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Abstract— Cooperative coevolutionary algorithms (CCEAs)
divides a problem into several components and optimizes them
independently. Some coevolutionary information will be lost
due to the search space separation. This may lead some
algorithmic pathologies, such as relative overgeneralization. In
addition, according to the interactive nature of the CCEA, the
coevolutionary landscapes are dynamic. In this paper, a multi-
population strategy is proposed to simultaneously search local
or global optima in each dynamic landscape and provide them
to the other components. Besides, a grid-based archive scheme is
proposed to archive these historic collaborators for reasonable
fitness evaluation. Two benchmark problems were used to
test and compare the proposed algorithm to three classical
CCEAs. Experimental results show that the proposed algorithm
effectively counteract relative overgeneralization pathology and
significantly improve the rate of converging to global optimum.

I. INTRODUCTION

COOPERATIVE coevolutionary algorithms (CCEAs) di-
vide a problem into some small components and optimizes
them independently. These components are optimized by
coevolutionary populations and the fitness evaluation of indi-
viduals of the coevolutionary populations is realized through
cooperatively interactions. The divide-and-conquer nature
of CCEAs implies an promising way to solve distributed
optimization problem such as decision-making [1], planning
[2] and large scale optimization [3].

In spite of this, simple CCEAs will lose a great amount
of information in the process of partitioning the whole
search space into separate component search spaces. A sub-
population doesn’t have access to the landscapes of the other
sub-populations due to the search space partition. The fitness
evaluation of a sub-population depends on the collaborators
sent from the other coevolutionary sub-populations. Since
the collaborators (usually the best individuals of the sub-
populations) can not sufficiently represent the profile of the
landscapes of the other sub-problems, the fitness evaluation
of a CCEA always suffers from information loss in contrast
to the traditional EA. As a result, simple CCEAs may not
just get caught in but gravitate towards suboptimal solutions
represented by Nash equilibrium in the joint search space
[4]. Several pathologies have been reported and analyzed in
the [5, 6].
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In order to ensure CCEAs to optimize globally, scientists
have made some extensions to the simple CCEA in the
literature. Archive is the most popular way to compensate
information. Those archives can be classified into two cat-
egories: explicit archives and implicit archives. The explicit
archives directly store information in specified manners [4,
7-9]. In contrast, the implicit archive strategy does not
necessary have an additional archive. The useful information
is just stored in the populations or in the genotypes [10].

In addition to the archive method, another effective way
is to learn from the evolution process. In [11] the biasing
information is learned by estimating the best possible reward
for an individual if partnered with its optimal collaborator.
The authors of [12] argued that coevolutionary populations
should not necessarily explore only their most promising
solutions, but also those solutions that provide the other
coevolutionary populations with accurate projections of the
joint search space. This means that it is also important to
learn collaborating information for the other coevolutionary
populations.

In this work, the representative solutions of a component’s
landscape are searched and sent to the other components for
their construction of accurate joint search spaces. To this
end, each coevolutionary population serves a multimodal
optimization to concurrently search several optima (global
or local) of the component. These optima are seen as
representatives and are sent to the other populations. In
addition, the landscapes of populations are indeed dynamic
because the fitness evaluation of a population depends on the
collaborating information provided by the others and such
information may change while the coevolution procedure
proceeds.

Therefore, the main task of this work is to extend the
behavior of coevolutionary populations from conventional
search to multimodal search in dynamic landscapes. The
interaction between two coevolutionary populations will not
be the random or best-of-N individuals but a set of current
global or local optima which may contain more useful
coevolutionary information. Besides, an archive scheme will
be studied in this work to further compensate information
by maintaining the interaction information from the other
components.

II. PROPOSED ALGORITHM

Over the past two decades, many algorithms have been
proposed to enhance conventional EAs to work in dynamic
landscapes. Comprehensive surveys can be found in [13,
14]. The main idea of these algorithms is to persistently

2578

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



compensate population diversity for dynamic optimization,
which could also be seen as a kind of information compen-
sation. However, some of these algorithms were designed
to efficiently work for dynamic optimization problems with
special property. For example, memory based methods [15]
are designed to persistently optimize for cyclic problem;
Prediction based methods [16] can only work efficiently
in predictable dynamic optimization problems. As for the
CCEAs, the property of the dynamic landscapes of the
coevolutionary populations is hard to be known in priori
due to the random characteristic of evolution process. Thus,
in this work, we need a kind of dynamic EA which can
concurrently search multiple optima in dynamic landscapes
without any knowledge about the problems. To this end, we
borrow the idea of multi-population based dynamic EAs to
improve the coevolutionary populations’ ability of search-
ing representative information. Multi-optima dynamic search
just enhances the algorithm from interaction-sending aspect.
As for interaction-receiving aspect, we propose an archive
scheme to utilize the interactive information. Moreover, this
archive scheme is benefit for simplifying the multi-optima
dynamic search.

