
 
 

 

  

Abstract—As a population-based meta-heuristic technique 
for global search, particle swarm optimization (PSO) performs 
quite well on a variety of problems. However, the requirement 
on a large number of fitness evaluations poses an obstacle for 
the PSO algorithm to be applied to solve complex optimization 
problems with computationally expensive objective functions. 
This paper extends a fitness estimation strategy for PSO 
(FESPSO) based on its search dynamics to reduce fitness 
evaluations using the real fitness function. In order to further 
save the fitness evaluations and improve the estimation 
accuracy, a similarity measure and a reliability measure are 
introduced into the FESPSO. The similarity measure is used to 
judge whether the fitness of a particle will be estimated or 
evaluated using the real fitness function, and the reliability 
measure is adopted to determine whether the approximated 
value will be trusted. Experimental results on six commonly 
used benchmark problems show the effectiveness and 
competitiveness of our proposed algorithm. Preliminary 
empirical analysis of the search behavior is also performed to 
illustrate the benefit of the proposed estimation mechanism. 

I. INTRODUCTION 
article swarm optimization (PSO), which is inspired by 
social behaviors such as bird flocking and fish schooling, 
was proposed by Kennedy and Eberhart in 1995 [1, 2]. 

PSO has received increasing attention for its easy 
implementation, fast convergence and strong global 
optimization capability. However, like other evolutionary 
algorithms such as Genetic Algorithms (GAs) and 
Differential Evolution (DE), PSO needs a lot of fitness 
evaluations to locate a global or near-global optimum, which 
prevents PSO from being applied to solve computationally 
expensive optimization problems. 

The use of computationally efficient surrogate models to 
replace in part the expensive fitness evaluations is the most 
commonly adopted techniques to solve computationally 
expensive problems. Global or local surrogates using 
Gaussian Process (GP, also known as Kriging) [3], Support 
Vector Machine (SVM) [4] or Polynomial Regression (PR, 
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also referred to response surface method) [5] have been 
proposed to substitute the computationally expensive real 
objective functions. Santana-Quintero et al. [6] presented a 
surrogate-assisted multi-objective PSO, where support vector 
machines (SVMs) are used as surrogates. To locate an 
optimum more quickly, Bird and Li [7] presented a technique 
through fitness approximation using regression. Gräning et al. 
[8] used an artificial neural network model trained online to 
approximate the objective function, which considerably 
reduces the computation time. Georgopoulou and 
Giannakoglou [9] and Gegis [10] introduced radial basis 
function networks (RBFNs) into PSO as a meta-model. In 
[9],the gradient value of the  surrogate model was used to 
improve the convergence in the search of optimal solution. 
While in [10], the surrogate was used to identify the most 
promising trial position for each particle. In order to replace 
the exact computationally expensive objective functions 
during evolutionary search, Zhou et al. [11] proposed a novel 
surrogate-assisted evolutionary optimization framework that 
combines both global and local surrogate models. However, 
management of the surrogate in surrogate-assisted 
evolutionary algorithms is a challenging issue [12]. Based on 
the empirical convergence studies, Jin et al. [13] introduced 
individual- and generation-based evolution control to ensure 
the correct convergence of an evolutionary algorithm for 
optimization using an approximate fitness function, and 
proposed a framework for model management in 
generation-based evolution control. Alternatively, fitness 
inheritance techniques can be seen as a special local 
surrogate. In fitness inheritance, fitness evaluations can be 
reduced by estimating the fitness value of the offspring 
individuals from their parents [14]. Fonseca et al. [15] 
compared the impact to the evolutionary search introducing 
three inheritance techniques. A fitness estimation strategy 
was proposed by Sun et al. [16] for PSO, called FESPSO. 
Different from the standard fitness inheritance technique, the 
fitness of a particle in FESPSO is inherited not only from its 
parents, but also from its related individuals in previous 
generations and the current generation. In particular, in 
FESPSO, whether the fitness of a particle will be estimated is 
determined by its distance to other individuals in the current 
swarm whose fitness is known. The experimental results 
showed that the fitness estimation strategy in FESPSO has 
considerably enhanced the search performance of PSO. One 
weakness of the fitness estimation strategy in [1] is that the 
estimated fitness can be very inaccurate in some situations. 
This may deteriorate the effectiveness of the fitness 
estimation strategy, especially in the late stage of the search. 
In this paper, in order to enhance the accuracy in estimating 
the fitness, a similarity measure between different positions 
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whose fitness will be used to estimate the fitness and a 
reliability measure on the estimated fitness are introduced to 
assess whether the fitness of a particle should be estimated or 
whether the estimated fitness is reliable. 

