

Abstract—Data collection problem of generating a path

for a data mule (single or multiple mobile robots) to collect

data from wireless sensor network (WSN) is usually a NP-

hard problem. Thus, we formulate it as a Traveling

Salesman Problem with Neighborhoods (TSPN) to obtain

the possibly short path. TSPN is composed of

determinations of the order of visiting sites and their

precise locations. By taking advantage of the overlap of

neighborhoods, we proposed a clustering–based genetic

algorithm (CBGA) with an innovative way for initial

population generation, called Balanced Standard

Deviation Algorithm (BSDA). Then, effective shortcut

schemes named Look-Ahead Locating Algorithm (LLA)

and Advanced-LLA are applied on the TSPN route. By

LLA, a smoother route is generated and the data mule can

move while ignoring about 39% clusters. Extensive

simulations are performed to evaluate the TSPN route in

some aspects like LLA hits, LLA improvement, Rotation

Degree of Data Mule (RDDM), Max Step and Ruggedness.

Keywords: Traveling salesman problem with neighborhood,

Path planning, Clustering, Genetic algorithm, Shortcut, Data

collection.

I. INTRODUCTION

raveling salesman problem (TSP) is first defined by

Irish and British mathematicians in 1800s. It describes

that a salesman wants to travel many cities for promoting

products and decides the proper (usually, the shortest) path to

visit all cites, finally back to the original city. TSP is known

as a NP-hard problem. Hence, some optimization approaches

are proposed: Particle Swarm Optimization Algorithms

(PSO), Ant Colony Optimization (ACO), Simulated

Annealing (SA), Artificial Immune Algorithm (AI), Tabu

Search (TS) and Genetic Algorithm (GA). In this paper we

adopted GA, for its sensitivity of the environmental

parameters and the ease to be implemented. TSP with

neighborhood (TSPN) is a variant of TSP [1], [2]. In TSPN,

the visiting city no longer counts as a point but an area,

referred as neighborhood. That is, the ordering of visiting and

the entry point to a city is considered simultaneously. In

summary, two subproblems are involved in TSPN: (1)

determination of the visiting order of sites and (2)

determination of precise point of sites. Recently, there are

increasing attentions to the study of TSPN motivated from

S. Y. Wu and J. S. Liu are with Institute of Information Science, Academia

Sinica, Nangang, Taipei, Taiwan 115, ROC. (e-mail:
bluechip993@gmail.com, liu@iis.sinica.edu.tw).

data collection problem in wireless sensor network (WSN)

using data mules [3]-[8]. WSN consists of numerous

distributed autonomous sensors which can monitor

environmental conditions [9]. Sensors can actively forward

collecting data to the sink, called multi-hop forwarding

approach. Or, supervisor can employ data mules to passively

execute the data gathering, called one-hop forwarding

approach. Basically, the former has single failure problems

leading to overload at some sensors. So, our research targeted

at the latter and tried to use some mechanisms to shorten the

path of the data mule. In one-hop forwarding approach

planned path to traverse WSN indeed significantly reduces

energy consumption and buffer overflow compared with

commonly-used multi-hop forwarding approach, but it pays

for the increased data latency.

Pairwise-disjointness of neighborhoods is often assumed for

some earlier contributions of theoretical interests, e.g.

constant factor approximation algorithms. In recent works,

taking the overlap of neighborhoods of two nodes into

account, constant factor approximation algorithms [5] and

(meta)heuristic algorithms are developed for the path

planning to minimize latency. We attributed the data

gathering task in WSN to a TSPN with sensing range being

accessible area (neighborhood). To reduce the path length, we

proposed a two-phase method named “clustering-based

genetic algorithm (CBGA)” for path planning of data mule

[10] resulting good solutions of TSPN. The first phase is to

divide the network into small disjoint clusters by using a

clustering algorithm (CA), which is flexible and efficient. The

second phase is to decide the visiting order of all clusters and

the precise entry points of clusters by using genetic algorithm

(GA) [11], [12]. The minor implementation variations of GA

could yield different achievable performance. In our recent

research [10], extensive simulations show SCX (sequential

constructive crossover) [13] in combination of 2-opt [15] in

GA achieves the best average performance. This paper

presents a further improvement of data gathering route. One

is that we design an effective method, named Balanced

Standard Deviation Algorithm (BSDA), to generate initial

population in GA. Besides, CBGA is combined with a non-

evolutionary shortcut heuristics, called Look-Ahead Locating

Algorithm (LLA), which is based on the combine-skip-

substitute (CSS) scheme [3]. Moreover, Advanced-LLA

Evolutionary Path Planning of a Data Mule in Wireless Sensor

Network by Using Shortcuts

Shao-You Wu and Jing-Sin Liu

T

2708

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

mailto:bluechip993@gmail.com
mailto:liu@iis.sinica.edu.tw

(ALLA) is designed for some situations unfit for LLA. This

shortcut heuristics is feasible to optimize the path length,

derive a smoother path and reduce the transmission delay and

orienting errors of data mule.

