the 
Optimization Objective Function can be given as: 
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(5) 
For this multi-objective optimization problem, we use a 

DCDE method we proposed with dynamic constraint-
handling mechanism. The detail of this algorithm is seen in 
next section. 

IV. DIFFERENTIAL EVOLUTION WITH DYNAMIC 
CONSTRAINT-HANDLING 

As the DE algorithm is essentially a problem-solving 
unconstrained optimization method, so in order to solve 
constrained optimization problems, Differential Evolution 
with Dynamic constraint-handling (DCDE) algorithm 
using rules-based constraint handling mechanism to restate 
the single-objective constrained optimization as a set of 
single-objective unconstrained problems, then the 
constrained optimization will be much more simple. The 
objective and constraints are assigned to the individuals 
adaptively as its fitness according to which has the maximal 
pressure needed to be optimized to guide the population to 
search for feasible region.  

The algorithmic description of DCDE is as follow: 

A. Dynamic and random DE (drDE) 

a) Initialization  
The initial population chosen randomly with a uniform 

distribution for all the individuals within the search space 
constrained by the prescribed minimum and maximum 
parameter bounds.  

For example, the initial value of the jth parameter in ith 
individual is generated by  

min max min(0,1) ( - )jx x rand x x= + ⋅ 1,...,j D=              
(6) 

Where rand(0,1) is a random variable  with uniform 
distribution and bounded by [0,1] . 

b) Mutation 
For each mutation operation, the modal is selected 

randomly from the strategy pool which include the strategy  
“DE/rand/2” “DE/best/2” and “DE/rand to best/2”  as listed 
in Table I. drDE randomly utilize difference strategy, For 
each target vector x i ( 1,2,...,i NP= ), a new mutation 
vector vi  is generated by adding the weighted difference to 
another vector, just as: 

 
 

c) Crossover 
Crossover operation is to mix the mutated vector with the 

target vector to yield the so-called trial vector. The trial 
vector can be generated by： 

      
v ( (0,1) ) ( )

u
x ( (0,1) ) ( )
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ij
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In drDE, for each crossover, CR is randomly selected 
from array [0.9,0.3] or [0.3,0.2,0.1] in different stage of the 
algorithm, randj  is a randomly chosen index [1, ]D∈  which 

can ensure at least one parameter be copied from vi .  

d) Selection 
The greedy criterion is used to determine whether the 

trail vector ui  generated in generation G come into the 
population of next generation (G+1) or not. It is selected by 
using our followed mechanism. 

B. Dynamic constraint-handling mechanism 
Suppose that there are m constraints, then the number of 

objectives needed to be optimized is 1m + , i.e. 
1 2[ (x), (x), (x),..., (x)]mF f g g g= , 

Define the pressure 
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  , i=1,2,...,m                         (8) 

1 pfp = − , 1 2[ , ,..., ]mp p p=p                 
(9) 

TABLE I.   CHOOSEN DIFFERENTIAL STRATEGIES 

Symbol Differential Expression 

DE/rand/2/bin 1 2 3 4 5v x (x x x x )i r r r r rF= + + − −  

DE/best/2/bin 1 2 3 4v x (x x x x )i best r r r rF= + + − −  

DE/rand to best/bin   
2 3v x (x x ) (x x )i i best i r rF F= + − + −  
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The first step is using roulette selection according to fp 
and gpi to assign the objective function or a single constraint 
as a target to each individual. Then according to the target to 
do the optimize operations. 

While updating individual, the following comparison 
criteria is used： 

a) If the target of optimization is kth constraint 
(x)kg and the constraint hasn’t been satisfied, the offspring 

wins if 
(u ) ( )k i k ig g< x   

or, (u ) ( )i isumg sumg< x   
 or, (u ) ( )i isumg sumg= x & (u ) ( )i if f< x     

(11)                    
 Where: 
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⋅          (14)  

(Max_FEs: Max fitness evaluations, stop criterion) 

The effect of Ratio is to balance the impacts of different 
constraints. The goal of setting parameter T is to find an 
acceptable region (AR) with a relaxed constraint which 
include the feasible region (FR) with a strict constraint, such 
that the AR can be shrunken . 

In this way, the constraints that are more difficult will 
have more individuals work for it, while the easier ones will 
have less or even no individual working for it. So the search 
will focus on finding feasible solutions firstly, and then 
concentrate on improving the objective function. There will 
be more individuals evolve along the fitness increasing 
direction if more constraints are satisfied. 

b)    If the target of optimization is kth constraint 
(x)kg and the constraint has been satisfied, the offspring 

wins if 
              (u ) ( )i isumg sumg< x                (15) 

or,  (u ) ( )i isumg sumg= x & (u ) ( )i if f< x          
(16) 

c)    If the target of optimization is (x)f , the 
offspring wins  if   

(u ) ( )i isumg sumg< x                                           (17) 
or  (u ) ( )i isumg sumg= x & (u ) ( )i if f< x       

(18) 
 

V. FEATURE SELECTION EXPERIMENT 
In our numerical feature selection experiment, in order to 

test the performance of the method we proposed objectively, 
we use the exhaustive search method in small dataset first. 
The UCI Breast Tissue Data Set is used. This Dataset 
provides 106 instances, which including 9 impedance 
measurements features of breast tissue and 1 class attribute 
[15]. The dataset can be used for predicting the classification 
of 4 classes by merging together the fibro-adenoma, masto- 
pathy and glandular classes whose discrimination is not 
important.  