A. The Multi-population Strategy for Dynamic Landscapes

The problem-independent and multi-optima-tracking prop-
erties of multi-population based dynamic EAs have attracted
researchers to develop effective algorithms [17, 18] in recent
years. In this work, we modify Self-Organizing Scout (SOS)
algorithm [19] and integrate it into the conventional CCEA.
The main reason why we choose SOS is that it is a relatively
early and well-known algorithm developed from genetic
algorithm. The reason why we have to modify the origin
SOS algorithm is that the landscape in SOS is different from
that of the proposed multi-population strategy. In the original
SOS, the landscape changes randomly. At one site in the
landscape, its height may not only go up but also go down
arbitrarily. In this work, we will design a scheme (as will be
described in the Section B) to maintain and utilize interactive
information for fitness evaluation. This special scheme can
maintain a monotonous landscape. The framework of multi-
population strategy is given in Fig. 1. In general, the multi-
population strategy works as follows:

1) Compute next generation of base and child popula-
tions: Consider a coevolutionary population, in our multi-
population strategy, it is divided into one base population
P0 and several child populations Pi, i = 1, . . . ,Nco. The only
base population searches high-value peaks in the whole
search space of the components. When a peak is confirmed,
several individuals around it will be cut off to generate a
child population and the search space that covers the child
population will also be split off from the whole search
space. The base and child populations run independently
within their search spaces. The offspring of base population
must not fall into the search spaces of child populations.
The search spaces of child populations can overlap a little.
However, when two child spaces overlap to some extent they
will merge together.

REPEAT
Compute next generation of the base population and

child populations;
Management of child populations;
Check forking criterions to create new child populations;
IF (sending interaction is needed)

Output representative individuals of child populations;
Recycle individuals abandoned in the above steps;

UNTIL termination criterion;

Fig. 1. General framework of multi-population strategy.

2) Forking criteria: The concept of forking population in
SOS and this work comes from Forking Genetic Algorithm
(FGA) [20]. The forking populations were used to locate
more than one static optima in multi-modal optimization
problem. We use two forking criteria to judge whether a
child population should be split off. Similar to FGA, at each
generation, the following two criteria are used to confirm a
child population as a forking population.

• The base population has met the stopping criterion,
e.g. the best fitness has not increased for a number of
generations.

• Second, There have been at least individuals in the area
determined by the center (the best individual) and the
maximal radius of child populations (denote rmax).

If a cluster of individuals are confirmed as forking popula-
tion, a number of Psinit individuals will be split off from
the based population as a new child population and the
corresponding searching area will also be cut off from the
main search space. Note that, the base population should at
least remain a minimal population P0min after a new child
population has been split off.

The forking criteria of our multi-population strategy are
simple and easy to be implemented in contrast to that of SOS.
The original SOS can scout new peaks and track existing
peaks in an arbitrary dynamic landscape. The fitness value
of the best individual may increase or decrease. Therefore
one cannot determine whether the best individual has really
changed only by its fitness value. Thus, at the forking
generation, SOS has to confirm several clusters of individuals
according to the boundary values of number of individuals,
range of child search space and relative fitness value of
new and existing forking populations. Among these clusters
only the one with maximal ratio of number of individuals to
diameter is selected to fork.

Comparing with SOS, our multi-population strategy just
uses the stopping criterion of ordinary genetic algorithms
to judge the converging degree. This is benefited by the
interaction utilizing scheme (which will be described in
Section B), the landscape changes monotonously rather than
arbitrarily in SOS. Accordingly, the criterion such as that
the fitness of best fitness has not increased for a number
of generations could be effective in our multi-population
strategy.
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3) Management of child populations: During the run of
multi-population strategy, each child population tracks its
corresponding best individual (center of the search space)
with gradually shrinking search space. Considering the i-th
child population Pi, the radius of the search space ri de-
creases from maximal radius rmax to minimal radius rmin with
respect to the generation number gi of the child population
and a shrinking factor fr like follows [19]:

ri(t+1) = rmin+ (ri(t)− rmin)
gi− fr (1)

Each time, when ri decreases some individuals may locate
outside the new search space. These individuals will be
discarded and stored in a recyclable individuals archive Ψ
subjected to the minimal population size Psmin.

