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Abstract—Data collection problem of generating a path 

for a data mule (single or multiple mobile robots) to collect 

data from wireless sensor network (WSN) is usually a NP-

hard problem. Thus, we formulate it as a Traveling 

Salesman Problem with Neighborhoods (TSPN) to obtain 

the possibly short path. TSPN is composed of 

determinations of the order of visiting sites and their 

precise locations. By taking advantage of the overlap of 

neighborhoods, we proposed a clustering–based genetic 

algorithm (CBGA) with an innovative way for initial 

population generation, called Balanced Standard 

Deviation Algorithm (BSDA). Then, effective shortcut 

schemes named Look-Ahead Locating Algorithm (LLA) 

and Advanced-LLA are applied on the TSPN route. By 

LLA, a smoother route is generated and the data mule can 

move while ignoring about 39% clusters. Extensive 

simulations are performed to evaluate the TSPN route in 

some aspects like LLA hits, LLA improvement, Rotation 

Degree of Data Mule (RDDM), Max Step and Ruggedness. 

 

Keywords: Traveling salesman problem with neighborhood, 

Path planning, Clustering, Genetic algorithm, Shortcut, Data 

collection. 

I. INTRODUCTION 

raveling salesman problem (TSP) is first defined by 

Irish and British mathematicians in 1800s. It describes 

that a salesman wants to travel many cities for promoting 

products and decides the proper (usually, the shortest) path to 

visit all cites, finally back to the original city. TSP is known 

as a NP-hard problem. Hence, some optimization approaches 

are proposed: Particle Swarm Optimization Algorithms 

(PSO), Ant Colony Optimization (ACO), Simulated 

Annealing (SA), Artificial Immune Algorithm (AI), Tabu 

Search (TS) and Genetic Algorithm (GA). In this paper we 

adopted GA, for its sensitivity of the environmental 

parameters and the ease to be implemented. TSP with 

neighborhood (TSPN) is a variant of TSP [1], [2]. In TSPN, 

the visiting city no longer counts as a point but an area, 

referred as neighborhood. That is, the ordering of visiting and 

the entry point to a city is considered simultaneously. In 

summary, two subproblems are involved in TSPN: (1) 

determination of the visiting order of sites and (2) 

determination of precise point of sites. Recently, there are 

increasing attentions to the study of TSPN motivated from 
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data collection problem in wireless sensor network (WSN) 

using data mules [3]-[8]. WSN consists of numerous 

distributed autonomous sensors which can monitor 

environmental conditions [9]. Sensors can actively forward 

collecting data to the sink, called multi-hop forwarding 

approach. Or, supervisor can employ data mules to passively 

execute the data gathering, called one-hop forwarding 

approach. Basically, the former has single failure problems 

leading to overload at some sensors. So, our research targeted 

at the latter and tried to use some mechanisms to shorten the 

path of the data mule. In one-hop forwarding approach 

planned path to traverse WSN indeed significantly reduces 

energy consumption and buffer overflow compared with 

commonly-used multi-hop forwarding approach, but it pays 

for the increased data latency.  

 

Pairwise-disjointness of neighborhoods is often assumed for 

some earlier contributions of theoretical interests, e.g. 

constant factor approximation algorithms. In recent works, 

taking the overlap of neighborhoods of two nodes into 

account, constant factor approximation algorithms [5] and 

(meta)heuristic algorithms are developed for the path 

planning to minimize latency. We attributed the data 

gathering task in WSN to a TSPN with sensing range being 

accessible area (neighborhood). To reduce the path length, we 

proposed a two-phase method named “clustering-based 

genetic algorithm (CBGA)” for path planning of data mule 

[10] resulting good solutions of TSPN. The first phase is to 

divide the network into small disjoint clusters by using a 

clustering algorithm (CA), which is flexible and efficient. The 

second phase is to decide the visiting order of all clusters and 

the precise entry points of clusters by using genetic algorithm 

(GA) [11], [12]. The minor implementation variations of GA 

could yield different achievable performance. In our recent 

research [10], extensive simulations show SCX (sequential 

constructive crossover) [13] in combination of 2-opt [15] in 

GA achieves the best average performance. This paper 

presents a further improvement of data gathering route. One 

is that we design an effective method, named Balanced 

Standard Deviation Algorithm (BSDA), to generate initial 

population in GA. Besides, CBGA is combined with a non-

evolutionary shortcut heuristics, called Look-Ahead Locating 

Algorithm (LLA), which is based on the combine-skip-

substitute (CSS) scheme [3]. Moreover, Advanced-LLA 
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(ALLA) is designed for some situations unfit for LLA. This 

shortcut heuristics is feasible to optimize the path length, 

derive a smoother path and reduce the transmission delay and 

orienting errors of data mule. 