The paper is organized as follows. The model and problem

statement are described in section II. Section III introduces

the clustering-based genetic algorithm. An innovative method

of initial population generation, called Balanced Standard

Deviation Algorithm (BSDA), is contained in Section IV.

Section V presents the shortcut scheme, Look-Ahead

Locating Algorithm (LLA) and its advanced version

(Advanced-LLA). Section VI shows the simulation results

and analysis. Finally, the conclusion is made in section VII.

II. MODEL AND PROBLEM STATEMENT

A. Model

A data mule and a set of stationary sensors S = {s1, s2, s3 …

sn} constitute the wireless sensor network (WSN). All

devices in WSN are also equipped with omnidirectional

antennae for locating. Sensors are randomly deployed over a

two-dimensional plane and their precise locations are known

in advance. Each sensor si can transmit signals within a disk

region (sensing radius). When data mule is in the sensing

radius of a sensor, it can receive data from that sensor. In

this paper, we assume the data mule has unlimited power

and memory to collect all data in WSN.

B. Problem Statement

To minimize the route length of data mule, the data-gathering

problem is formulated as a special case of Traveling Salesman

Problem with Neighborhoods (TSPN) where the

neighborhood is the common intersection area of each cluster.

TSPN includes the visiting of all neighborhoods and the

visiting order of clusters. Because TSPN is a NP-hard

problem, we adopt Genetic Algorithm (GA) [11] to find the

optimal. Furthermore, shortcut schemes, denoted as Look-

Ahead Locating Algorithm (LLA), and its advanced version

(Advanced-LLA, ALLA), are employed. Finally, the data

mule follows the generated path and starts to collect data of

all clusters from the start point (sink), returning back to the

sink while collecting completes.

III. CLUSTERING-BASED GENETIC ALGORITHM

This paper is based on one-hop data-gathering scheme and

hence, all sensors must independently communicate with data

mule. As shown in Fig. 1, the clustering-based genetic

algorithm (CBGA) is proposed for generating a good TSPN

route. First, Clustering Algorithm (CA) is executed to

efficiently group possibly most sensors into disjoint clusters;

that is, a cluster may contain some sensors and a sensor will

not belong to different clusters. CA also gives each cluster a

waypoint located among the common intersection area and

then data mule can communicate with each sensor belonging

to that cluster at this waypoint. CA permitted data mule to

collect data by visiting all waypoints instead of every sensor.

Meanwhile, Closest Position Algorithm (CP algorithm),

which is a waypoint selection scheme and can further reduce

path length, is also given. In core genetic algorithm, various

ways were suggested to generate initial population such as

Chromosome Generation Algorithm (CGA), Random Initial

(RI) and an innovative way, called Balanced Standard

Deviation Algorithm (BSDA). About crossover and mutation

operators of GA, several distinct operations are tested and

analyzed by our previous study. The experimental results

showed that SCX (or MSCX) accompanied by 2-opt has the

best performance. Therefore, SCX and 2-opt in genetic

algorithm were used in this paper for further research.

Fig. 1. The overview of CBGA.

A. Clustering Algorithm

In order to lower the route length, CA groups some sensors

into a cluster and in this way, data mule just needs to visit the

clusters and collect multiple data from diverse sensors at a

single fixed waypoint in the common intersection area of a

cluster.

(a) (b)

Fig. 2. Upper and lower crossing points are denotes as circular and
triangulation points, respectively. (a) Uppers are higher than lowers and

hence, form a cluster whose common intersection area is marked as

diagonal lines. (b) A lower point is higher than uppers and cannot form a
cluster.

2709

app:ds:experimental
app:ds:result

CA works by checking whether there is a common

intersection area among some sensors, and whether the

sensors form a cluster; then, assigning a waypoint and

cluster ID to the cluster. In Fig. 2 (a), three sensors (A, B, C)

with different sensing radius and two lines (left-dotted line

and right-solid line) are set while A and B are grouped into a

cluster. Now, CA checks whether C is allowed to merge

with this cluster. First, left line shifts toward the right side

(denoted as L) but not exceeds the right line. Then, count

crossing points of A, B and C; each sensor at most has two

crossing points (upper/lower point). In Fig. 2 (a), all upper

points are higher (in y axis) than lower ones that indicates

the existence of common intersection area (marked as

diagonal lines). Hence, it means the three sensors can

constitute a cluster with waypoint being:

(x, y)=(x_axis[L], y_axis[(MIN(uppers)+MAX(lowers))/2]).

The moving-checking operation ends while left line exceeds

right line or until the conditions of forming a cluster meet.

Another case shown in Fig. 2 (b), there is a lower point

higher than upper point and hence, these three sensors do not

share a common intersection area and cannot form a cluster.