To get the robust feature subset which has a good classify 
capability and better generalization capability, we use the K-
fold cross validation method to partition the dataset into 10 
mutually exclusive sub-datasets. And the classifiers are used 
with KNN. For each training and test dataset, we use all 
possible 511 feature subset to make classification separately 
in original input feature space and in manifold space. Finally 
we can take some feature subsets which have larger median 
value and smaller range of classifying correct rate as 
candidate feature subsets. So we can compare the feature 
selection result using our method with these candidate 
feature subsets acquired by exhaustive search method.  

All the algorithms are implemented using Matlab 2012a 
and executed on the computer with Intel Pentium® 4 CPU 
and 2Gb of RAM memory. For the convenience of 
denotation and comparison, we use the feature index to 
substitute name of original impedance features, showed as 
TABLE II. 

 

 
The candidate feature subsets selected by exhaustive 

search method  are listed in TABLE Ⅲ. The median values 
of classifying correct rate used these selected feature subsets 
are  larger than the 90% percentile of 511 median correct 
rates corresponding to  all possible feature combination, at 
the same time their range  of classifying correct rate are  

TABLE III.  THE CANDIDATE FEATURE SUBSET WITH GOOD  
CLASSIFY AND GENERALIZATION CAPABILITY IN ORIGINAL OR 

MANIFOLD SPACE 

Selected subset Correct Rate 
(median, range) Space 

F1-F4-F7-F8 0.9000, 0.1958  Input 
F1-F4-F6 0.9045, 0.2167  Input 

F1-F3-F6-F7-F8 0.9000,  0.2222 Input 
F1-F3-F4-F7-F8-F9 0.9045, 0.2000 Input 

F1-F2-F4-F7-F9 0.9000, 0.1591 Input 
F1-F2-F4-F6-F7-F9 0.9045, 0.2000 Input 

F6-F9 0.9045, 0.1818 Manifold 
F1-F4-F6-F7-F9 0.9045, 0.1091 Manifold 

F1-F4-F6-F9 0.9083, 0.1818 Manifold 

TABLE II.  SUBSTITUTION OF ORIGINAL IMPEDANCE FEATURES 

Name I0 PA500 HFS DA Area A/DA Max IP DR P 

Index F1 F2 F3 F4 F5 F6 F7 F8 F9 

335



 

smaller than the 10% percentile of 511 range of classifying 
correct rate. 

We use the K-fold(K=5) cross validation method to get 
the robust result of the optimization of objective function (5) 
with DCDE. For each training and test dataset, The 
population size is set to 100 and the maximum number of 
generation is set to 200. 

When the weight vector representing contribution of each 
feature to classifying is achieved, features should be selected 
according to the following criterion: 

holdthen
M

wif
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k
k

k
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>

=
∑
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(19) 
Where kw  is the kth  element of optimal solution vector. 

When its normalized value is greater than the average weight 
of all m features, then the feature corresponding to it  is be 
selected. 

TABLE IV gives the optimal feature weights and final 
result of feature selection according to the criterion (Eq.5), 
for 5 different data partition for cross-validation. It indicates 
the features F1, F4, F6, F7, F9  are linked together 
frequently, and their combination make the classifier has 
robust and good performance at different data environment. 
The feature subset [F1 F4 F6 F7 F9] has the best 
performance and it is selected by the method we proposed. In 
this optimization process, the complementary information is 
preserved and the redundant relationship is eliminated 
between features. So the classification result using selected 
feature subset is high robust. This test result indicates that 
this real coded feature selection method could find some 
feature subset which has good classification robustness. 

To evaluate the performance of our feature selection 
method, we use it to select the good feature subset in high 
dimensional dataset furthermore. The UCI SPECTF Heart 
Data Set is used [15], in which there are 267 instance with 44 
image features. We compare our method (named as Robust 
Feature Selection, RFS) with other classic feature selection 
methods, including the Single Optimum Combination 
(SOC), Sequential Forward Selection (SFS), and standard 
genetic algorithm (GA). Their optimization objective 
function is maximization of the classifying correct rate. The 
result is seen in TABLE V. The result also indicates the most 
advantage of our method is the selected feature subset has a 
good robustness and has  few number. 

 
 

 
VI. CONCLUSION 

Although these test result shows the feature selection 
with the algorithm we proposed is feasible and effective in 
high dimension, it is should noted here we only use the linear 
weighted idea as the first try. We will extend this algorithm 
to the nonlinear case by using kernel method for applying it 
to solve more complex and higher dimension problem. The 
future work will include more experiment, to investigate its 
efficacy compared to other conventional approaches, 
especially when handling large training data with high 
dimensions. Feature selection also can be handled as Multi-
objective Optimization directly, and recently the Multi-
swarm PSO which also real coded are emerging [16], we will 
try to integrated our objective function with these Multi-
objective Optimization method to compare with the DCDE. 
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