The organization of the remainder of the paper is as 
follows. Section II gives a brief introduction to the PSO 
algorithm and the fitness estimation strategy in the FESPSO 
algorithm. Section III provides a detail description of the 
proposed similarity- and reliability-assisted fitness estimation 
strategy for PSO (SRFEPSO). Comparative results and 
empirical analysis of the search behavior of the SRFEPSO are 
presented in Section IV. Finally, Section V concludes the 
paper with a summary and ideas for future work. 

  

II. PSO AND THE FITNESS ESTIMATION STRATEGY IN 
FESPSO 

A. Particle swarm optimization 
In PSO, a population (swarm) consists of particles with no 

volume and no weight, each of which represents a candidate 
solution to the optimization problem. Each particle in the 
swarm has its own velocity and position, and moves in a 

-dimensional search space . The current velocity 
of each particle is determined by its previous velocity and the 
distance between the current position of particle and the 
position where this particle has achieved its best fitness so far 
(called the personal best), denoted by , and to the 
position that has achieved the best fitness among all particles 
(called the global best), denoted by . 

 and   
 are both -dimensional vector 

representing the velocity and position of particle  at iteration 
, respectively. Mathematically, the velocity and position of 

particle i  are updated as follows [17]: 

  (1) 

 , (2) 
where and  are two positive constants referred to as 
cognitive and social parameters, respectively.  and  are 
two random numbers uniformly distributed in the range of 
[0,1].  is the personal best 
historical position found by particle  and  

is the global best historical 
position found by the whole swarm.  

A number of variants of PSO have been proposed to 
improve the search performance of the algorithm. Two 
popular PSO variants are proposed by Shi (called the inertia 
weight model) [17] and Clerc (called the constriction factor 
model) [18]. In the inertia weight model, the velocity is 
updated as follows: 

, (3) 

where  is an inertia weight. In the constriction factor model 
of PSO, the velocity is updated as follows: 

  (4) 

where  
 . (5) 

In (5), , ,  and  is a real 
number in the range . Generally,  , so  and  are 
usually set to 2.05. 

The performance of PSO using inertia weight model and 
the constriction factor model have been compared by 
Eberhart and Shi [19], and their experimental results showed 
that PSO using the constriction factor and limiting the 
maximum velocity  to the maximum position  on 
each dimension performed the best. Therefore in this paper, 
PSO using the constriction factor is adopted to verify fitness 
estimation strategies. 

B. The approximation strategy in FESPSO 
FESPSO [16] is a PSO assisted by a fitness estimation 

strategy to reduce the evaluations using the computationally 
expensive real objective function. In FESPSO, the fitness of a 
particle is estimated using the following equation, which was 
deduced from the positional relationship between two 
arbitrary positions in the current swarm. 

  (6) 

with 

  
where , , , , , 

,  and  represent the distance between 
 and , , , , , 
,  and , respectively. All distances are 

calculated using the Euclidean distance.  is a virtual 
position introduced for a better understanding of the  fitness 
estimation strategy. Since the constriction factor model is 
adopted in this paper, the virtual position of  is re-defined as 
follows according to the principle of the fitness estimation 
strategy proposed in [16]:  

 (7) 

where , ,  and  are diagonal matrix whose diagonal 
elements are random number uniformly distributed in the 
range of [0,1]. 
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III. A SIMILARITY- AND RELIABILITY-ASSISTED FITNESS 
ESTIMATION FOR PSO (SRFEPSO) 

In FESPSO, once the fitness of a particle is known, either 
evaluated using the original fitness function or estimated, the 
fitness of its closest neighbor only will be estimated using Eq. 
(6). This may limit the number of particles whose fitness can  
be estimated. In order to further reduce the fitness evaluations 
using the computationally expensive objective function, an 
extension of FESPSO was proposed in [20], where a 
similarity measure was introduced so that all particles whose 
similarity to the particle whose fitness is known will be 
estimated. This has been shown to have effectively reduced 
the number of fitness evaluations using the real fitness 
function. However, the similarity based measure may bring 
about a weakness that there are too many particles whose 
fitness is estimated, which may mislead the search process. 
To address this weakness, in this paper, a reliability measure 
has been introduced into the fitness estimation strategy in 
order to maximize the number of particles whose fitness can 
be estimated while ensuring that the estimated fitness is as 
reliable as possible. In [20], the similarity was evaluated only 
between the particle whose fitness is known and others in the 
current swarm. However, it is insufficient in practice because 
positions other than the one in the current swarm are all 
participated in the fitness estimation in Eq. (6). Therefore a 
new similarity measure has been adopted in this paper, which 
is defined as the similarity between all positions used in Eq. 
(6). For two arbitrary positions  and , the new similarity 
measure is defined as follows: 

, (8) 
where 
        (9) 
with 
    (10) 

where,  represents the range 
of the current swarm.  