The paper is organized as follows. The model and problem 

statement are described in section II. Section III introduces 

the clustering-based genetic algorithm. An innovative method 

of initial population generation, called Balanced Standard 

Deviation Algorithm (BSDA), is contained in Section IV. 

Section V presents the shortcut scheme, Look-Ahead 

Locating Algorithm (LLA) and its advanced version 

(Advanced-LLA). Section VI shows the simulation results 

and analysis. Finally, the conclusion is made in section VII. 

II. MODEL AND PROBLEM STATEMENT 

A. Model 

A data mule and a set of stationary sensors S = {s1, s2, s3 … 

sn} constitute the wireless sensor network (WSN). All 

devices in WSN are also equipped with omnidirectional 

antennae for locating. Sensors are randomly deployed over a 

two-dimensional plane and their precise locations are known 

in advance. Each sensor si can transmit signals within a disk 

region (sensing radius). When data mule is in the sensing 

radius of a sensor, it can receive data from that sensor. In 

this paper, we assume the data mule has unlimited power 

and memory to collect all data in WSN. 

B. Problem Statement 

To minimize the route length of data mule, the data-gathering 

problem is formulated as a special case of Traveling Salesman 

Problem with Neighborhoods (TSPN) where the 

neighborhood is the common intersection area of each cluster. 

TSPN includes the visiting of all neighborhoods and the 

visiting order of clusters. Because TSPN is a NP-hard 

problem, we adopt Genetic Algorithm (GA) [11] to find the 

optimal. Furthermore, shortcut schemes, denoted as Look-

Ahead Locating Algorithm (LLA), and its advanced version 

(Advanced-LLA, ALLA), are employed. Finally, the data 

mule follows the generated path and starts to collect data of 

all clusters from the start point (sink), returning back to the 

sink while collecting completes. 

III. CLUSTERING-BASED GENETIC ALGORITHM 

This paper is based on one-hop data-gathering scheme and 

hence, all sensors must independently communicate with data 

mule. As shown in Fig. 1, the clustering-based genetic 

algorithm (CBGA) is proposed for generating a good TSPN 

route. First, Clustering Algorithm (CA) is executed to 

efficiently group possibly most sensors into disjoint clusters; 

that is, a cluster may contain some sensors and a sensor will 

not belong to different clusters. CA also gives each cluster a 

waypoint located among the common intersection area and 

then data mule can communicate with each sensor belonging 

to that cluster at this waypoint. CA permitted data mule to 

collect data by visiting all waypoints instead of every sensor. 

Meanwhile, Closest Position Algorithm (CP algorithm), 

which is a waypoint selection scheme and can further reduce 

path length, is also given. In core genetic algorithm, various 

ways were suggested to generate initial population such as 

Chromosome Generation Algorithm (CGA), Random Initial 

(RI) and an innovative way, called Balanced Standard 

Deviation Algorithm (BSDA). About crossover and mutation 

operators of GA, several distinct operations are tested and 

analyzed by our previous study. The experimental results 

showed that SCX (or MSCX) accompanied by 2-opt has the 

best performance. Therefore, SCX and 2-opt in genetic 

algorithm were used in this paper for further research. 

 

 
Fig. 1. The overview of CBGA. 

 

A. Clustering Algorithm 

In order to lower the route length, CA groups some sensors 

into a cluster and in this way, data mule just needs to visit the 

clusters and collect multiple data from diverse sensors at a 

single fixed waypoint in the common intersection area of a 

cluster. 

 
(a)                      (b) 

Fig. 2. Upper and lower crossing points are denotes as circular and 
triangulation points, respectively. (a) Uppers are higher than lowers and 

hence, form a cluster whose common intersection area is marked as 

diagonal lines. (b) A lower point is higher than uppers and cannot form a 
cluster. 
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CA works by checking whether there is a common 

intersection area among some sensors, and whether the 

sensors form a cluster; then, assigning a waypoint and 

cluster ID to the cluster. In Fig. 2 (a), three sensors (A, B, C) 

with different sensing radius and two lines (left-dotted line 

and right-solid line) are set while A and B are grouped into a 

cluster. Now, CA checks whether C is allowed to merge 

with this cluster. First, left line shifts toward the right side 

(denoted as L) but not exceeds the right line. Then, count 

crossing points of A, B and C; each sensor at most has two 

crossing points (upper/lower point). In Fig. 2 (a), all upper 

points are higher (in y axis) than lower ones that indicates 

the existence of common intersection area (marked as 

diagonal lines). Hence, it means the three sensors can 

constitute a cluster with waypoint being: 

 

(x, y)=(x_axis[L], y_axis[(MIN(uppers)+MAX(lowers))/2]). 

