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Abstract— This paper provides a survey on the performance 
of the hybrid variant of the Mean-Variance Mapping 
Optimization (MVMO-SH) when applied for solving the IEEE-
CEC 2014 competition test suite on Single Objective Real-
Parameter Numerical Optimization. MVMO-SH adopts a swarm 
intelligence scheme, where each particle is characterized by its 
own solution archive and mapping function. Besides, multi-
parent crossover is incorporated into the offspring creation stage 
in order to force the particles with worst fitness to explore other 
sub-regions of the search space.  In addition, MVMO-SH can be 
customized to perform with an embedded local search strategy. 
Experimental results demonstrate the search ability of MVMO-
SH for effectively tackling a variety of problems with different 
dimensions and mathematical properties. 

Keywords—Heuristic optimization; mean-variance mapping 
optimization; single objective optimization; swarm intelligence. 

I. INTRODUCTION 
Despite the recent breakthroughs in heuristic optimization, 

there is still a high motivation to develop new algorithmic 
procedures, which allow efficient tackling of complex and 
high-dimensional optimization problems [1]-[5]. Mean-
variance mapping optimization (MVMO) is a recently 
introduced algorithm, whose evolutionary mechanism adopts a 
single parent-offspring pair approach along with a normalized 
range of the search space for all optimization variables within 
[0,1]. Within this framework, MVMO exploits the statistical 
attributes of search dynamics by using a special mapping 
function for mutation operation on the basis of the mean and 
variance of the n-best solutions attained so far and saved in a 
continually-updated solution archive [6]. Preliminary 
applications in power engineering field have shown that 
MVMO has a promising prospect for solving different types of 
optimization problems [7]-[11]. Like other heuristic 
optimization algorithms, MVMO is open for extension with 
new strategies to improve its search capability. 

This paper presents an analysis of the performance of a new 
variant of MVMO, which henceforth is termed as MVMO-SH, 
on 30 novel benchmark functions belonging to the IEEE-CEC 
2014 competition test suite on Single Objective Real-Parameter 
Numerical Optimization. MVMO-SH performs the search 
process by evolving a population of particles (i.e. swarm), each 
having its own memory, which is represented by the associated 
knowledge archive and mapping function. Besides, a fitness-
based classification is performed to discriminate between good 
particles (e.g. smaller fitness values) and bad particles (e.g. 

higher fitness values). For each good particle, the parent 
assignment is done by considering the first ranked solution in 
its particular knowledge archive, whereas a multi-parent 
crossover is used to reorient each bad particle towards different 
sub-regions of the search space. Additionally, it offers the 
possibility of occasionally resorting to an interior-point method 
(IPM) or alternatively to a sequential quadratic programming 
(SQP) based strategy for local improvement purpose. The 
statistical performance of MVMO-SH during the optimization 
repetition is investigated by considering different problem 
dimensions ranging from 10D up to 100D along with other 
predefined experimental settings from IEEE-CEC 2014 
problem definitions [12]. 

II. RATIONALE BEHIND MVMO-SH 
Fig. 1 shows the algorithmic steps involved in MVMO-SH. 

The procedure starts with an initialization stage where the 
algorithm parameter settings are defined and samples of the 
optimization variables are randomly sampled within their 
search boundaries for a set of NP particles (i.e. 
population/swarm of candidate solutions). Also, the 
optimization variables are normalized at this stage, that is, the 
range of the search space for all variables is transformed from 
[min, max] to [0, 1] range. This is a precondition for the 
subsequent mutation operation via mapping function; on top of 
this, it guarantees that the generated offspring will never 
violate the search boundaries. The optimization variables are 
de-normalized before performing fitness evaluation or local 
search. The core of the algorithm is contained in the inner loop 
of the flowchart, in which, after execution of fitness evaluation 
or local search for a given particle, updating the solution 
archive, fitness based classification of particles into good or 
bad particles, parent selection and offspring generation are 
performed. The procedure ends once the termination criterion 
is satisfied. 

A. Fitness evaluation and local search 
The elements of the candidate solution array (i.e. 

optimization variables) are de-normalized from [0, 1] range to 
their original [min, max] boundaries before fitness evaluation 
or local search is performed. In case of unconstrained 
optimization problems, the fitness corresponds with the value 
of the objective function associated to the candidate solution 
being evaluated, whereas for constrained problems, it also 
includes a possible penalty value resulting from constraint 
violation.  
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Fig. 1. MVMO-SH overall procedure. The fitness evaluation and particle 
counters are denoted by i and k, whereas NP,  ΔFE, and rand stand for number 
of particles, number of fitness evaluations, and uniform random number 
between [0, 1], respectively.  