The center ci of the search space is the best individual of
Pi. During the searching procedure of Pi the ci may change
its location, which will lead the movement of Pi’s search
space. This may cause overlapping of different search spaces.
Usually this is allowed, only when the center of a search
space falls in the search space of another child population,
then both child populations are merged.

When merging two child populations P1 and P2, the child
population with smaller fitness (assume P2) is integrated into
the other one (P1). The search space of P1 is enlarged to
enclose some individuals in P2. The radius of P1 is calculated
as follow with subject to the maximal radius rmax.

r1 = min
(

2
√

r2
1 + r2

2,rmax

)
(2)

The individuals of P2 that fall in the enlarged area of
P1 are remained and the else are discarded and stored in
the archive Ψ. Note that, the size of P1 should be no more
than Psmax, if the size of P1 had reached its upper limit, the
individuals are also moved into the archive Ψ although they
locate in the updated area of P1 .

4) Retrieve the individuals in recyclable archive: It can
be seen in the above, individuals may be moved into the
recyclable archive Ψ when child populations moving, shrink-
ing and merging. Ψ is just a temporary archive for the
discarded individuals. The archived individuals are regen-
erated randomly and retrieved into the base population at
the end of an evolutionary cycle. Note that, the regenerated
individuals are not allowed locating in the search spaces of
child populations.

B. Grid-based Interactive Information Utilizing Scheme

In this work, we propose a grid-based archive scheme.
As shown in Fig. 2, for decision variable xi, the search
space is divided into Na segments and each segment is
assigned an archive element eαi ,α = 1, . . . ,Ne. Each eαi stores
collaborative individuals provided by the other components.
Besides, each eαi is stored together with an index value
x̂αi which performs the best in the α-th segment of i-th
component when combining with eαi . In other words, the
complete solution {x̂αi

⋃
eαi } has the best fitness value in the

α-th segment of i-th component. When evaluating the fitness
of individual Ik ∈ Pi, the result is the better one between

{x̂αi
⋃

eαi } and {Ik
⋃

eαi } (assume that Ik locates in the α-
th segment). In addition, the archive elements are updated
during the run to provide better collaborator for fitness
evaluation. Therefore, the landscape of each component is
monotonously dynamic.
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1
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1ˆix 2ˆix 1ˆ eN
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ie 1eN

ie eN
ie

2 2ˆi if x e2
iei
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Fig. 2. Demonstration of grid-based archive scheme.

According to the description given above, an archive
element is composed of a received collaborative individual
from the other components and a local current-best index
value. To update the archive, it is not only the received
interactions but also the evolution state of decision variable
should be considered.

Assume j-th component ( j � i) sends its current global

or local optima {c1
j , . . . ,c

N j
opt

j } to the j-th component, N j
opt

denotes the quantity of optima found in j-th component. The
pseudo-code of grid-based archive scheme is given in Fig. 3
(considering a maximum optimization problem).

If interaction receiving generation do
for each archive element eαi , compare it to each

cl
j(l = 1, . . . ,N j

opt)
if f {x̂αi

⋃
cl

j} > f {x̂αi
⋃

eαi } do
eαi = cl

j
end

else for each individual Ik ∈ Pi do
confirm segment index α for Ik

if eαi = NULL do
eαi equals to the best individual of component j
x̂αi = Ik

else if f {Ik
⋃

eαi } > f {x̂αi
⋃

eαi } do
x̂k

i = Ik

end
end

Fig. 3. Pseudo-code of grid-based archive scheme.

C. Implementation

The flowchart of the proposed CCEA (termed mCCEA in
the following context) in a certain component is illustrated
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in Fig. 4. At each generation, the multi-population strategy is
executed for computing the next generation of both base and
child populations, managing child populations and checking
for creating new child populations. Besides, the archive
index values are also updated at each generation. When new
interaction is received, the archive elements which are used
for evaluating populations are updated according to the index
values and interaction. At every Nδ generations, the centers
of current child populations are sent to the other components
for cooperating their evolution. The algorithm terminates
when stopping criteria met and each component outputs
its best-performing archive (including the components best-
performing index value and the corresponding collaborator
from the other components).