CA is designed to create disjoint clusters because if a sensor

is assigned to more than one cluster at the same time, data

mule will collect duplicate data at different waypoint.

B. Find the Closest Position (CP) for Each Cluster

CP algorithm is a waypoint selection scheme [10] and is

embedded in crossover, mutation and fitness calculating

operations. While there are some candidate entry points, CP

will choose the closest one. Experimental results show CP

saves about 6% path length no matter how the density of WSN

is.

C. Chromosome Encoding and Generation of Initial

Population

Any order containing all clusters without repetition is

regarded as a valid chromosome and each gene is encoded by

cluster ID. In order to generate the initial population without

repeated chromosomes, three methods are used in this paper:

Chromosome Generation Algorithm (CGA), Random Initial

(RI) and Balanced Standard Deviation Algorithm (BSDA).

Fig. 3 shows how CGA works. CGA chooses some locations

of the chromosome initially and permutes the clusters of these

locations. N chosen clusters cause N! distinct permutations at

most. Finally, put the clusters in permuted order back to

original locations and new chromosomes are generated. RI is

based on an input chromosome; for each gene, RI randomly

selects another gene to be swapped with. Moreover, BSDA is

designed for generating a robust population with diverse

chromosomes because more variability of chromosomes

promotes the effect of crossover operations. It is believed that

high diversity facilitates the evolution of GA. BSDA will be

introduced in details in section IV.

D. Fitness

Each chromosome stands for a possible path and is evaluated

by the fitness value. We define the fitness value of i-th

chromosome as 𝐹𝑖 = 1/𝐿𝑖, where Li is total length of the

visiting path of data mule. A higher fitness value indicates

better chromosome; that is, the visiting order is of high

quality.

Fig. 3. The demonstration of CGA.

E. Selection

We select two parents to produce one offspring in each

crossover operation. First, two separate parents are randomly

selected from the population; and the one with higher fitness

value was assigned as parent 1. Parent 2 is decided in the

same way. The two parents must be different. Then, Parent 1

and parent 2 will be the underlying chromosomes of

crossover operation.

F. Crossover

Crossover operation is a probabilistic process and is important

in GA because the offspring is produced by how parent

chromosomes interact with each other. It is supposed to

preserve good segments of parents and even add high quality

segments for offspring. We have tested some crossover

methods which can mainly be classified as two aspects,

purposeless and purposeful. Purposeless crossover operations

such as CX (cycle crossover) [16], CSEX (the complete sub-

tour exchange crossover) [17] and N-point crossover only

provide a trick for generating different permutation of visiting

order. Oppositely, SCX (sequential constructive crossover)

and MSCX (modified sequential constructive crossover) [13],

[14] are types of purposefulness; the inheritance and selection

of segments for offspring followed some principles like

segment length. SCX was proposed in 2010 by Zakir H.

Ahmed as a crossover method in genetic algorithm. Then,

MSCX altered the mechanism of selecting segments but

remained the advantages and computational efficiency of

SCX. We found that purposeful methods with length-oriented

principles are better options to our demands. SCX and MSCX

could preserve appropriate segments of parents and explore

new ones not existing in parents for child chromosomes. In

this paper, SCX is adopted.

The following is an example:

In Fig. 4, there are three chromosomes (parent 1, parent 2 and

child) with their visiting tracks. Each gene (S, A-H) stands for

a cluster data mule has to visit with S as the starting cluster.

Table 1 shows the distance matrix of nine clusters (S, A-H),

and the values are straight-line length between two different

waypoints. According to Table 1, total path length of parent 1

and parent 2 is 34.56 and 39.89, respectively.

SCX starts from cluster S, and “current cluster” is set as S at

first. Child chromosome is empty in the beginning. To

generate child chromosome, each parent from its visiting

2710

order selects another cluster not appearing in child

chromosome currently. Next, two selected clusters are

coupled with S to form two segments. Then, the length of two

segments is compared. In this example, segment{SA} in

parent 1 are smaller than segment{SE} in parent 2; hence,

segment{SA} is added to child chromosome. Now, current

cluster is A. In the next iteration, segment{AB} is selected. In

case of no subsequent cluster from the current one like cluster

D in parent 2 (next cluster, S is chosen before). SCX follows

the order of cluster ID (from A to H) to find a cluster not

appearing before. In this example, segment{DC} is picked out

and is shorter than segment{DE} in parent 1. SCX repeats

above operation until a new chromosome (child) is produced.

After SCX, child chromosome usually has shorter path length

(30.15) than its parents. Moreover, it contains segment{DC}

and segment{FS}, which are not involved in parents. To some

degree, SCX boosts the diversity by discovering new and

better segments.

Table 1. Distance matrix of nine waypoints (S, A-H).