One of the available local search strategies (IPM, SQP) is 
included in this step as a local improvement option. After a 
given number of fitness evaluations, local search is performed 
with a probability LSγ  for any child of the population 

 LSrand < γ  (1) 

and runs in the range 
 LS_ min LS_ max max,    /i iα < α < α α =  (2) 

where i denotes fitness evaluation number, and rand is a 
random number with uniform distribution in [0,1]. 

The execution of local search may require performing tens, 
hundreds or even thousands of fitness evaluations. Thus, the 
use of this option is recommended for optimization problems 
that can be solved without considerable computing time 

concerns (i.e. large number of fitness evaluation budget), 
whereas, for optimization problems to be solved within 
reduced time (i.e. limited amount of function evaluations), the 
value of LSγ  should be set to zero in order to give preference to 
the underlying evolutionary mechanism MVMO. 

B. Solution archive 
As illustrated in Fig. 2, each particle has compact and 

continually updated solution archive associated to it, which 
stores its n-best offsprings in a descending order of fitness and 
serves as the knowledge base for guiding the search direction 
(i.e. adaptive memory). The archive size is fixed for the entire 
process. For each particle, and after every execution of fitness 
evaluation/local search, an update of its archive takes place 
only if the new solution is better than those in the archive. 
Besides, the mean ix , shape is , and d-factor id  associated to 
each optimization variable are recalculated whenever an update 
of the archive takes place. These parameters influence the 
change of the shape of the mapping function, which is crucial 
to arrive at a balance between search exploration and 
exploitation.  

 
Fig. 2. Layout of the particles’solution archives.  

C. Parent selection  
In the early stage of the search process, each particle is 

independently used for a few (at least two) function 
evaluations, and the solution that produced the individual best 
fitness achieved so far (i.e. the one corresponding to the first 
ranked position in its particular solution archive) is chosen as 
the parent for the next offspring. Thereafter, a special 
procedure, which is illustrated in Fig. 3, is applied for parent 
assignment in order to encourage the particles having poor 
performance (in terms of individual achieved best fitness) to 
explore different sub-regions of the search space. As illustrated 
in the figure, the particles are classified into the set of GP 
“good particles”, and Np-GP “bad particles” based on the 
individual best fitnesses. Individual best-based parent 
assignment is adopted for each particle classified as good, 
whereas for each bad particle kx , the parent parent

kx  is 
determined by using the following multi-parent criterion: 

 ( )parent best best best
RG GB LGk = + −x x x xβ  (3) 
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Fig. 3. Parent selection in MVMO-SH.  

However, in contrast to [14], where all three parents best
RGx , 

best
GBx  and kx  are randomly selected from the group of good 

particles, for MVMO-SH, best
GBx , best

LGx  and best
RGx  represent the 

first (global best), the last, and a randomly selected 
intermediate particle in the group of good particles, 
respectively. The vector of mean values associated to kx , 
which are required later for mutation and mapping by the so 
called h-function (cf. Subsection II.E) is also set to parent

kx . 
The factor β is a random number, which is determined from: 

 ( )22.5 0.25 0.5randβ = + ⋅α −   (4) 

β is re-drawn and (4) is recalculated for any element of parent
kx  

going outside the range [0, 1]. 

The relative number GP of particles belonging to the group 
of good particles is dynamically determined throughout the 
search process as follows: 

 ( )*
Pround N pGP g= ⋅   (5) 

 ( )* * 2 * *
p_ini p_final p_inig g g  pg = − α −   (6) 

Equation  (6) is not calculated in the initial stage of the 
search process, where each particle is evaluated independently. 
In this way, GP is linearly narrowed down following the 
decrease from *

p_inig  to *
p_finalg . 

D. Crossover 
For the next generation, a child vector (array) 

[ ]new
1 2 3 D= , , , ,x x x xx … , where D is the number of problem 

dimensions, is created for each particle by combining a subset 

of D-m directly inherited dimensions from parent
px  (i.e. 

crossover) and m selected dimensions that undergo mutation 
operation through mapping function based on the actual values 
of the parameters ix , is , and id  associated to each particle. 
The number m of dimensions to be selected for mutation 
operation is progressively decreased as follows: 

 ( )( )final finalround m * mm irand m= + −   (7) 

 ( )( )2
ini ini final* round m m mm = − α −   (8) 

where irand represents a random integer in the range of 
zero and the value given in the brackets. The selection of the m 
variables to be mutated can be done by using any of the 
strategies given in [13]. 