 

The moving-checking operation ends while left line exceeds 

right line or until the conditions of forming a cluster meet. 

Another case shown in Fig. 2 (b), there is a lower point 

higher than upper point and hence, these three sensors do not 

share a common intersection area and cannot form a cluster. 

CA is designed to create disjoint clusters because if a sensor 

is assigned to more than one cluster at the same time, data 

mule will collect duplicate data at different waypoint. 

B. Find the Closest Position (CP) for Each Cluster 

CP algorithm is a waypoint selection scheme [10] and is 

embedded in crossover, mutation and fitness calculating 

operations. While there are some candidate entry points, CP 

will choose the closest one. Experimental results show CP 

saves about 6% path length no matter how the density of WSN 

is. 

C. Chromosome Encoding and Generation of Initial 

Population 

Any order containing all clusters without repetition is 

regarded as a valid chromosome and each gene is encoded by 

cluster ID. In order to generate the initial population without 

repeated chromosomes, three methods are used in this paper: 

Chromosome Generation Algorithm (CGA), Random Initial 

(RI) and Balanced Standard Deviation Algorithm (BSDA). 

Fig. 3 shows how CGA works. CGA chooses some locations 

of the chromosome initially and permutes the clusters of these 

locations. N chosen clusters cause N! distinct permutations at 

most. Finally, put the clusters in permuted order back to 

original locations and new chromosomes are generated. RI is 

based on an input chromosome; for each gene, RI randomly 

selects another gene to be swapped with. Moreover, BSDA is 

designed for generating a robust population with diverse 

chromosomes because more variability of chromosomes 

promotes the effect of crossover operations. It is believed that 

high diversity facilitates the evolution of GA. BSDA will be 

introduced in details in section IV. 

D. Fitness  

Each chromosome stands for a possible path and is evaluated 

by the fitness value. We define the fitness value of i-th 

chromosome as 𝐹𝑖 = 1/𝐿𝑖, where Li is total length of the 

visiting path of data mule. A higher fitness value indicates 

better chromosome; that is, the visiting order is of high 

quality.  

 
Fig. 3. The demonstration of CGA. 

E. Selection  

We select two parents to produce one offspring in each 

crossover operation. First, two separate parents are randomly 

selected from the population; and the one with higher fitness 

value was assigned as parent 1.  Parent 2 is decided in the 

same way. The two parents must be different. Then, Parent 1 

and parent 2 will be the underlying chromosomes of 

crossover operation. 

F. Crossover 

Crossover operation is a probabilistic process and is important 

in GA because the offspring is produced by how parent 

chromosomes interact with each other. It is supposed to 

preserve good segments of parents and even add high quality 

segments for offspring. We have tested some crossover 

methods which can mainly be classified as two aspects, 

purposeless and purposeful. Purposeless crossover operations 

such as CX (cycle crossover) [16], CSEX (the complete sub-

tour exchange crossover) [17] and N-point crossover only 

provide a trick for generating different permutation of visiting 

order. Oppositely, SCX (sequential constructive crossover) 

and MSCX (modified sequential constructive crossover) [13], 

[14] are types of purposefulness; the inheritance and selection 

of segments for offspring followed some principles like 

segment length. SCX was proposed in 2010 by Zakir H. 

Ahmed as a crossover method in genetic algorithm. Then, 

MSCX altered the mechanism of selecting segments but 

remained the advantages and computational efficiency of 

SCX. We found that purposeful methods with length-oriented 

principles are better options to our demands. SCX and MSCX 

could preserve appropriate segments of parents and explore 

new ones not existing in parents for child chromosomes. In 

this paper, SCX is adopted.  

 

The following is an example:  

In Fig. 4, there are three chromosomes (parent 1, parent 2 and 

child) with their visiting tracks. Each gene (S, A-H) stands for 

a cluster data mule has to visit with S as the starting cluster. 

Table 1 shows the distance matrix of nine clusters (S, A-H), 

and the values are straight-line length between two different 

waypoints. According to Table 1, total path length of parent 1 

and parent 2 is 34.56 and 39.89, respectively.  