 S A B C D E F G

A 2.94 ------ ------ ------ ------ ------ ------ ------

B 2.61 1.55 ------ ------ ------ ------ ------ ------

C 5.78 3.74 3.18 ------ ------ ------ ------ ------

D 5.33 4.3 3.07 1.89 ------ ------ ------ ------

E 5.79 5.72 4.24 3.9 2.02 ------ ------ ------

F 3.11 5.09 3.79 6.06 4.68 3.97 ------ ------

G 8.55 8.77 7.28 6.56 4.83 3.05 6.04 ------

H 9.09 8.01 6.89 4.56 3.82 3.77 7.73 3.88

(a) (b)

(c)

Fig. 4. Two parents chosen by selection operation and a child chromosome

generated by SCX. (a) Parent 1: [s a b c d e f g h] = 34.56 (b) Parent 2: [s e

h g f a c b d] = 39.89 (c) Child: [s a b d c e h g f] = 30.15.

G. Mutation

The mutation operation is also a probabilistic process in GA

for triggering diversity of population. Mutation operation can

extend the search space and avoid getting stuck in local

optimum. 2-opt was used for mutation operation. 2-opt is a

simple local search algorithm first proposed by Croes in 1958

[15] for solving the TSP. The main idea behind it is to

randomly select two segments in a chromosome and swap the

two segments to form a new one. If the fitness value of new

chromosome is higher, replace current chromosome with it.

As shown in Fig. 5, the visiting order of route between b and

d is reversed after the 2-opt move. Because of the

characteristics of randomness, 2-opt is helpful for GA

converging towards a global optimum.

IV. BALANCED STANDARD DEVIATION ALGORITHM

Balanced Standard Deviation Algorithm (BSDA) is used to

generate initial population of GA. The main idea of BSDA is

to lower the standard deviation (SD) of all different segments

and promote the diversity of population. Lower SD means

that the number of every segment is almost the same. Modulus

(%) operator is adopted to derive all possible gene sequences

in a balanced way. BSDA needs a prime number (N1) to be

the base of modulus. Another number M, set to 1 initially and

ranges from 1 to N1-1, serves as an increment. If the number

of clusters (N2) is a prime number, N1 is set to N2; otherwise,

N1 will be the prime number less than and closest to N2.

Assume a population is composed of P chromosomes and

single chromosome is defined as [C0, C1, …, CN2-2, CN2-1]. N2

means there are N2x(N2-1) different segments at most and

single chromosome possesses N2 segments. To calculate the

SD value of a certain population, we map all appearing

segments into a N2xN2 matrix of which fields Fii, i=0~N2-1

are useless. Add 1 to a certain field while the corresponding

segment appears. Hence, total value of the matrix will be

N2xP; average of that is denoted as SD_avg. We define SD

value of a population as following:

𝑆𝐷 = √𝑇𝑜𝑡𝑎𝑙/(𝑁2 ∗ (𝑁2 − 1)) − (𝑆𝐷_𝑎𝑣𝑔 ∗ 𝑆𝐷_𝑎𝑣𝑔).(1)

𝑇𝑜𝑡𝑎𝑙 = ∑(𝐹𝑖𝑗 ∗ 𝐹𝑖𝑗).

where Fij is the value of field (i,j), i, j=0~N2-1, i≠j. (2)

𝑆𝐷_𝑎𝑣𝑔 = (𝑁2 ∗ 𝑃)/(𝑁2 ∗ (𝑁2 − 1)) = 𝑃/(𝑁2 − 1). (3)

Stage 1:

C0=0, Ci=((Ci-1)+M)%N1, i=1~N1-1. By modulus operator,

genes which start from CN1 will lead to the repetition of

previous ones. In this way, invalid chromosomes are

generated. Hence, we set Ci=i, i=N1~N2-1. So, every

chromosome will possess similar sequences (CN1~CN2-1)

which increases SD and lowers the diversity.

(a) (b)

Fig. 5. 2-opt move. (a) original tour is [-cd-ba-]. Two segments cd, ba
are selected (b) resulting tour [-cb-da-] based on exchange of two

segments by swapping cd with cb and swapping ba with da.

2711

Stage 2:

To avoid that, BSDA swaps each of them with another gene

which randomly selected from the whole chromosome. After

a chromosome is generated, M changes into M%(N1-1)+1

and above operations are repeated until P chromosomes are

generated.

We explain how it works by an example as following:

If N2 is 9, not a prime number, the closest prime number, N1,

is set to 7. A population with 100 chromosomes is needed.