E. Mutation through mapping function 

The new value of each selected dimension rx  of newx is 
determined by  

 *
r x 1 0 r 0(1 )x h h h x h= + − + ⋅ −  (9) 

where r
*x  is a randomly generated number with uniform 

distribution between [0, 1], and the term h (subscripts 
specified below) represents the transformation mapping 
function defined as follows. 

 1 2(1 )
1 2( , , , ) (1 ) (1 )x s x sh x s s x x e x e− ⋅ − − ⋅= ⋅ − + − ⋅  (10) 

hx, h1 and h0 are the outputs of the mapping function 
calculated for  

 *
x r 0 1( ), ( 0), ( 1)h h x x h h x h h x= = = = = =  (11) 

Thus, rx is always within the range [0, 1]. rs  is the shape 
factor calculated as follows:  

 r r sln( )s v f= − ⋅  (12) 

where rv  is the variance computed from the stored values of 

rx  in the solution archive, and sf  is a scaling factor. 

In the first evaluation of every particle, the mean rx  
corresponds with the initial value of rx  and the variance rv   is 
set to 1.0 which corresponds with sr=0. But as the optimization 
progresses, they are recalculated after every update of the 
particle’s solution archive for each selected optimization 
variable. Both input and output of the mapping function cover 
the range [0, 1]. From (10) and Fig. 4, note that the shape of the 
mapping function is influenced by the mean rx  and shape 
factors r1s and r2s . So, the search diversity can be enhanced 
through proper variation of the shape factors.  

The scaling factor sf can be additionally used to change 
the shape of the function. For this purpose, sf  is increased as 
the optimization progresses from a small initial value 
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(typically *
s_ini 1f = ) up to a higher final value. A considerably 

higher final value of sf , e.g. *
s_final 20f =  , could be used for 

real-parameter optimization problems with high accuracy 
concerns. Different options are available in MVMO for the 
calculation of fs. In this study the equations (13), (14)have been 
used.  

 

 
Fig. 4. Change of the mapping function shape for different values of mean 
and shape factors. 

 ( )*
s s 1 (0.9 0.25)f f rand= ⋅ + − ⋅   (13) 

 ( )* * 2 * *
s s_ini s_final s_inif f f f= + α −   (14) 

Furthermore, the shape factors r1s  and r2s  of the variable 

rx  are assigned by using the procedure given in (15), which is 
described as follows: The initial values of rd are set for all 
variables at the beginning of the optimization. At every 
evaluation, each rd  is scaled up or down with the factorΔd . If 
dr > sr, the current dr is divided byΔd  which is always greater 
than 1.0 and thus leads to reduced value of dr. In case dr < sr, dr 
is multiplied by Δd  resulting in increased dr. Consequently, dr 

will continuously oscillate around the current shape factor sr.  

The initial values of rd are set to 1 for all variables at the 
beginning of the optimization. At every evaluation, each rd  is 
scaled up or down with the factor Δd , which is randomly 
varied between 1 and 01 2 Δd+ ⋅ . If dr > sr, the current dr is 
divided byΔd  which is always greater than 1.0 and thus leads 
to reduced value of dr. In case dr < sr, dr is multiplied by Δd  
resulting in increased dr. The subsequent random assignment of 

rd  and rs  to either r1s  or r2s  results in a continuous 
oscillation of these shape factors around the current value of 

rs . According to our experience, it is recommended to take a 
non-zero value equal or smaller than 0.4 for 0Δd . 

 

( ) ( )

r1 r2 r

r

0 0

r r

r r

r r

r1 r r2 r

r1 r r2 r

if > 0 then
     Δ 1 Δ 2 Δ 0.5

if >
Δ

else
/Δ

end if 
if   < 0.5 then

;
else

;
end if

end if 

s s s
s

d d d rand
s d
d d d

d d d

rand
s s s d

s d s s

= =

= + + ⋅ ⋅ −

= ⋅

=

= =

= =

 (15) 

The above procedure fully exploits the asymmetric 
characteristic of the mapping function by using different values 
for r1s and r2s leading to enhanced searching performance and 
zero variance handling. Zero variance can occur when all 
values of xr in the particle’s archive are identical. In this case 
the previous non-zero value can be used further. However, this 
value may result, under circumstances, in stagnation of the 
convergence behavior. The procedure overcomes this problem 
as the mean and variance are calculated only for non-identical 
values of xr saved in the archive.  

