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Abstract—Knapsack problem is famous NP-complete 
problem where one has to maximize the benefit of objects in a 
knapsack without exceeding its capacity. In this paper, a 
binary bacterial foraging optimization (BBFO) is proposed to 
find solutions of 0/1 knapsack problems. The original BFO 
chemotaxis equation is modified to operate in discrete space by 
using a mapping function, where some new variables and 
parameter, i.e., binary matrix y, logistic transformation S, and 
limiting transformation L is built to transform the bacterial 
position to a binary matrix.  By using this schema, the 
proposed BBFO model can also be easily applied in other 
discrete problem solving. To further validate the efficiency of 
the BFO-based approach, an improved version BFO named 
BFO with linear decreasing chemotaxis step (BFO-LDC) is 
used to evaluate on six different instances. Comparisons with 
particle swarm optimization (PSO) and original BFO are 
presented and discussed. 
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I.  INTRODUCTION  
Bacterial foraging optimization (BFO) is a population-

based optimization technology proposed in 2002 by Passino 
[1]. Recently BFO has become an active area of swarm 
intelligence, and been studied from different angels, included 
parameters modification [2-3] and hybrid algorithms [4-5]. 
These variants of BFO were proposed based on the original 
Bacterial Foraging Algorithm, which used to solve continue 
optimization problems. However, these BFOs may have 
shortage of solving discrete combinatorial optimization 
problems, including 0/1 knapsack problem and scheduling 
problems. Developing a binary version of BFO to make BFO 
suitable for discrete domain is necessary.  

The knapsack problem is a well-known NP-hard problem 
[6], which has very important application in the area of 
industry domain and financial, for example, budget 
controlling, investment decision-making, resource 
distribution, projects selection and items shipment [7]. 
Nowadays many intelligence methods have been proposed 
to solve the knapsack problem, such as Genetic Algorithm 
[8], Dynamic Programming [9], Simulated Annealing 
approach [10], Ant Colony Optimization [11], Artificial Bee 
Colony algorithm [12] and Particle Swarm Optimization 
[13] and so on.  

 

 
 
To solve discrete combinatorial optimization problems, in 

this paper, we proposed a binary version of Bacterial 
Foraging Algorithm. The rest of this paper is organized as 
follows: Section II reviews the theory of BFO. Section III 
develops binary bacterial foraging algorithm. The knapsack 
problem model is described in Section IV. The step and 
process of BBFO solving knapsack problems is given in 
Section V. In Section VI, experiments are implemented, 
experimental results and discussions are presented. Finally, 
Section VII gives a conclusion. 

II.  BACTERIAL FORAGING OPTIMIZATION 
In the process of bacterial evolution, excellent bacteria 

been preserved and imitated, and those with poor foraging 
abilities tend to be eliminated. Inspired by this evolutionary 
principle, BFO is proposed to simulate the foraging 
strategies of Escherichia coli bacteria. And the social 
foraging behaviors of bacteria are explored by Passino and 
Liu [14] form the angel of biology and physics. There are 
four main representative behaviors in the bacterial foraging 
process, namely chemotaxis, swimming, reproduction and 
disperse and elimination. 

•  Chemotaxis. A bacterium has two types of 
movements, swimming and tumbling. The pattern of 
bacteria moving is swimming along a straight line in 
one direction for a while, and then tumbling with a 
random direction. After a while, it may repeat 
previous moving pattern. Chemotaxis is the most 
important behavior of bacteria, in this process, 
bacteria move towards favorable chemicals as well as 
nutrients and away from the toxic ones. Suppose 

)( lk,j,xid  represents the ith bacterium at jth  
chemotactic kth  reproductive and lth elimination 
and dispersal step on dth  dimension.  The length of a 
unit swim (run) is ( )Ci . Δ  is a vector represents a 
random direction at jth  chemotactic step, and its 
elements value range between [-1,1]. Then the 
movement of the bacterium may be represented by:  
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• Swimming. Bacteria can achieve mutual cooperation 
among group and swarm together via communicate 
by specific forms such as quorum sensing. The 
description for swarming can be represented in 
mathematic show as follow:  
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where l))k,p(j,(x,jcc  is the fitness value 
minimized to add to actual fitness function to show 
the change of fitness function at a time. The 
population of bacteria is s . p  is the number of 
variables optimized. 