It has been found that the estimated fitness can be very 
inaccurate, which may mislead the search process. The 
inaccuracy in similarity based fitness estimation strategy can 
be attributed to the fact that the fitness estimation in Eq. (6) 
may also be based on an estimated fitness of other particles. 
As a result, the use of similarity measure only to determine 
whether the fitness of a particle should be estimated may 
propagate the estimation error.  To alleviate this problem, we 
propose to introduce a reliability measure for assessing the 
uncertainty of all estimated fitness. The basic idea for 
assessing the reliability of a fitness estimated using Eq. (6) is 
that the closer the current particle to a particle whose fitness is 
evaluated using the real fitness function and used for 
estimation, the higher the reliability. However, it is often not 
true when the fitness of particle is estimated. For this reason, 
the reliability of an estimated fitness should be evaluated 
differently as follows: 

  (11) 

where , , , , , , 
 and  are the reliability of the fitness at position 

, , , , , ,  
and , respectively. , , , , 

,  and  are the normalized distance 
between the current particle and those particles involved in 
fitness estimation, i.e.,  and , , 

, , ,  and . The normalization is 
performed simply by dividing the calculated distance 
between two particles by  defined in Eq. (9). The 
sum of all weighted reliability measures is again divided by 7 
to ensure that an estimated reliability always falls in [0, 1]. It 
should be noticed that if the fitness of a particle is evaluated 
using the real objective function, its reliability is set to 1.  

Algorithm 1 summarizes the main steps of the proposed 
SRFEPSO algorithm.  
Algorithm 1 The SRFEPSO algorithm 
1 Initialize a population using Latin hypercube sampling 

method; 
2 Calculate the fitness of each particle using the real objective 

function and set the fitness reliability of each particle to 1; 
3 Determine the personal best historical position  for each 

particle; 
4 Determine the best historical position of the swarm ; 
5 While the stopping criterion is not met do 
6 Update the velocity and position of each particle in the 

swarm using Eq. (4) and (2); 
7 If it is the first time to update velocity and position then 
8 Calculate the fitness using the real objective function; 
9 Set the fitness reliability of each particle in the current 

swarm to 1; 
10 Else 
11 For each particle  in the swarm 
12 If its fitness is not known then 
13 Calculate the fitness using the real objective 

function; 
14 Set its fitness reliability to 1; 
15 End 
16 For each particle   

 in the current swarm 
17 Calculate the similarity between an  

and each position in Eq. (6) using Eq. (8);  
18 Find the minimum similarity in all similarities, 

denoted by  
19 Calculate the fitness reliability on position 

 using Eq. (11); 
20 If  and  then 
21 Estimate the fitness of particle  using Eq. 

(6); 
22 End; 
23 End For
24 Determine the personal best historical position  

for each particle; 
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25 End For 
26 Determine the best historical position of the swarm ; 
27 If the fitness of  is estimated then 
28 Calculate the fitness using the real objective 

function; 
29 Compare the fitness of current  with the original 

one evaluated using the real objective function; 
30 End If 
31 End While 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 
In order to evaluate the proposed SRFEPSO algorithm, six 

widely used benchmark problems are adopted in this paper. 
These include three unimodal test functions, Schwefel 1.2 
(F1), Sum of Different Power function (F2) and Sphere 
Moxel (F3), and three multimodal test functions, Rasenbrock 
(F4), Rastrigin (F5) and Griewank functions (F6). The 
dimension of all test problems used in this work is set to 

. In our experiments, the thresholds of the similarity 
degree and the reliability degree are empirically set to 0.75 
and 0.1, respectively. The stopping criterion is the maximum 
number of real fitness evaluations, which is set to 5000. All 
other parameters are set the same as those set in [16]. 

Table I shows the comparative results obtained by the PSO 
with constriction coefficient (CPSO), the FESPSO using 
constriction factor model (FESPSO) [16], the 
similarity-based FESPSO using constriction factor model 
(S-FESPSO) [20] and  the proposed similarity- and 
reliability-assisted fitness estimation PSO (SRFEPSO). All 
compared algorithms are initialized using the Latin 
hypercube sampling method. Here, “Best”, “Mean” and 
“Worst” stand for the best, the mean and the worst values of 
optimal solutions achieved in 30 independent runs, 
respectively. “Std.” represents the standard deviation of the 
obtained optimal solutions. 