SCX starts from cluster S, and “current cluster” is set as S at 

first. Child chromosome is empty in the beginning. To 

generate child chromosome, each parent from its visiting 
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order selects another cluster not appearing in child 

chromosome currently. Next, two selected clusters are 

coupled with S to form two segments. Then, the length of two 

segments is compared. In this example, segment{SA} in 

parent 1 are smaller than segment{SE} in parent 2; hence, 

segment{SA} is added to child chromosome. Now, current 

cluster is A. In the next iteration, segment{AB} is selected. In 

case of no subsequent cluster from the current one like cluster 

D in parent 2 (next cluster, S is chosen before). SCX follows 

the order of cluster ID (from A to H) to find a cluster not 

appearing before. In this example, segment{DC} is picked out 

and is shorter than segment{DE} in parent 1. SCX repeats 

above operation until a new chromosome (child) is produced. 

After SCX, child chromosome usually has shorter path length 

(30.15) than its parents. Moreover, it contains segment{DC} 

and segment{FS}, which are not involved in parents. To some 

degree, SCX boosts the diversity by discovering new and 

better segments. 

 

Table 1. Distance matrix of nine waypoints (S, A-H). 

 S A B C D E F G 

A 2.94 ------ ------ ------ ------ ------ ------ ------ 

B 2.61 1.55 ------ ------ ------ ------ ------ ------ 

C 5.78 3.74 3.18 ------ ------ ------ ------ ------ 

D 5.33 4.3 3.07 1.89 ------ ------ ------ ------ 

E 5.79 5.72 4.24 3.9 2.02 ------ ------ ------ 

F 3.11 5.09 3.79 6.06 4.68 3.97 ------ ------ 

G 8.55 8.77 7.28 6.56 4.83 3.05 6.04 ------ 

H 9.09 8.01 6.89 4.56 3.82 3.77 7.73 3.88 

 

 
(a)                   (b) 

 
(c) 

Fig. 4. Two parents chosen by selection operation and a child chromosome 

generated by SCX. (a) Parent 1: [s a b c d e f g h] = 34.56 (b) Parent 2: [s e 

h g f a c b d] = 39.89 (c) Child: [s a b d c e h g f] = 30.15. 

 

G. Mutation 

The mutation operation is also a probabilistic process in GA 

for triggering diversity of population. Mutation operation can 

extend the search space and avoid getting stuck in local 

optimum. 2-opt was used for mutation operation. 2-opt is a 

simple local search algorithm first proposed by Croes in 1958 

[15] for solving the TSP. The main idea behind it is to 

randomly select two segments in a chromosome and swap the 

two segments to form a new one. If the fitness value of new 

chromosome is higher, replace current chromosome with it. 

As shown in Fig. 5, the visiting order of route between b and 

d is reversed after the 2-opt move. Because of the 

characteristics of randomness, 2-opt is helpful for GA 

converging towards a global optimum.  

 

IV. BALANCED STANDARD DEVIATION ALGORITHM 

Balanced Standard Deviation Algorithm (BSDA) is used to 

generate initial population of GA. The main idea of BSDA is 

to lower the standard deviation (SD) of all different segments 

and promote the diversity of population. Lower SD means 

that the number of every segment is almost the same. Modulus 

(%) operator is adopted to derive all possible gene sequences 

in a balanced way. BSDA needs a prime number (N1) to be 

the base of modulus. Another number M, set to 1 initially and 

ranges from 1 to N1-1, serves as an increment. If the number 

of clusters (N2) is a prime number, N1 is set to N2; otherwise, 

N1 will be the prime number less than and closest to N2. 

Assume a population is composed of P chromosomes and 

single chromosome is defined as [C0, C1, …, CN2-2, CN2-1]. N2 

means there are N2x(N2-1) different segments at most and 

single chromosome possesses N2 segments. To calculate the 

SD value of a certain population, we map all appearing 

segments into a N2xN2 matrix of which fields Fii, i=0~N2-1 

are useless. Add 1 to a certain field while the corresponding 

segment appears. Hence, total value of the matrix will be 

N2xP; average of that is denoted as SD_avg. We define SD 

value of a population as following: 

 

𝑆𝐷 = √𝑇𝑜𝑡𝑎𝑙/(𝑁2 ∗ (𝑁2 − 1)) − (𝑆𝐷_𝑎𝑣𝑔 ∗ 𝑆𝐷_𝑎𝑣𝑔).(1) 

 

𝑇𝑜𝑡𝑎𝑙 = ∑(𝐹𝑖𝑗 ∗ 𝐹𝑖𝑗).                                                           

where Fij is the value of field (i,j), i, j=0~N2-1, i≠j.    (2) 

 

𝑆𝐷_𝑎𝑣𝑔 = (𝑁2 ∗ 𝑃)/(𝑁2 ∗ (𝑁2 − 1)) = 𝑃/(𝑁2 − 1). (3) 

 

Stage 1: 

C0=0, Ci=((Ci-1)+M)%N1, i=1~N1-1. By modulus operator, 

genes which start from CN1 will lead to the repetition of 

previous ones. In this way, invalid chromosomes are 

generated. Hence, we set Ci=i, i=N1~N2-1. So, every 

chromosome will possess similar sequences (CN1~CN2-1) 

which increases SD and lowers the diversity.  