, , ,d w h wattract attract repelent repelent
 are different 

coefficients that are to be chosen properly [1,14].  

•  Reproduction: The bacterium with poor energy or 
healthy will die, and the bacterium obtains enough 
energy will split into two sub-bacteria at its current 
position. This strategy can make the population of 
bacteria colony remains stable and replace bacterium 
with poor performance by good ones. 

•  Elimination and Dispersal: The nutrients 
concentration of the current area contained may be 
consumed gradually by a population of bacteria or 
some changes occurred, such as a sudden drop in 
temperature. These variations may cause a number of 
bacteria in the area eliminate or disperse to a new area 
may with better nutrient concentrations. The chance 
of a bacterium perform dispersal and elimination can 
be judged by a certain probability, if the condition is 
satisfied, the bacteria will die and then randomly 
generates a new bacterium in any position in the 
solution space.   

III.  BINARY BACTERIAL FORAGING OPTIMIZATION 
The most important thing in the proposed BBFO model is 

how to express the meaning of operations such as 
chemotaxis in binary space. Simulation the movement of the 
E. coli bacterium, a bacterium has a state on each 
dimension. The solution to this problem is establishing the 
rule of restricting the position )( lk,j,xid  to 0 and 1 on dth  
dimension. New variables and parameter: binary matrix y , 

logistic transformation ))(( lk,j,xS id , and limiting 
transformation L were introduced to build our BBFO model.  

In BBFO model, ))(( lk,j,xS id  is logistic transformation 
function related to )( lk,j,xid , L  can be simply described as 
the probabilities of )( lk,j,xid   changed to zero or one, 

)( lk,j,yid represents the value obtained after 

restrict )( lk,j,xid . The rule described in mathematics is 

given as follow: 
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The movement trajectory of each bacterium doesn’t 
change when the rule working, a binary matrix y  is added 
to record results after transformation.  

))(( lk,j,xS id  is key in the rule, various versions of 

))(( lk,j,xS id can be designed to simplify computation. In 

our BBFO model, ))(( lk,j,xS id  inspired by the idea of 
discrete Particle Swarm Optimization in paper [15] is 
defined as follow: 
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By the equation (3), the position of a bacterium is restricted 
within the range [0, 1], which will make the transformation 
probabilities easily to control. 

Limiting transformation L is crucial for )( lk,j,xid  
change to 0 or 1. In other words, if L=0.5, the probabilities 
of )( lk,j,yid  will become zero and one is 0.5 when 

))(( lk,j,xS id is unknown. If we set rand()L =  ( rand()  is 
a stochastic number selected from a uniform distribution in 
[0, 1]), and then ))(( lk,j,xS id =0.2, there is a twenty 

percent chance that )( lk,j,yid  will be zero, and an eighty 
percent chance it will be one. 

IV.  0/1 KNAPSACK PROBLEM 
Knapsack problem is a well-known NP-hard problem [6]. 

The simple version is studied in this paper. In this problem, 
supposed that there are n objects, the target is selecting a 
certain number of objects to maximize the total profit, while 
the whole capacity of objects selected is less than a fixed 
capacity S. So 0/1 knapsack problem [16] is expressed in 
mathematics as follow: 
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iα is profit of object i , and ic  is capacity. 0=iy  

indicates that object i  isn’t selected, if 1=iy , select 
object i . 