The generated chromosomes are like:

1st: [0, 1, 2, 3, 4, 5, 6, 7, 8] => [0, 1, 2, 3, 8, 7, 6, 5, 4], M=1

2nd: [0, 2, 4, 6, 1, 3, 5, 7, 8] => [0, 2, 4, 7, 1, 3, 5, 8, 6], M=2

3rd: [0, 3, 6, 2, 5, 1, 4, 7, 8] => [0, 3, 6, 2, 8, 1, 7, 4, 5], M=3

4th: [0, 4, 2, 3, 4, 5, 6, 7, 8] => [0, 4, 2, 7, 4, 5, 6, 8, 3], M=4

5th: [0, 5, 3, 1, 6, 4, 2, 7, 8] => [0, 5, 7, 1, 6, 4, 8, 3, 2], M=5

6th: [0, 6, 5, 4, 3, 2, 1, 7, 8] => [0, 6, 5, 4, 3, 7, 1, 8, 2], M=6

7th: [0, 1, 2, 3, 4, 5, 6, 7, 8]

……

100th: [0, 4, 2, 3, 4, 5, 6, 7, 8]

Modulus operation makes M loop in a fixed range. In this

example, 1st and 7th will be the same at first stage, similarly,

2nd and 8th, 3rd and 9th, etc. The best case of BSDA occurs

while N1=N2 and P is an integral multiple of N1-1; in that

moment, SD is 0. When SD is 0, the population is most

balanced and diversiform. The experiment designed to verify

the effectiveness of BSDA was described in section VI.

V. LOOK-AHEAD LOCATING ALGORITHM AND ADVANCED-

LOOK-AHEAD LOCATING

In this section, based on the CSS (combine-skip-substitute)

scheme [3], a short-cut procedure called Look-Ahead

Locating Algorithm (LLA) was devised to refine the

generated route of GA so that the path length can be shortened

further. According to the experimental results, LLA is very

powerful not just in shortening path but also in decreasing the

total rotated degree of data mule and data communication

delay while data gathering is conducting. Fig. 6 shows the

overview of LLA. There are two clusters (cluster 1 and 2) and

data mule needs to collect all data of these two clusters and

goes to C. Data mule has moved from previous location to

current location. Now, just consider how it moves from

current location to B. By the original method, data mule will

follow the black solid lines guided by CP algorithm. That is,

it first visits A and turns to B, and two segments are needed.

On the contrary, LLA can reach B without visiting middle

location A. First, LLA will skip cluster 1 to look ahead cluster

2 and establish a straight line (dotted line) between current

location and B. Then LLA checks whether the sensing radius

of all sensors belonging to next cluster intersects with the line.

In Fig. 6, dotted line is checked to be a valid segment for data

mule to collect all sensor data of next cluster. Obviously, it’s

shorter path length than the original. In another case as

displayed in Fig. 7, the topology is kept the same only with

different current location. LLA also conducted the check

between dotted line and sensors. It will find only a sensor can

be passed through if following the dotted line. LLA returns

false message to notice data mule to move in the original way.

Fig. 6. Dotted line is a LLA segment with data of cluster 1 collected.

Fig. 7. Dotted line is a LLA segment with only one sensor data collected.

However, in most cases, clusters consists of few sensors and

only one or two sensors are not passed through. Advanced-

LLA (ALLA) is for fixing this problem. Fig. 8, shows how

ALLA works. Data from the two sensors cannot be collected

when data mule goes along the dotted line. Data mule makes

detours to E1 and E2 sequentially, finally reaching B. E1 and

E2 are the respective nearest nodes from two sensors to the

dotted line. Obviously, ALLA route (current-E1-E2-B) is still

shorter than the original route (current-A-B). The number of

detours of data mule is a trade-off with the efficiency, and

taking too many detours may cause longer path instead.

Fig. 8. ALLA with two detours to E1 and E2.

2712

LLA can reduce the Rotation Degree of Data Mule, denoted

as RDDM. In Fig. 6, RDDM of LLA route (previous-current-

B-C) is less than original route (previous-current-A-B-C) by

two times of angle X. The reducing of RDDM not only saves

the power consumption but decreases orienting errors.

Moreover, LLA can lower the data communication delay

while data gathering is conducting. In original way, visiting

waypoints are always in common intersection area of clusters.

In some ways, there is higher rates at waypoint to cause

queuing delay and even data collision. In Fig. 6, following the

original way, data mule can collect data of one sensor at Y,

and for the remaining three sensor data it must move to A.

That is, if there are sensor data not collected after reaching

next waypoint (A in this example), data mule must stop to

collect remaining data by turns until all data is received

correctly and hence delay occurs. That takes data mule more

time to complete the task. On the other hand, we define Max

Step as the max segment during whole data gathering task.

LLA will lead to larger Max Step. In this paper, for saving the

computational time, we just look one ahead and ALLA makes

only a detour for one missing sensor while applying LLA. But,

LLA is feasible for multiple look-ahead clusters and ALLA

can also make multiple detours. It depends on your needs to

guide a better route for the data mule. More stimulation results

and analysis are in section VI.