It is worth pointing out that the mean, variance and shape 
factors associated to rx  are not calculated before a certain 
number of solutions are available in the solution archive. 
Usually, they end up being calculated immediately after two 
solutions have been stored in the archive. However, one could 
also decide to do it once the archive is filled up completely. In 
this stage, the search is performed with sr1=sr2=0 which 
corresponds with a straight line between zero and one as a 
shape of the mapping function. The mean value in this case 
does not have any effect on the mapping function, cf. (10). 

III. NUMERICAL TESTS 
Numerical experiments were performed on a computer with 

Intel® Core™ i7-47500 HQ CPU, 2.0 GHz and 16 GB RAM, 
under Windows 8.1 pro, 64 bit OS. The implementation of 
MVMO-SH was realized in ANSI C using MPI interface for 
distributed memory parallel computation of optimization trials. 
Stochastic integrity is guaranteed by performing independent 
initialization of random number streams on individual 
processes with respect to time plus the process identifier.  

A. Experimental setting 
MVMO-SH is used to solve the IEEE-CEC 2014 test suite, 

which comprises 30 single objective test functions (TFs) 
grouped into three different categories, namely, unimodal 
functions (TF1 to TF3), simple multimodal functions (TF4 to 
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T16), hybrid functions (TF17 to TF22), a
functions (TF23 to TF30). The details of these
are treated as black-box problems for the 
given in [12]. Statistical tests on convergence 
quality of final solution provided by M
performed under the following considerations:

• Problem dimension D = 10, 30, 50, 1

• Search range: [ ]D100,100− . 
• Max. number of function evaluations
• Optimization trials per problem: 51. 
• Uniform random initialization within

space. The random seed is based on t
• The objective function is defined as

i iOF=TF ( ) - TF ( *),x x where is the th
optimum of the i-th benchmark func
problem definitions reported in [12
OF smaller than 1E-08 are taken as z

• The optimization is terminated upon 
the maximum number of function eva

MVMO-SH was executed with the followi

Np=150 for D=100, Np=100 for D=50 and 
for D=10; Archive size=25, 0 0.2dΔ = *

s_inif =
*
p_ini 0.7g = , *

p_final 0.1g = , 

ini : D10 5, D30 15, D50 15, D100 3m = = = =

LS 0.1γ = , LS_ min 0.5α = , LS_ max 0.9α = . 

B. Performance statistics and discussion 
The statistical attributes of the error valu

worst, mean, median, and standard deviation
were calculated after 51 runs, are summ
ITABLE I. , Table II, and Table IIITAB
Appendix, for each 10D and 30D and 50D ca
100D are not provided due to space limitatio
readers can obtain them via email from t
measures for computing complexity, which w
following the guidelines provided in [12], ar
IV. The following remarks can be deduced fro

• Solving unimodal functions: For 10D cas
capable of finding zero error values (i.e. 
08) for OF in all runs. Besides, it was
convergence to the zero value was achiev
before 50% of the predefined maximum nu
evaluations. The proposed algorithm also 
close to zero error values for 30D, 50D, 
Therefore, it constitutes a powerful too
tackle unimodal problems irrespective o
mathematical features (e.g. asymmetrical
separable). 

• Solving simple multimodal functions: Fo
MVMO-SH is capable of providing ne
values for all functions in almost all 
performance is observed in 30D, 50D, a
except for function TF11. 

and composition 
 functions, which 
competition, are 
performance and 

MVMO-SH were 
 

100. 

s:  10000*D. 

n the search 
time. 
s the error value
heoretical global 

ction TF given in 
]. The values of 

zero. 
completion of 
aluations. 

ng parameters: 

D=30, Np=80  
1= , *

s_final 20f = , 

30 , final 1m = , 

ue OF (i.e. best, 
n values), which 

marized in Table 
LE III.  in the 
ases.  Results for 
on, but interested 
the authors. The 

were computed by 
re given in Table 
m these results: 

se, MVMO-SH is 
smaller than 1E-

s found out that 
ved in most cases 
umber of function 
allows obtaining 
and 100D cases. 

ol to effectively 
f the underlying 
l, separable/non-

or the 10-D case, 
ar to zero error 
runs. A similar 

and 100D cases, 

• Solving hybrid functions: For 
is also capable of providing near
functions in almost all runs. Th
101, 10-1 and 100 for 30D, 50D
optimization repetitions. 