Initialize base population

Update archive 
elements 

Compute next 
generation of base 

and child populations

Manage child 
populations

Check for creating 
child populations

New interaction 
recieved?

Is stopping 
criteria met?

Send interaction?Update archive index 
value 

i
e

î
x

ar

Return the 
best archive

Send to the other 
components

Yes

No

Yes

No

Yes

No

Retrieve individuals 
in recyclable archive

Fig. 4. Flowchart of proposed algorithm.

For the sake of infinite Nash equilibriums problems, when
constructing an executing solution for the objective problem
from the output of each component, a comparing logic has
to be applied as follows. Firstly, compute the fitness of two
kinds of complete solutions, one is the combination of the
best local index value and the corresponding archived collab-
orator of each component, the other one is the combination of
the best local index values of each component. Then, among
these combinations (complete solutions) choose the one with
the best fitness value as the final executing solution.

III. Experimental Results and Analysis

Relative overgeneralization is a pathological coevolution
behavior that occurs when populations in the system are
attracted towards areas of the space in which there are many
strategies that perform well relative to the interacting partner
[6]. In this work, we compare our proposed algorithm with
several other typical CCEAs on benchmark problems that are
designed for testing relative overgeneralization pathology.

A. Algorithms for Comparison

To validate the effectiveness of mCCEA, the following
CCEAs are used for comparision:

1) Traditional CCEA (tCCEA): tCCEA evaluates the fit-
ness of an individual as the maximum when partnered
with collaborators from the teammates population: chosen
at random, plus the fittest individual from the teammates
previous-generation population. In the following experiments
is set to 4.

2) Biased CCEA (bCCEA): bCCEA [11] is developed
from tCCEA. The fitness will be based partly on the maxi-
mum of collaborations with randomly chosen collaborators,
and partly on the reward obtained when collaborating with
the optimal collaborator from the other components. For fair
comparison, the is set to 3. The biasing rate is set to 0.5.

3) Complete CCEA (cCCEA): cCCEA is an extreme
term of tCCEA and was used as a peer algorithm in [12].
When evaluating the fitness of an individual, a component
accesses all individuals of the other components to obtain
the maximum-of-all evaluation.

B. Benchmark Problems

We will test these algorithms using a class of problem
domains called the maximum of two quadratics (or MTQ).
These problems include a global optimum and a local
suboptimum, where the suboptimum covers a much wider
range of the search space and is thus difficult to escape. The
problems have been used before by [10-12, 21]. The joint
reward function for the MTQ class is defined as:

MT Q(x,y)←max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H1 ∗

(
1− 16∗(x−X1)2

S 1
− 16∗(y−Y1)2

S 1

)

H2 ∗
(
1− 16∗(x−X2)2

S 2
− 16∗(y−Y2)2

S 2

) (3)

where x and y may take values (actions) ranging between
0 and 1. Different settings for H1, H2, X1, Y1, X2, Y2, S 1,
and S 2 affect the difficulty of the problem domain in one
of the following aspects. H1 and H2 affect the heights of
the two peaks: higher peaks may increase the chance that
the algorithm converges there. S 1 and S 2 affect the area
that the two peaks cover: a higher value for one of them
results in a wider coverage of the specific peak. This makes it
more probable that the coevolutionary search algorithm will
converge to this peak, even though it may be suboptimal.
Different values for X1, Y1, X2, and Y2 result in changes in
the locations of the centers of the two quadratics, which also
affect the relatedness of the two peaks: similar values of the
x or y coordinates for the two centers imply higher overlaps
of the projections along one or both axes.

In the following experiments, we use the following pa-
rameter settings in [10]: H1 = 50, H2 = 150, X1 = 0.75, Y1 =

0.75, X2 = 0.25, Y2 = 0.25, S 1 = 1.6, S 2 = 0.03125. We will
denote this function MTQ50. We will also consider a second
function MTQ125 which is MTQ50 but with H1 = 125.