VI. SIMULATION RESULTS AND ANALYSIS

In our studies, a C++ program was used for simulations. The

environment was a fixed two-dimensional map with sensors

randomly distributed. For the sake of accuracy, each

simulation was tested for multiple runs to obtain the average.

2-opt is configured to test at most 10 times in a round for

improvement; if no chromosomes with higher fitness arise,

chromosome keeps the same. Simulations will stop when GA

converges. While GA produces the same result for successive

15 generations, it converges and Convergence is defined as

the total required generations. In this section, the effects of

Balanced Standard Deviation Algorithm and Look-Ahead

Locating Algorithm were discussed. Also, some reasonable

explanations were given for them.

Each cluster was given a waypoint by CA. Then, a route

visiting all clusters was generated with greedy method. The

length is denoted as CAnCP. Then, CP was applied on

CAnCP; the length is denoted as CACP. From the previous

research, we found CP can save about 6% route length no

matter how the network topology changes. In this paper, we

evaluated the experimental results on the basis of how they

shorten CACP. The performance improvement is defined as

Gain = (CACP-Avg)/CACP*100%.

where Avg is the average route length of multiple runs.

A. Effect of Balanced Standard Deviation Algorithm

In this section, we tune the parameters to manifest the

effectiveness of BSDA. The number of clusters is set to 73,

which is a prime number. And the size of population is an

integral multiple of 72 (73-1). In this environment, SD of

BSDA is always 0, but SD of CGA and RI increase linearly,

as shown in Fig. 9. However, BSDA still works in general

cases. Fig. 10 indicates the Gain with RI, CGA and BSDA

being applied. BSDA outperforms CGA all the time and is

better than RI in some cases. Fig. 11 presents the

Convergence of CGA, RI and BSDA, all of which have the

similar variation trend: decreases while the size of

population increases. This phenomenon indicates that GA

can find the optimal in less computation rounds among a

large searching space. By the simulation results, CGA can

generate relatively good chromosomes (with lower fitness

value) in the first time but lacks of diversity; RI performs

better but spends more generations (or computational time)

to converge. Besides, BSDA could offer a balanced way to

generate as more as possible different segments but was only

a few generations faster than RI. In summary, the effect of

BSDA was really close to RI. We concluded the tailor-made

initialization schemes cannot perform well in the long term

evolution. So, conducting BSDA during the evolution to

give full play to the characteristic of high diversity may

enhance the final results. This will be treated as future work.

Fig. 9. Standard Deviation (average over 20 runs). map size=2000*2000,

#sensor=100, sensing radius=50, #cluster=73, crossover probability=1,

mutation probability=0.2, initial population generated by CGA, RI and

BSDA.

Fig. 10. Gain (average over 20 runs). map size=2000*2000, #sensor=100,

sensing radius=50, #cluster=73, crossover probability=1, mutation

probability=0.2, initial population generated by CGA, RI and BSDA.

2713

app:ds:experimental%20result

Fig. 11. Convergence (average over 20 runs). map size=2000*2000,

#sensor=100, sensing radius=50, #cluster=73, crossover probability=1,

mutation probability=0.2, initial population generated by CGA, RI and

BSDA.

B. Effect of Look-Ahead Locating Algorithm

In this section, we discuss the effectiveness of LLA in some

different aspects such as LLA hits (a LLA segment is valid),

LLA improvement, Rotation Degree of Data Mule

(RDDM), Max Step and Ruggedness. Table 2 shows the

simulation results. To keep the simplicity of GA and

computational efficiency, LLA is not embedded in GA but

as a plugin only applied on the best chromosome after the

evolution. By LLA, data mule can ignore about 39% (LLA

hit rate) clusters and pass through directly during the

gathering task. LLA reduces the total path length with about

6.7% on average (LLA improvement). Moreover, LLA also

lowers the RDDM for 35% on average, about 4.5 spinning

rounds (4.5x360°). Moreover, the reduction can be much

more in a denser WSN. On the other hand, LLA will lead to

larger segments, such as (current-B) being longer than

(current-A) and (A-B) in Fig. 6. According to the simulation

results, LLA causes about 21% increment of Max Step.

We define an index, denoted as Ruggednesslocal, to evaluate

the smoothness grades of each segment.

Ruggedness𝑙𝑜𝑐𝑎𝑙 = Rot/Seg.

Where Seg is the length of current segment and Rot is the

rotating degree. Rot is always less than 180°, oriented to the

next segment. As demonstrated in Fig. 12, Seg is the length

of AB and Rot is 180°-∠ABC.

Fig. 12. Illustration of Ruggedness calculating. Ruggedness of

segment{AB} is defines as Rot/Seg.

Fig. 13 and Fig. 14 exhibit the Ruggednesslocal of every

segment without or with LLA. Obviously, the average with

LLA is smaller than the other. The horizontal bar with

different length stands for disparate segments. Nearly all the

segments of LLA are longer. Also, the variation degree of

Ruggednesslocal is different; a sharp rise of Ruggednesslocal

may occur in Fig. 13. Then, taking it in the task view, we

evaluate the whole gathering task with Ruggednessglobal.