 
TABLE I 

Experimental Results on six test functions 
Prob Method Best Mean Worst Std. 

F1 

CPSO 2.01e+004 5.55e+004 1.34e+005 2.62e+004 
FESPSO 7.59e+003 5.06e+004 1.52e+005 3.38e+004 
S-FESPSO 8.17e+003 6.30e+004 1.25e+005 3.05e+004 
SRFEPSO 1.45e+004 3.77e+004 6.75e+004 1.32e+004 

F2 

CPSO 
FESPSO 

7.07e-016 
3.34e-018 

1.48e-012 
5.83e-014 

1.34e-011 
1.65e-012 

3.21e-012 
2.97e-013 

S-FESPSO 6.97e-110 3.99e-085 8.34e-084 1.63e-084 
SRFEPSO 1.79e-023 1.31e-016 1.98e-015 3.90e-016 

F3 

CPSO 2.64e-001 1.17e+000 3.99e+000 8.95e-001 
FESPSO 4.86e-002 4.78e-001 1.00+000 1.12e+000 
S-FESPSO 2.22e-008 2.08e-002 3.88e-004 1.01e-001 
SRFEPSO 2.80e-003 1.46e-001 7.20e-001 2.36e-001 

F4 

CPSO 3.82e+001 1.18e+002 2.10+002 4.64e+001 
FESPSO 1.34e+001 7.88e+001 2.14e+002 5.10e+001 
S-FESPSO 1.23e+001 8.77e+001 2.61e+002 5.21e+001 
SRFEPSO 1.72e+000 6.18e+001 1.38e+002 4.01e+001 

F5 

CPSO 2.47e+000 2.66e+001 4.23e+001 1.08e+001 
FESPSO 1.10e+000 2.27e+001 4.47e+001 1.29e+001 
S-FESPSO 2.20e-003 2.79e+001 5.33e+001 1.34e+001 
SRFEPSO 3.17e+000 1.83e+001 3.59e+001 1.18e+001 

F6 

CPSO 3.98e-001 8.05e-001 1.03e+000 2.05e-001 
FESPSO 5.74e-002 4.17e-001 1.02e+000 2.27e-001 
S-FESPSO 1.97e-001 7.16e-001 1.03e+000 2.27e-001 
SRFEPSO 1.36e-002 1.47e-001 5.30e-001 1.22e-001 

 

From Table I, we can see that the proposed algorithm 
outperforms the three compared algorithms on F1, F4, F5 and 
F6. We can also see that S-FESPSO performs the best on F2 
and F3.  

A t-test of the optimization results obtained by the four 
compared algorithms has been performed and the results of 
the test with a significance level of 5% are listed in Table II. 
According to Table I and Table II, we can see SRFEPSO has 
achieved significantly better results than CPSO on all six 
problems. Compared to FESPSO and S-FESPSO, the 
proposed SRFEPSO performed significantly better on all 
three multimodal test problems. On the unimodal test 
problems, SRFEPSO achieved significantly better results on 
F3 than FESPSO, and on F1 than S-FESPSO, respectively. 

 
TABLE II 

RESULT OF T-TEST WITH 5% SIGNIFICANCE LEVEL COMPARING 
OPTIMIZATION RESULTS FROM SRFEPSO WITH OTHER ALGORITHMS ("1" 

AND "0" STAND FOR DISSIMILARITY AND SIMILARITY, RESPECTIVELY) 
 CPSO FESPSO S-FESPSO 

F1 1 0 1 
F2 1 0 0 
F3 1 1 0 
F4 1 1 1 
F5 1 1 1 
F6 1 1 1 

 
The evolutionary profiles of CPSO, FESPSO, S-FESPSO 

and SRFEPSO are plotted in Figs. 1-6, where the X-axis 
represents the number of fitness evaluations and the Y-axis 
represents the fitness values averaged over 30 independent 
runs. 

It can be easily seen that the SRFEPSO algorithm 
converges slowly at the first several iterations, and then more 
quickly than other PSO algorithms in the late search stage, 
which agrees with our conjecture. The reason is that the 
particles are scattered over the search space in the early stage 
of the search and consequently not many particles can satisfy 
the condition to estimate their fitness. In the late search stage, 
more and more particles will satisfy the condition for fitness 
estimation because they will move closer to each other as the 
swarm converges to a small region where an optimum is 
located. Therefore, the proposed SRFEPSO can obtain better 
results than the compared algorithms given the same number 
of real fitness evaluations.  