 

 
(a)                 (b) 

Fig. 5. 2-opt move. (a) original tour is [-cd-ba-]. Two segments cd, ba 
are selected (b) resulting tour [-cb-da-] based on exchange of two 

segments by swapping cd with cb and swapping ba with da. 
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Stage 2:  

To avoid that, BSDA swaps each of them with another gene 

which randomly selected from the whole chromosome. After 

a chromosome is generated, M changes into M%(N1-1)+1 

and above operations are repeated until P chromosomes are 

generated. 

We explain how it works by an example as following: 

If N2 is 9, not a prime number, the closest prime number, N1, 

is set to 7. A population with 100 chromosomes is needed. 

The generated chromosomes are like: 

 

1st: [0, 1, 2, 3, 4, 5, 6, 7, 8] => [0, 1, 2, 3, 8, 7, 6, 5, 4], M=1 

2nd: [0, 2, 4, 6, 1, 3, 5, 7, 8] => [0, 2, 4, 7, 1, 3, 5, 8, 6], M=2 

3rd: [0, 3, 6, 2, 5, 1, 4, 7, 8] => [0, 3, 6, 2, 8, 1, 7, 4, 5], M=3 

4th: [0, 4, 2, 3, 4, 5, 6, 7, 8] => [0, 4, 2, 7, 4, 5, 6, 8, 3], M=4 

5th: [0, 5, 3, 1, 6, 4, 2, 7, 8] => [0, 5, 7, 1, 6, 4, 8, 3, 2], M=5 

6th: [0, 6, 5, 4, 3, 2, 1, 7, 8] => [0, 6, 5, 4, 3, 7, 1, 8, 2], M=6 

7th: [0, 1, 2, 3, 4, 5, 6, 7, 8]  

…… 

100th: [0, 4, 2, 3, 4, 5, 6, 7, 8] 

 

Modulus operation makes M loop in a fixed range. In this 

example, 1st and 7th will be the same at first stage, similarly, 

2nd and 8th, 3rd and 9th, etc. The best case of BSDA occurs 

while N1=N2 and P is an integral multiple of N1-1; in that 

moment, SD is 0. When SD is 0, the population is most 

balanced and diversiform. The experiment designed to verify 

the effectiveness of BSDA was described in section VI. 

V. LOOK-AHEAD LOCATING ALGORITHM AND ADVANCED-

LOOK-AHEAD LOCATING 

In this section, based on the CSS (combine-skip-substitute) 

scheme [3], a short-cut procedure called Look-Ahead 

Locating Algorithm (LLA) was devised to refine the 

generated route of GA so that the path length can be shortened 

further. According to the experimental results, LLA is very 

powerful not just in shortening path but also in decreasing the 

total rotated degree of data mule and data communication 

delay while data gathering is conducting. Fig. 6 shows the 

overview of LLA. There are two clusters (cluster 1 and 2) and 

data mule needs to collect all data of these two clusters and 

goes to C. Data mule has moved from previous location to 

current location. Now, just consider how it moves from 

current location to B. By the original method, data mule will 

follow the black solid lines guided by CP algorithm. That is, 

it first visits A and turns to B, and two segments are needed. 

On the contrary, LLA can reach B without visiting middle 

location A. First, LLA will skip cluster 1 to look ahead cluster 

2 and establish a straight line (dotted line) between current 

location and B. Then LLA checks whether the sensing radius 

of all sensors belonging to next cluster intersects with the line. 

In Fig. 6, dotted line is checked to be a valid segment for data 

mule to collect all sensor data of next cluster. Obviously, it’s 

shorter path length than the original. In another case as 

displayed in Fig. 7, the topology is kept the same only with 

different current location. LLA also conducted the check 

between dotted line and sensors. It will find only a sensor can 

be passed through if following the dotted line. LLA returns 

false message to notice data mule to move in the original way. 

 

 
Fig. 6. Dotted line is a LLA segment with data of cluster 1 collected. 