Ruggedness𝑔𝑙𝑜𝑏𝑎𝑙 = ∑𝑅𝑜𝑡 /∑ 𝑆𝑒𝑔.

According to Table 2, average Ruggednessglobal is 0.33 and

0.23 without or with LLA, respectively; that means the route

guided by LLA is smoother on about 30%. To move in a

smoother and shorter route, data mule not only saves power

consumption but reduces orienting errors.

Table 2. Experimental results (average over 20 runs). map size=2000*2000,
population=300~1300, #sensor=100, sensing radius=50, crossover

probability=1, mutation probability=0.2, initial population generated by

CGA, RI and BSDA.

 300 500 700

CGA RI BSDA CGA RI BSDA CGA RI BSDA

Gain (%) 16.85 19.27 18.20 14.83 19.95 18.11 19.92 20.53 18.76

Gain after

LLA (%)
23.20 25.60 24.18 22.27 26.70 25.16 27.07 26.98 26.54

LLA

improvement

(%)

6.35 6.33 5.99 7.44 6.75 7.05 7.15 6.45 7.78

Max Step 666.99 568.29 571.99 689.68 535.03 573.89 628.67 509.42 523.29

Max Step

after LLA
779.96 681.87 674.05 784.57 709.32 661.04 700.78 680.81 617.60

Max Step

increase (%)
16.94 19.99 17.84 13.76 32.58 15.19 11.47 33.64 18.02

RDDM 4400.1 4739.0 4489.4 4423.8 4687.6 4688.9 4588.3 4610.2 4584.2

RDDM after

LLA
2931.8 3225.7 2998.1 2891.9 3043.0 3049.6 2952.4 3054.6 2795.7

RDDM

reduction

(%)

33.37 31.93 33.22 34.63 35.08 34.96 35.66 33.74 39.01

#Cluster 74.4 75.9 74.35 73.85 74.8 74.25 74.85 75.35 74.7

#LLA hit 28.85 29.25 28.85 28.95 28.9 28.7 28.8 29 29.35

LLA hit rate

(%)
38.78 38.54 38.80 39.20 38.64 38.65 38.48 38.49 39.29

Ruggedness 0.31 0.34 0.32 0.31 0.34 0.35 0.32 0.33 0.34

Ruggedness

after LLA
0.23 0.25 0.23 0.22 0.24 0.25 0.23 0.24 0.23

 900 1100 1300

CGA RI BSDA CGA RI BSDA CGA RI BSDA

Gain (%) 17.95 20.20 20.04 17.80 19.79 20.05 17.90 20.47 19.58

Gain after

LLA (%)
26.34 26.55 26.60 24.02 25.38 27.43 24.70 26.80 25.73

LLA

improvement

(%)

8.40 6.35 6.56 6.21 5.59 7.37 6.81 6.33 6.15

Max Step 593.85 568.26 575.09 695.52 560.01 516.89 633.05 520.46 592.49

Max Step

after LLA
724.06 755.73 694.20 771.92 671.28 655.3 737.66 647.06 687.93

Max Step

increase (%)
21.93 32.99 20.71 10.98 19.87 26.78 16.52 24.32 16.11

RDDM 4644.4 4650.3 4714.7 4515.4 4733.8 4604.7 4535.4 4612.1 4532.1

RDDM after

LLA
2882.3 3012.3 2973.3 2992.4 3152.55 2925.4 2994.65 2973.6 2936.31

RDDM

reduction

(%)

37.94 35.22 36.94 33.73 33.40 36.47 33.97 35.53 35.21

#Cluster 75.85 75.7 74.65 73.85 75.3 74.4 75.15 74.4 74.1

#LLA hit 30.05 29.7 29.2 28.75 28.75 28.75 29.05 28.65 28.6

LLA hit rate

(%)
39.62 39.23 39.12 38.93 38.18 38.64 38.66 38.51 38.60

Ruggedness 0.33 0.34 0.34 0.32 0.34 0.34 0.32 0.34 0.33

Ruggedness

after LLA
0.23 0.24 0.24 0.23 0.25 0.24 0.23 0.24 0.23

2714

Fig. 13. Ruggedness without LLA during all path and the average segment

length is 172.99. map size=2000*2000, #sensor=100, sensing radius=50,

crossover probability=1, mutation probability=0.2, population=300, initial

population generated by RI.

Fig. 14. Ruggedness with LLA during all path and the average segment length

is 267.75. map size=2000*2000, #sensor=100, sensing radius=50, crossover

probability=1, mutation probability=0.2, population=300, initial population

generated by RI.