C. Experimental Parameter Settings

In the following experiments, all algorithms are realized
based on GA toolbox [22] with almost the default settings:
the population size of each component (i.e. the sum of the
size of the base population and child populations) is 50,
tournament selection size is 2, simulated-binary crossover
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and mutation rates are 0.8 and 0.1 respectively, the maximal
generation number is 1000. All algorithms are run 50 times
independently. The stopping criteria used in fork checking is
that the best fitness of the base population keeps the same
for more than 5 generations.

The following parameters related to multi-population strat-
egy are the same to that of SOS or scale down according
to the variable domain of MTQ: the maximal, minimal
and initial size of child populations (i.e. Psmax, Psminand
Psinit) are 20, 4 and 10 respectively. The minimal size of
the base population P0min is 10. The maximal and minimal
radius of child populations (i.e. rmax and rmin) are 0.2 and
0.1 respectively. Shrinking factor fr is 2.0. In addition, the
quantity of segments of grid-based archive (i.e. Ne) is 10 and
the interaction interval Ne is 10 generations.

D. Comparison on Rate of Converging to Global Optimum

The results of the rate of converging to global optimum
(the Euclidean distance from the resulting best solution to
the global optimum is less than 0.01) are shown in Table I.

TABLE I

Rate of Converging to Global Optimum

Problems mCCEA tCCEA bCCEA cCCEA
MTQ50 98% 8% 74% 68%
MTQ150 98% 0% 44% 44%

It can be seen that tCCEA suffers from relative overgener-
alization seriously. bCCEA, benefits from heuristic estima-
tion of the best collaborator, greatly improves the converging
rate. However, it is difficult for bCCEA to exactly estimate
the best collaborator and adaptively adjust the biasing rate,
which is an obstacle to further improve its performance. As
for the cCCEA, it is essentially the same to tCCEA because it
also uses the maximum-of-N collaborating scheme. Without
any memory or archive that maintains the up-to-date optimal
collaborator like bCCEA, the fitness of an individual depends
on the combination to the current collaborators of the other
components. The main reason that cCCEA performances bet-
ter than tCCEA is the great amount of information exchange
(interacting the whole population).

mCCEA nearly successes to converge to the global op-
timum in all tests and greatly outperforms the other three
algorithms. This is the result of information compensation
which is achieved by the multi-population strategy and
grid-based archive scheme. The former help the algorithm
search representative individuals rather than some randomly
chosen ones in the dynamic landscape. These representative
individuals (local or global optima) contain more informa-
tion of the state of a component and provide more useful
information to the other components. The later aims to
better utilize these representative information. The up-to-date
optimal collaborators are stored in the segments of grid-
based archive according to local index values. Since for each
segment of the search space of a component there is an up-to-
date optimal collaborator stored in the archive, more historic
coevolutionary information is maintained for coevolution.

The analysis above can also be verified by the dynamic
performance of these algorithms in decision and objective
spaces. Fig. 5 and Fig. 6 show the comparison of best fitness
value curves (average curves over 50 runs) against generation
numbers. It can be seen that the tCCEA and cCCEA suffers
from the relative overgeneralization, there fitness curves go
flat at incorrect levels (suboptimal solution). bCCEA needs
a long period to learn the estimation of optimal collaborator.
In contrast, mCCEA can evolve to the global optimum in a
short period due to the effective information compensation.
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Fig. 5. Average curves of best fitness for MTQ50.
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Fig. 6. Average curves of best fitness for MTQ125.

The similar conclusions could be drawn with respect to
the decision space. Fig. 7 and Fig. 8 show the average
trajectories of the best solutions. These trajectories go along
the direction from suboptimum to global optimum because
suboptimum has a larger attractive basin comparing with
that of global optimum. It can be seen that only the best
solution of mCCEA has enough power to reach the global
optimum. This power comes from the continuous and ef-
fective information compensation provided by the proposed
multi-population strategy and grid-based archive scheme. As
for bCCEA, the right direction is just found after a long
and disordered learning period. As for cCCEA and tCCEA,
the best solutions poor moving power is due to the lack of
effective information compensation.
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Fig. 7. Average trajectories of best solutions for MTQ50.
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Fig. 8. Average trajectories of best solutions for MTQ125.

E. Validation of Executing Solution Construction on Infinite
Nash Equilibriums Problems

As mentioned in Section II-C, when mCCEA terminates
each component may supply more than one optimal col-
laborators for constructing the final executing solution. A
solution construction method has been proposed for the
sake of infinite Nash equilibriums problems. The following
experiments are designed to validate the solution construction
method. All of the experimental and algorithmic parameters
are the same to the above expecting that we will use a second
class of problems with infinite Nash equilibriums.