 

 
Fig. 7. Dotted line is a LLA segment with only one sensor data collected. 

 

However, in most cases, clusters consists of few sensors and 

only one or two sensors are not passed through. Advanced-

LLA (ALLA) is for fixing this problem. Fig. 8, shows how 

ALLA works. Data from the two sensors cannot be collected 

when data mule goes along the dotted line. Data mule makes 

detours to E1 and E2 sequentially, finally reaching B. E1 and 

E2 are the respective nearest nodes from two sensors to the 

dotted line. Obviously, ALLA route (current-E1-E2-B) is still 

shorter than the original route (current-A-B). The number of 

detours of data mule is a trade-off with the efficiency, and 

taking too many detours may cause longer path instead.  

 

 
Fig. 8. ALLA with two detours to E1 and E2. 
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LLA can reduce the Rotation Degree of Data Mule, denoted 

as RDDM. In Fig. 6, RDDM of LLA route (previous-current-

B-C) is less than original route (previous-current-A-B-C) by 

two times of angle X. The reducing of RDDM not only saves 

the power consumption but decreases orienting errors. 

Moreover, LLA can lower the data communication delay 

while data gathering is conducting. In original way, visiting 

waypoints are always in common intersection area of clusters. 

In some ways, there is higher rates at waypoint to cause 

queuing delay and even data collision. In Fig. 6, following the 

original way, data mule can collect data of one sensor at Y, 

and for the remaining three sensor data it must move to A. 

That is, if there are sensor data not collected after reaching 

next waypoint (A in this example), data mule must stop to 

collect remaining data by turns until all data is received 

correctly and hence delay occurs. That takes data mule more 

time to complete the task. On the other hand, we define Max 

Step as the max segment during whole data gathering task. 

LLA will lead to larger Max Step. In this paper, for saving the 

computational time, we just look one ahead and ALLA makes 

only a detour for one missing sensor while applying LLA. But, 

LLA is feasible for multiple look-ahead clusters and ALLA 

can also make multiple detours. It depends on your needs to 

guide a better route for the data mule. More stimulation results 

and analysis are in section VI. 

 

VI. SIMULATION RESULTS AND ANALYSIS 

In our studies, a C++ program was used for simulations. The 

environment was a fixed two-dimensional map with sensors 

randomly distributed. For the sake of accuracy, each 

simulation was tested for multiple runs to obtain the average. 

2-opt is configured to test at most 10 times in a round for 

improvement; if no chromosomes with higher fitness arise, 

chromosome keeps the same. Simulations will stop when GA 

converges. While GA produces the same result for successive 

15 generations, it converges and Convergence is defined as 

the total required generations. In this section, the effects of 

Balanced Standard Deviation Algorithm and Look-Ahead 

Locating Algorithm were discussed. Also, some reasonable 

explanations were given for them.  

Each cluster was given a waypoint by CA. Then, a route 

visiting all clusters was generated with greedy method. The 

length is denoted as CAnCP. Then, CP was applied on 

CAnCP; the length is denoted as CACP. From the previous 

research, we found CP can save about 6% route length no 

matter how the network topology changes. In this paper, we 

evaluated the experimental results on the basis of how they 

shorten CACP. The performance improvement is defined as 

 

Gain = (CACP-Avg)/CACP*100%. 

where Avg is the average route length of multiple runs. 

 

A. Effect of Balanced Standard Deviation Algorithm 

In this section, we tune the parameters to manifest the 

effectiveness of BSDA. The number of clusters is set to 73, 

which is a prime number. And the size of population is an 

integral multiple of 72 (73-1). In this environment, SD of 

BSDA is always 0, but SD of CGA and RI increase linearly, 

as shown in Fig. 9. However, BSDA still works in general 

cases. Fig. 10 indicates the Gain with RI, CGA and BSDA 

being applied. BSDA outperforms CGA all the time and is 

better than RI in some cases. Fig. 11 presents the 

Convergence of CGA, RI and BSDA, all of which have the 

similar variation trend: decreases while the size of 

population increases. This phenomenon indicates that GA 

can find the optimal in less computation rounds among a 

large searching space. By the simulation results, CGA can 

generate relatively good chromosomes (with lower fitness 

value) in the first time but lacks of diversity; RI performs 

better but spends more generations (or computational time) 

to converge. Besides, BSDA could offer a balanced way to 

generate as more as possible different segments but was only 

a few generations faster than RI. In summary, the effect of 

BSDA was really close to RI. We concluded the tailor-made 

initialization schemes cannot perform well in the long term 

evolution. So, conducting BSDA during the evolution to 

give full play to the characteristic of high diversity may 

enhance the final results. This will be treated as future work. 
 