V.  BBFO SOLVING 0/1 KNAPSACK PROBLEM 
In dealing with the knapsack problem, each bacterium 

represents a feasible solution, the dimensions of bacterial 
equal to the number of objects n . Before calculate the value 
of fitness, the position of bacterium should be restricted in a 
binary matrix. 

A penalty function is used to deal with the fixed capacity. 
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For bacterium i , its position is )( lk,j,xi and corresponding 
binary sequence is )( lk,j,yi , calculate fitness value 
is ))(( lk,j,yf i , the capacity of selected objects 

is ))(( lk,j,ys i , if Sl))k,(j,s(yi > , set 0l))k,(j,f(yi = . 
The steps of solving 0/1 knapsack problem with BBFO is 
given as follow: 

•   Step1: Initialize parameter and bacterial, each 
bacterium has a random position; record y. 

•    Step2: Evaluation the fitness function. The function 
of evaluate fitness is the objective function in the 
knapsack problem. 

•    Step3: Chemotaxis operation. Bacterial update its 
position, record y. Calculate the current fitness value. 

•    Step4: Swimming operation. Compare the current 
fitness value with the before, if the current fitness 
value is better, bacterium swimming along the 
original direction, then record y. 

•    Step5: Calculate f(y)  and s(y) . If Ss(y) > , 
set 0f(y) = . 

•     Step6: Reproduction operation. Record the best 
value of fitness, and find the worst and the best 
bacterium, reproduce the best position for the worst 
bacterium. 

•    Step7:  Migration operation.  

•    Step8:  If the termination condition is satisfied, 
output the result. 

VI.  EXPERIMENTAL RESULT 

A. Knapsack problems 
For knapsack problems, the greater the number of objects 

is, the more difficult the problem to be solved is. However it 
will be more easily to calculate if the profit and capacity of 
objects are integer rather than decimal when the number of 
objects is same. Taking into account all of these cases, six 
different instances of knapsack problems are selected as 
benchmark functions to test the effectiveness and 
performance of the proposed BBFO and BBFO-LDC 
(binary BFO with linear decreasing chemotaxis step length 
in [3]). All the information including profit, capacity, fixed 
capacity and the number of objects of six functions is 
presented in Table I as follow.  

B. Parameter setting 
As the most important parameter L in the proposed BBFO, 

the value of L determines the probability of 
)( lk,j,xid restrict to one or zero. If a solution of a knapsack 

problem is known and many items are selected, then L 
should be set small to make the algorithm convergence to 
optimal fast. However, in most cases, we don’t know the 
optimal solution, so experiments are conducted to verify the 
effects on the performance of BBFO of different value of L.  

TABLE I. INFORMATION OF SIX CASES 

 
Function n Profit iα , Capacity ic , Fixed capacity s  

 
f1 

 
10 

α ={55, 10, 47, 5, 4, 50, 8, 61, 85, 87};  c ={95, 
4, 60, 32, 23, 72, 80, 62, 65, 46};  s  =269 

 
 

f2 

 

 
 

20 
 

α ={92, 4, 43, 83, 84, 68, 92, 82, 6, 44, 32, 18, 56, 
83, 25, 96, 70, 48, 14, 58}; c  ={44, 46, 90, 72, 91, 
40, 75, 35, 8, 54, 78 40, 77, 15, 61, 17, 75, 29, 
75,63}; s =878 

 
 
 
 

f3 

 
 
 

 
 
 
 

15 
 
 
 

α ={0.125126, 19.330424, 58.500931,35.029145, 
82.284005, 17.410810, 71.050142, 30.399487, 
9.140294, 14.731285, 98.852504, 11.908322, 
0.891140, 53.166295, 60.176397}; c ={56.358531 
, 80.874050, 47.987304, 89.596240, 74.660482, 
85.894345, 51.353496, 1.498459,  36.445204, 
16.589862, 44.569231, 0.466933, 37.788018, 
57.118442, 60.716575}; s =375 

 
 

f4 
 

 
 

23 
 
 