This second class problems are developed from the MTQ
problem and are termed SMTQ. They are defined as [12]:

MT Q(x,y)←max

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
H1 ∗

(
1− 16∗(xr

1−X1)2

S 1
− 12∗(yr

1−Y1)2

S 1

)

H2 ∗
(
1− 16∗(xr

2−X2)2

S 2
− 12∗(yr

2−Y2)2

S 2

) (4)

where xr
1, xr

2, yr
1 and yr

2 are the original x and y values (which
ranged between 0 and 1) rotated around the centers of the
two peaks by π4 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xr
1 = (x−X1)∗ cos π4 + (y−Y1)∗ sin π4 +X1

yr
1 = (x−X1)∗ cos π4 + (y−Y1)∗ sin π4 +Y1

xr
2 = (x−X2)∗ cos π4 + (y−Y2)∗ sin π4 +X2

yr
2 = (x−X2)∗ cos π4 + (y−Y2)∗ sin π4 +Y2

(5)

Observe that the two Nash equilibria from the MTQ class
have now become an infinity of Nash equilibria in the SMTQ
class. This creates an additional difficulty for the coevolution-
ary search. Especially for CCEAs like the mCCEA, each
component may archive several best component solutions,
improper combinations of component solutions may lead
poor-performance executing solution. This is because each
component solution is searched with an archived collabora-
tor. When combining the component solutions, one doesnt
have to combine with another solution which is similar to
its collaborator. This may result in improper combination of
executing solution whose fitness is rather low.

Fig. 9 and Fig. 10 show the comparison of mCCEA and
mdCCEA (mCCEA but doesnt uses the comparing logic
in executing solution construction but directly combines
the best archive solutions of each component) on SMTQ
problems (the parameters are the same to that of MTQ).
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Fig. 9. Executing solutions of mCCEA and mdCCEA for SMTQ50.
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Fig. 10. Executing solutions of mCCEA and mdCCEA for SMTQ125.

The experimental result over 50 runs show that the com-
paring logic used in the construction of executing solution
of mCCEA can significantly improve the rate of converging
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to the global optima comparing with the mdCCEA (100% vs
80% on SMTQ50 and 100% vs 72% on SMTQ125). It can
be seen that some executing solutions of mdCCEA locate at
the poor-performance area in the overall landscape due to the
improper combination of component solutions. In contrast,
mCCEA guarantees its executing solutions locating at the
highest ridge in the overall landscape, which validate the
effectiveness of our executing solution construction method.

IV. Conclusions

In this work, we proposed a multi-population strategy to
learn more useful information for compensating information
from dynamic landscape. Within this strategy, the main pop-
ulation is divided into a base and several child populations.
These populations behave a dynamic multimodal search so
as to obtain and interact local or global optima as the
representative information. We also proposed a grid-based
archive scheme to maintain more historic coevolutionary
information by storing up-to-date the optimal collaborator for
each segment of search space. Besides, this archive scheme
can maintain a monotonously dynamic landscape which is
benefit for simplifying the child population forking. Accord-
ingly, we simplified and modified the SOS algorithm as the
realization of the multi-population strategy. In addition, a
comparing logic was proposed for constructing the executing
solutions for the sake of infinite Nash equilibriums.

In the experiments, we validated the effectiveness of
our proposed algorithm, i.e mCCEA, by comparing it with
another three CCEAs. The comparing results on the rate of
converging to global optimum, best fitness curves and the
trajectories of the best solution according to MTQ problems
show the proposed information compensation methods can
greatly improve the anti-pathology ability. Besides, SMTQ
problems were used to validate the effectiveness of con-
structing executing solutions on infinite Nash equilibriums
problems.

References

[1] R. Subbu and A.C. Sanderson, ”Network-Based Distributed Planning
Using Coevolutionary Agents: Architecture and Evaluation,” IEEE
Transactions on Systems, Man, and Cybernetics, Part A: Systems and
Humans, vol. 34, no. 2, 2004, pp. 257-269.

[2] J. Berger, J. Happe, C. Gagn and M. Lau, ”Co-evolutionary Informa-
tion Gathering for a Cooperative Unmanned Aerial Vehicle Team,” in
proc. 12th International Conference on Information Fusion, 2009, pp.
347-354.