 
Fig. 9. Standard Deviation (average over 20 runs). map size=2000*2000, 

#sensor=100, sensing radius=50, #cluster=73, crossover probability=1, 

mutation probability=0.2, initial population generated by CGA, RI and 

BSDA. 

 

 
Fig. 10. Gain (average over 20 runs). map size=2000*2000, #sensor=100, 

sensing radius=50, #cluster=73, crossover probability=1, mutation 

probability=0.2, initial population generated by CGA, RI and BSDA. 
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Fig. 11. Convergence (average over 20 runs). map size=2000*2000, 

#sensor=100, sensing radius=50, #cluster=73, crossover probability=1, 

mutation probability=0.2, initial population generated by CGA, RI and 

BSDA. 

 

B. Effect of Look-Ahead Locating Algorithm 

In this section, we discuss the effectiveness of LLA in some 

different aspects such as LLA hits (a LLA segment is valid), 

LLA improvement, Rotation Degree of Data Mule 

(RDDM), Max Step and Ruggedness. Table 2 shows the 

simulation results. To keep the simplicity of GA and 

computational efficiency, LLA is not embedded in GA but 

as a plugin only applied on the best chromosome after the 

evolution. By LLA, data mule can ignore about 39% (LLA 

hit rate) clusters and pass through directly during the 

gathering task. LLA reduces the total path length with about 

6.7% on average (LLA improvement). Moreover, LLA also 

lowers the RDDM for 35% on average, about 4.5 spinning 

rounds (4.5x360°). Moreover, the reduction can be much 

more in a denser WSN. On the other hand, LLA will lead to 

larger segments, such as (current-B) being longer than 

(current-A) and (A-B) in Fig. 6. According to the simulation 

results, LLA causes about 21% increment of Max Step. 

 

We define an index, denoted as Ruggednesslocal, to evaluate 

the smoothness grades of each segment.  

 

Ruggedness𝑙𝑜𝑐𝑎𝑙 = Rot/Seg. 
 

Where Seg is the length of current segment and Rot is the 

rotating degree. Rot is always less than 180°, oriented to the 

next segment. As demonstrated in Fig. 12, Seg is the length 

of AB and Rot is 180°-∠ABC. 

 
Fig. 12. Illustration of Ruggedness calculating. Ruggedness of 

segment{AB} is defines as Rot/Seg. 

 

Fig. 13 and Fig. 14 exhibit the Ruggednesslocal of every 

segment without or with LLA. Obviously, the average with 

LLA is smaller than the other. The horizontal bar with 

different length stands for disparate segments. Nearly all the 

segments of LLA are longer. Also, the variation degree of 

Ruggednesslocal is different; a sharp rise of Ruggednesslocal 

may occur in Fig. 13. Then, taking it in the task view, we 

evaluate the whole gathering task with Ruggednessglobal. 

 

Ruggedness𝑔𝑙𝑜𝑏𝑎𝑙 = ∑𝑅𝑜𝑡 /∑ 𝑆𝑒𝑔. 

 

According to Table 2, average Ruggednessglobal is 0.33 and 

0.23 without or with LLA, respectively; that means the route 

guided by LLA is smoother on about 30%. To move in a 

smoother and shorter route, data mule not only saves power 

consumption but reduces orienting errors. 

 
Table 2. Experimental results (average over 20 runs). map size=2000*2000, 
population=300~1300, #sensor=100, sensing radius=50, crossover 

probability=1, mutation probability=0.2, initial population generated by 

CGA, RI and BSDA. 
 

 300 500 700 

CGA RI BSDA CGA RI BSDA CGA RI BSDA 

Gain (%) 16.85 19.27 18.20 14.83 19.95 18.11 19.92 20.53 18.76 

Gain after 

LLA (%) 
23.20 25.60 24.18 22.27 26.70 25.16 27.07 26.98 26.54 

LLA 

improvement 

(%) 

6.35 6.33 5.99 7.44 6.75 7.05 7.15 6.45 7.78 

Max Step 666.99 568.29 571.99 689.68 535.03 573.89 628.67 509.42 523.29 

Max Step 

after LLA 
779.96 681.87 674.05 784.57 709.32 661.04 700.78 680.81 617.60 

Max Step 

increase (%) 
16.94 19.99 17.84 13.76 32.58 15.19 11.47 33.64 18.02 

RDDM 4400.1 4739.0 4489.4 4423.8 4687.6 4688.9 4588.3 4610.2 4584.2 

RDDM after 

LLA 
2931.8 3225.7 2998.1 2891.9 3043.0 3049.6 2952.4 3054.6 2795.7 

RDDM 

reduction 

(%) 