α =  {981, 980, 979, 978, 977,976, 487, 974, 970, 
485, 485, 970, 970,484, 484, 976, 974, 482, 962, 
961, 959,958, 857}; c ={983, 982, 981, 980, 979, 
978, 488,976, 972, 486, 486, 972, 972, 485, 
485,969, 966, 483, 964, 963, 961, 958, 959}; s  
=10000 

 
 
 
 

f5 
 
 
 

 
 
 
 

50 
 
 
 

α ={220, 208, 198, 192, 180, 180, 165, 162, 160, 
158, 155, 130, 125, 122, 120, 118, 115, 110, 105, 
101, 100, 100, 98, 96, 95, 90, 88, 82, 80, 77, 75, 73, 
72, 70, 69, 66, 65, 63, 60, 58, 56, 50, 30, 20, 15, 10, 
8, 5, 3, 1}; c ={80, 82, 85, 70, 72, 70, 66, 50, 55, 
25, 50, 55, 40, 48, 50, 32, 22, 60, 30, 32, 40, 38, 35, 
32, 25, 28, 3, 22, 50, 30, 45, 30, 60, 50, 20, 65, 20, 
25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2, 1}; s  
=1000 

 
 
 
 
 
 
 
 

f6 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

100 
 
 
 
 
 
 
 

α ={297, 295, 293, 292, 291, 289, 284, 284, 283, 
283, 281, 280, 279, 277, 276, 275, 273, 264, 260, 
257, 250, 236, 236, 235, 235, 233, 232, 232, 228, 
218, 217, 214, 211, 208, 205, 204, 203, 201, 196, 
194, 193, 193, 192, 191, 190, 187, 187, 184, 184, 
184, 181, 179, 176, 173, 172, 171, 160, 128, 123, 
114, 113, 107, 105, 101, 100, 100, 99, 98, 97, 94, 
94, 93, 91, 80, 74, 73, 72, 63, 63, 62, 61, 60, 56, 53, 
52, 50, 48, 46, 40, 40, 35, 28, 22, 22, 18, 15, 12, 11, 
6, 5}; c ={54, 95, 36, 18, 4, 71, 83, 16, 27, 84, 88, 
45, 94, 64, 14, 80, 4,23, 75, 36, 90, 20, 77, 32, 58, 
6, 14, 86, 84, 59, 71, 21, 30, 22, 96, 49, 81, 48, 37, 
28, 6, 84, 19, 55, 88, 38, 51, 52, 79, 55, 70, 53, 64, 
99, 61, 86, 1, 64, 32, 60, 42, 45, 34, 22,49, 37, 33, 
1, 78, 43, 85, 24, 96, 32, 99, 57, 23, 8, 10, 74, 59, 
89, 95, 40, 46, 65, 6, 89, 84, 83, 6, 19, 45, 59, 26, 
13, 8, 26, 5, 9}; s  =3820 
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Fig.1. Performance of the BBFO under different L of f1 
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Fig.2. Performance of the BBFO under different L of f2 

Form Fig.1 and Fig.2, we found that the best value of L 
should be set is 0.2 in the first case, the best value of L is 0.1 
in the second, and the different value of L have greater 
impact on the performance of BBFO in the second instance 
than the first one. With comprehensive comparison of the 
experimental results, we finally set L=0. 

The performance of the proposed BBFO and BBFO-LDC 
is evaluated on the above mentioned 6 sets of benchmark 
instances, and compared with PSO. 

In PSO, set the learning rate parameters 1C  = 2C  =2, 
inertia weight were set to the value w=1 according to paper 
[17]. According to preliminary experiments, set chemotaxis 
step length 2=zC  in BBFO, minimum chemotaxis step 
length 1=minC , maximum chemotaxis step length 

4=maxC  in BBFO-LDC. Other parameters of the two 
versions of BFO were set according to experiences. In order 
to reduce statistical errors, each experiment runs 30 times. 