 
Fig. 1 The convergence profile on F1 

 

643



 
 

 

 
Fig. 2 The convergence profile on F2 

 
Fig. 3 The convergence profile on F3 

 

 
Fig. 4 The convergence profile on F4 

 

 
Fig. 5 The convergence profile on F5 

 
Fig. 6 The convergence profile on F6 

 
In order to gain deeper insight into the proposed fitness 

estimation strategy to better understand the search behavior 
of the proposed SRFEPSO, we recorded the number of fitness 
estimations as well as the sum of estimation errors at each 
generation. The results are plotted in Fig. 7-8 and Fig. 9-10, 
respectively. We present the results from functions F2 and F4 
in that the three compared PSO algorithms using fitness 
estimation have achieved comparable results on F2, while 
SRFEPSO has outperformed the other two PSO algorithms 
on F4. 

 
Fig. 7 The number of fitness estimations used in each generation for F2 

 
Fig. 8 The number of fitness estimations used in each generation for F4 
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Fig. 9 Estimation errors of the three compared estimation strategies on F2 

 

 
Fig. 10 Estimation errors of the three compared estimation strategies on F4 

 
From Figs. 7 and 8, we can find that S-FESPSO performed 

much more fitness estimations than FESPSO and SRFEPSO 
do for both functions, while SRFEPSO used much more 
fitness estimations than FESPSO. These results indicate that 
SRFEPSO can reduce the number of real fitness evaluations 
that FESPSO, but not as much as S-FESPSO. However, the 
optimization result of S-FESPSO on F2 is comparable to 
other algorithms and the result on F4 is poor than SRFEPSO. 
This means that more fitness estimations do not necessarily 
means better performance. Therefore, we further checked the 
accuracy of fitness estimations at each generation, which are 
shown in Figs. 9-10. From these results, we found that fitness 
estimations in SRFEPSO are more accurate than S-FESPSO 
in the early search stage. To get a closer look at the 
approximation errors in the late search stage, Fig. 11 provides 
a zoomed view of the estimation errors on F2 from generation 
50 to generation 150, which clearly shows that the estimation 
accuracy of SRFEPSO is much higher than that of the other 
two estimation algorithms. Fig. 12 and Fig. 13 give a detail 
view on the estimation errors within the first 40 generations 
and those from generation 40 to generation 140, respectively.  
From these result, we can confirmed that the introduced 
reliability measure has effectively enhanced the fitness 
estimation accuracy. Note that in Fig. 12, the estimation 
errors of S-FESPSO are null as there is not fitness estimation, 
as shown in Fig.8. These preliminary empirical results 
suggest that accurate fitness estimations are important for 
enhance the search performance, particularly in the late 
search strategies.  

 
Fig. 11 The estimation errors profile on F2 at middle 100 generations 

 

 
Fig. 12 The estimation errors profile on F4 at first 40 generations 

 

 
Fig. 13 The estimation errors profile on F4 at middle 100 generations 

V. CONCLUSION 
In this paper, in order to enhance the estimation accuracy 

while still reducing the real fitness evaluations as much as 
possible, a reliability measure has been introduced in 
combination with a similarity measure to determine whether 
the fitness of a particle should be estimated or calculated 
using the real fitness function. The experimental results 
demonstrate the effectiveness in that the proposed method, 
SRFEPSO, outperforms FESPSO and S-FESPSO on four out 
of six compared test functions. Empirical analysis of the 
number of fitness estimations used in the search process 
indicates that SRFEPSO used more fitness estimations than 
FESPSO but fewer than S-FESPSO. Meanwhile, the 
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proposed algorithm achieved better estimation accuracy than 
the other compared fitness estimation strategies, which 
confirmed our assumption that the simultaneous use of 
similarity and reliability can help achieve a good balance 
between reducing the number of real fitness estimations and 
improving the estimation accuracy. This balance has led to an 
improved search performance on a majority of the studied test 
functions, in particular on multimodal test functions.  

In the present work, the thresholds for reliability and 
similarity have been determined empirically. The influence of 
these thresholds on the search performance needs better 
understanding and further investigation. It might be 
interesting to introduce an adaptation mechanism for these 
thresholds to better control the exploration and exploitation 
during the search. Application of the proposed PSO 
algorithms using fitness estimation to real-world problems 
such as complex structure design will also be our future work.   
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