VII. CONCLUSIONS

Motivated from the characteristics of data collection using

data mule in WSN, we proposed a clustering-based genetic

algorithm (CBGA). In GA, Balanced Standard Deviation

Algorithm (BSDA) is for generating initial population in a

balanced way. Later, an approximated TSPN route will be

generated while GA converges after multiple generations. We

further improved the route by shortcut schemes, Look-Ahead

Locating Algorithm (LLA) and Advanced-LLA (ALLA).

ALLA solves the problem of missing only few sensors.

Furthermore, simulation results are analyzed in terms of some

aspects such as LLA hits, LLA improvement, RDDM, Max

Step and Ruggedness. Besides, CA is beneficial to the use of

LLA because CA can check the possible entry points in the

common intersection area of each cluster for shortcuts to

increase the LLA hits. Combined with CBGA, LLA offers a

further 6.7% improvement of Gain. We also depict Fig. 13

and Fig. 14 to show the smoothness grades of a TPSN route

without or with LLA. In the view of whole task,

Ruggednessglobal can be reduced about 30%. Finally, it was

noted that our solution is practical and applicable to other

problem domains such as the tour planning of computer-

vision based inspection (uses a set of end-effector placements

for taking pictures [2]). Moreover, GA is modularized and

some features can be extended easily as plugins.

References

[1] E. M. Arkin and R. Hassin, “Approximation algorithms for the

geometric covering salesman problem,” Discrete Applied
Mathematics 55 , no. 3, 197–218, 1994.

[2] I. Gentilini, F. Margot and K. Shimada, “The travelling
salesman problem with neighborhoods: MINLP
solution,” Optimization Methods and Software, 28(2), pp.364-
378, 2013.

[3] L. He, Jianping Pan and Jingdong Xu. “A progressive approach
to reducing data collection latency in wireless sensor networks
with mobile elements,” IEEE Transactions on Mobile
Computing, vol. 12, issue. 7, pp.1308-1320, 2013.

[4] P. N. Pathirana, T. J. Black and S. Nahavandi, “Path planning
for sensor data collecting mobile robot,” In Intelligent Sensors,
Sensor Networks and Information Processing Conference, 2005.

[5] D. Kim, R. N. Uma, B. H. Abay, W. Wu, W. Wang and A. O.
Tokuta, “Minimum Latency Multiple Data MULE Trajectory
Planning in Wireless Sensor Networks,” IEEE Transactions on
Mobile Computing, 2013.

[6] A. Wichmann, J. Chester and T. Korkmaz, “Smooth path
construction for data mule tours in wireless sensor networks,”
In Global Communications Conference (GLOBECOM), pp.86-
92, December 2012.

[7] M. Ma and Y. Yang, “Data gathering in wireless sensor
networks with mobile collectors,” IEEE International
Symposium on Parallel and Distributed Processing, pp.1-9,
2008.

[8] Y. C. Tseng, F. J. Wu, and W. T. Lai, “Opportunistic data
collection for disconnected wireless sensor networks by mobile
mules,” Ad Hoc Networks, vol. 11, pp.1150-1164, 2013.

[9] M. Dunbanin and L. Marques, “Robotics for environmental
monitoring,” IEEE Robotics and Automation Magzine, pp.24-
39, March 2012.

[10] J. S. Liu, S. Y. Wu and K. M. Chiu, “Path Planning of a Data
Mule in Wireless Sensor Network Using an Improved
Implementation of Clustering-Based Genetic Algorithm,” 2013
IEEE Symposium Series on Computational Intelligence,
Singapore.

[11] J. H. Holland, “Adaptation in Natural and Artificial Systems,”
Ann Arbor, MI: The University of Michigan Press, 1975.

[12] D. Simon, “Evolutionary Optimization Algorithms,” John
Wiley, 2013.

[13] Z. H. Ahmed, “Genetic algorithm for the traveling salesman
problem using sequential constructive crossover operator,”
International Journal of Biometrics and Bioinformatics, vol. 3,
no.6, pp.96-105, 2010.

[14] S. M. Abdel-Moetty and A. O. Heakil, “Enhanced traveling
salesman problem soving using genetic algorithm technique
with modified sequential constructive crossover operator,”
International Journal of Computer Science and Network
Security, vol. 12, no. 6, June 2012.

[15] G. A. CROES, “A method for solving traveling salesman
problems,” Operations Res. 6 , pp.791-812, 1958.

[16] I. M. Oliver, D. J. Smith and J. R. C. Holland, “A study of
permutation crossover operators on the traveling salesman
problem,” In Proceedings of the second international
conference. on genetic algorithms (ICGA’87) (pp.224–230).
Cambridge, MA:Massachusetts Institute of Technology, 1987.

[17] K. Katayama, H. Hirabayashi and H. Narihisa, “Performance
analysis of a new genetic crossover for the traveling salesman
problem,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, Vol. E81-A No.5,
pp.738-750, 1998.

2715