As mentioned in the above, dimensions=n. The max 
iteration of f1-f3 is set to 300 and the f4-f6 is 500 to ensure 
algorithms convergence to the optimal. The swarm size is 
set to 100 in all algorithms. 

C. Experimental Results and Discussions 
Results (best, worst, mean, standard deviation) of three 

algorithms on all tested cases for 30 runs are listed in Table 
II. Convergence curves are shown in Fig.3 to Fig.8. 
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Fig.3.  Convergence curve of three algorithms of f6 

 

 

TABLE II. RESULTS COMPARISON OF THREE ALGORITHMS ON ALL 
TESTED CASES FOR 30 RUNS 

Function Algorithm Best Worst Mean Std. 
 

f1 

 
 

f2 

 
 

f3 

 
 

f4 

 
 

f5 

 
 

f6 

 

PSO 
BBFO 
BBFO-LDC 
PSO 
BBFO 
BBFO-LDC 
PSO 
BBFO 
BBFO-LDC 
PSO 
BBFO 
BBFO-LDC 
PSO 
BBFO 
BBFO-LDC 
PSO 
BBFO 
BBFO-LDC 

295 
295 
295 
1042 
1042 
1042 
481.069 
481.069 
481.069 
9767 
9760 
9761 
2945 
2924 
2929 
14057 
13984 
14132 

283 
295 
295 
964 
1031 
1027 
401.022 
437.934 
430.924 
9730 
9740 
9745 
2781 
2793 
2847 
13392 
13597 
13615 

287.067
295 
295 
1014.5 
1039.5 
1037.6 
416.659 
471.959 
475.068 
9743.7 
9747.8 
9753.9 
2786.5 
2852.8 
2885.9 
11567 
13818 
13822 

5.5766 
0 
0 
47.0793 
2.9564 
5.1104 
31.8305 
11.6188 
12.0541 
17.1186 
4.3739 
3.9386 
29.9422 
30.2913 
24.1460 
1609.3 
113.2849 
114.9347 

 

All the results for the six instances indicate that the two 
BFOs have an obviously remarkable efficiency, especially 
for BBFO-LDC. From the perspective of the stability of 
algorithm, it is very clearly that BBFO and BBFO-LDC 
have greater superiority than PSO. 

Comparing the experimental results and the convergence 
graph, in several cases, we found that the convergence speed 
of PSO is faster than the two versions of BFO, however, 
PSO easily trap into a local optimum. For function f4- f6, the 
best position PSO located is better than BBFO and BBFO-
LDC, but the probability of success is relatively small. 
Unlike with PSO, the two BFOs maintained a good global 
search capability, as well as stability. 

The performance of BBFO-LDC is better than BFO since 
a linear decreasing chemotaxis step length is used to ensure 
the bacterial convergence to global optimum quickly at the 
beginning and search global optimum accurately in the end. 
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Fig.4. Convergence curve of three algorithms of f2 
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Fig.5. Convergence curve of three algorithms of f3 
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Fig.6. Convergence curve of three algorithms of f4 
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Fig.7. Convergence curve of three algorithms of f5 
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Fig.8. Convergence curve of three algorithms of f6 

VII.  CONCLUSION 
A novel variant of BFO called BBFO has been developed 

in this paper. Some new parameters and variables are 
designed to build BBFO model to make the position of 
bacterial convert to binary matrix. In order to further 
validate the efficiency of the BFO-based approach, an 
improved version of BBFO named BBFO-LDC is used to 
evaluate on six different instances. The final experimental 
results demonstrated that BBFO and BBFO-LDC be able to 
solve knapsack problems effectively and proved its 
superiority with the comparison of PSO. 

However, the gap between the results the two BFOs 
obtained on each instance and the real optimal value is 
unknown, methods should be improved to get better results 
in the future. And then a number of other discrete 
optimization problems may be solved by our proposed 
algorithms. 
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