33.37 31.93 33.22 34.63 35.08 34.96 35.66 33.74 39.01 

#Cluster 74.4 75.9 74.35 73.85 74.8 74.25 74.85 75.35 74.7 

#LLA hit 28.85 29.25 28.85 28.95 28.9 28.7 28.8 29 29.35 

LLA hit rate 

(%) 
38.78 38.54 38.80 39.20 38.64 38.65 38.48 38.49 39.29 

Ruggedness 0.31 0.34 0.32 0.31 0.34 0.35 0.32 0.33 0.34 

Ruggedness 

after LLA 
0.23 0.25 0.23 0.22 0.24 0.25 0.23 0.24 0.23 

 

 900 1100 1300 

CGA RI BSDA CGA RI BSDA CGA RI BSDA 

Gain (%) 17.95 20.20 20.04 17.80 19.79 20.05 17.90 20.47 19.58 

Gain after 

LLA (%) 
26.34 26.55 26.60 24.02 25.38 27.43 24.70 26.80 25.73 

LLA 

improvement 

(%) 

8.40 6.35 6.56 6.21 5.59 7.37 6.81 6.33 6.15 

Max Step 593.85 568.26 575.09 695.52 560.01 516.89 633.05 520.46 592.49 

Max Step 

after LLA 
724.06 755.73 694.20 771.92 671.28 655.3 737.66 647.06 687.93 

Max Step 

increase (%) 
21.93 32.99 20.71 10.98 19.87 26.78 16.52 24.32 16.11 

RDDM 4644.4 4650.3 4714.7 4515.4 4733.8 4604.7 4535.4 4612.1 4532.1 

RDDM after 

LLA 
2882.3 3012.3 2973.3 2992.4 3152.55 2925.4 2994.65 2973.6 2936.31 

RDDM 

reduction 

(%) 

37.94 35.22 36.94 33.73 33.40 36.47 33.97 35.53 35.21 

#Cluster 75.85 75.7 74.65 73.85 75.3 74.4 75.15 74.4 74.1 

#LLA hit 30.05 29.7 29.2 28.75 28.75 28.75 29.05 28.65 28.6 

LLA hit rate 

(%) 
39.62 39.23 39.12 38.93 38.18 38.64 38.66 38.51 38.60 

Ruggedness 0.33 0.34 0.34 0.32 0.34 0.34 0.32 0.34 0.33 

Ruggedness 

after LLA 
0.23 0.24 0.24 0.23 0.25 0.24 0.23 0.24 0.23 
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Fig. 13. Ruggedness without LLA during all path and the average segment 

length is 172.99. map size=2000*2000, #sensor=100, sensing radius=50, 

crossover probability=1, mutation probability=0.2, population=300, initial 

population generated by RI. 

 

 
Fig. 14. Ruggedness with LLA during all path and the average segment length 

is 267.75. map size=2000*2000, #sensor=100, sensing radius=50, crossover 

probability=1, mutation probability=0.2, population=300, initial population 

generated by RI. 

 

VII. CONCLUSIONS 

Motivated from the characteristics of data collection using 

data mule in WSN, we proposed a clustering-based genetic 

algorithm (CBGA). In GA, Balanced Standard Deviation 

Algorithm (BSDA) is for generating initial population in a 

balanced way. Later, an approximated TSPN route will be 

generated while GA converges after multiple generations. We 

further improved the route by shortcut schemes, Look-Ahead 

Locating Algorithm (LLA) and Advanced-LLA (ALLA). 

ALLA solves the problem of missing only few sensors. 

Furthermore, simulation results are analyzed in terms of some 

aspects such as LLA hits, LLA improvement, RDDM, Max 

Step and Ruggedness. Besides, CA is beneficial to the use of 

LLA because CA can check the possible entry points in the 

common intersection area of each cluster for shortcuts to 

increase the LLA hits. Combined with CBGA, LLA offers a 

further 6.7% improvement of Gain. We also depict Fig. 13 

and Fig. 14 to show the smoothness grades of a TPSN route 

without or with LLA. In the view of whole task, 

Ruggednessglobal can be reduced about 30%. Finally, it was 

noted that our solution is practical and applicable to other 

problem domains such as the tour planning of computer-

vision based inspection (uses a set of end-effector placements 

for taking pictures [2]). Moreover, GA is modularized and 

some features can be extended easily as plugins. 
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