[3] Z. Yang, J. Zhang, K. Tang and X. Yao, ”An adaptive coevolutionary
differential evolution algorithm for large-scale optimization,” in proc.
2009 IEEE Congress on Evolutionary Computation, 2009, pp. 102-
109.

[4] L. Panait, S. Luke and J.F. Harrison, ”Archive-Based Cooperative
Coevolutionary Algorithms,” in proc. GECCO’06, 2006, pp. 345-352.

[5] E. Popovici, A. Bucci, R.P. Wiegand and E.D. Jong, ”Coevolutionary
Principles,” Handbook of Natural Computing, G. Rozenberg, et al.,
eds., Springer-Verlag, 2012, pp. 987-1033.

[6] R.P. Wiegand, An Analysis of Cooperative Coevolutionary Algorithms,
Ph.D. dissertation, Department of Computer Science, George Mason
University, Fairfax, Virginia, 2003.

[7] S.G. Ficici and J.B. Pollack, ”A Game-Theoretic Memory Mechanism
for Coevolution,” in proc. GECCO’03, 2003, pp. 286-297.

[8] E.P. Manning, ”Coevolution in a Large Search Space using Resource-
limited Nash Memory,” in proc. GECCO’10, 2010, pp. 999-1006.

[9] M. Shi and H. Wu, ”Pareto Cooperative Coevolutionary Genetic Algo-
rithm Using Reference Sharing Collaboration,” in proc. GECCO’09,
2009, pp. 867-874.

[10] A. Bucci and J.B. Pollack, ”On Identifying Global Optima in Coop-
erative Coevolution,” in proc. GECCO’05, 2005, pp. 539-544.

[11] L. Panait, S. Luke and R.P. Wiegand, ”Biasing Coevolutionary Search
for Optimal Multiagent Behaviors,” IEEE Transactions on Evolution-
ary Computation, vol. 10, no. 6, 2006, pp. 629-645.

[12] L. Panait and S. Luke, ”Selecting Informative Actions Improves
Cooperative Multiagent Learning,” in proc. 5th International Joint
Conference on Autonomous Agents and Multiagent Systems, 2006, pp.
760-766.

[13] Y. Jin and J. Branke, ”Evolutionary Optimization in Uncertain Envi-
ronments ł A Survey,” IEEE Transaction on Evolutionary Computa-
tion, vol. 9, no. 3, 2005, pp. 303-317.

[14] T.T. Nguyen, S. Yang and J. Branke, ”Evolutionary dynamic opti-
mization: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 6, no. October, 2012 pp. 1-24.

[15] X. Peng, X. Gao and S. Yang, ”Environment identification based
memory scheme for estimation of distribution algorithms in dynamic
environments,” Soft Computing, vol. 15, no. 2, 2011, pp. 311-326.

[16] A. Zhou, Y. Jin and Q. Zhang, ”A Population Prediction Strategy for
Evolutionary Dynamic Multiobjective Optimization,” IEEE Transac-
tions on Cybernetics, vol. 44, no. 1, 2013, pp. 40 - 53.

[17] D. Parrott and X. Li, ”Locating and Tracking Multiple Dynamic Op-
tima by a Particle Swarm Model Using Speciation,” IEEE Transaction
on Evolutionary Computation, vol. 10, no. 4, 2006, pp. 440-458.

[18] C. Li and S. Yang, ”A General Framework of Multi-Population
Methods with Clustering in Undetectable Dynamic Environments,”
IEEE Transaction on Evolutionary Computation, vol. 16, no. 4, 2012,
pp. 556-577.

[19] J. Branke, Evolutionary Optimization in Dynamic Environments,
Kluwer Academic Pub, 2002.

[20] S. Tsutsui and Y. Fujimoto, ”Forking Genetic Algorithms GAs with
Search Space Division Schemes,” Evolutionary Computation, vol. 5,
no. 1, 1997, pp. 61-80.

[21] L. Panait, ”Theoretical Convergence Guarantees for Cooperative Co-
evolutionary Algorithms,” Evolutionary Computation, vol. 18, no. 4,
2010, pp. 581-615.

[22] K. Sastry, Single and Multiobjective Genetic Algorithm Toolbox in
C++, IlliGAL Report No. 2007017, 2007.

2584