• Solving composition functions
proposed algorithm is capable 
error values for function TF27 i
not provide zero errors for this 
100D cases. For the remaining 
the order of 102. 

• Note that the results provid
dimensions were obtained by mo
particles and the number of dim
mutation operation. The perform
further improved by using differ

Fig. 5 - Fig. 8 are intended to
between the convergence progress
shape factors s1 and s2, resulting from
TF1 and TF30 with and without loca

Fig. 5. Evolution  of the objective function
s2 when optimizing TF1 without local search

Fig. 6. Evolution  of the objective function
s2 when optimizing TF1 with local search fo

It is interesting to note that w
achieve small OF values very soon b
until the local search option is switc
number of iterations. Considerabl

the 10-D case, MVMO-SH 
r to zero error values for all 

he errors are in the order of 
D, and 100D cases in most 

s: For the 10-D case, the 
of providing near to zero 

in several runs, but it could 
function in 30-D, 50D, and 
functions the errors are in 

ded in the paper for all 
odifying only the number of 
mensions to be selected for 

mance of MVMO-SH can be 
ent parameter settings.  

o illustrate the relationship 
s and the evolution of the 
m one run of a 10D case for 
al search, respectively.  

 
n OF and the shape factors s1 and 

h for 10D case.  

 
n OF and the shape factors s1 and 
or 10D case. 

with local search TF1 can 
but is stagnating afterwards 
ched off at 50% of the total 
le further improvement is 
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coming prominently from the MVMO algor
local search is not able to provide consider
The figures also illustrate the oscillating beha
factors s1 and s2 that results in a dynamic 
mapping function. Furthermore, with the itera
factors s1 and s2 are increasing which lea
numerical accuracy. 

Fig. 7. Evolution  of the objective function OF and the
s2 when optimizing TF30 without local search for 10D cas

Fig. 8. Evolution  of the objective function OF and the
s2 when optimizing TF30 with local search for 10D case.

IV. CONCLUSIONS 
Based on the IEEE-CEC 2014 test suite o

parameter numerical optimization, the perf
hybrid variant of MVMO, called MVMO-SH
evaluated in this paper. Unlike the classica
implementation of MVMO, MVMO-SH ad
intelligence precept, and incorporates local s
parent crossover strategies to increase the 
while pursuing a balance between exploration 
Statistical performance assessment, performed
CEC 2014 competition criteria, has shown th
effectiveness of MVMO-SH to tackle a variety
problems with different complexities (e.g. u
multimodal, hybrid and composite problems). 

Additionally, it is worth highlighting th
swarm based optimization techniques, MVM
strictly require several particles to proceed. 
than one particle in MVMO-SH extends the 

rithm. For TF30, 
rable advantages. 
avior of the shape 

character of the 
ation number the 
ads to improved 

 
e shape factors s1 and 
se.  

 
 shape factors s1 and 
 

on objective real-
formance of the 
H, is thoroughly 
al single-particle 
dopts the swarm 
search and multi-

search diversity 
and exploitation.  

d under the IEEE-
he feasibility and 
y of optimization 
unimodal, simple 
  

hat, unlike other 
MO-SH does not 

But using more 
global searching 

capability considerably. For less 
problems, however, running MVMO
the classical single-particle approach

Further research effort is being f
algorithm’s parameters, as well as o
of local search strategies. Performan
state-of-art heuristic optimization
application of MVMO-SH to di
system optimization problems, a
investigation. 
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APPENDIX 
 

TABLE I.  RESULTS FOR 10D 

Type Function Best Worst Median Mean Std. 

Unimodal 
functions 

TF1 4.1538505e-005 3.3624079e-003 2.2436262e-004 4.9540470e-004 7.3489370e-004 
TF2 8.5265128e-014 1.3106106e-007 1.8474111e-010 7.0984178e-009 2.2815024e-008 
TF3 0.0000000e+000 2.4199949e-009 7.9580786e-013 9.8596582e-011 4.3985026e-010 

Simple 
multimodal 
Functions 

TF4 0.0000000e+000 3.4780275e+001 1.1368684e-013 9.5456242e+000 1.4985979e+001 
TF5 4.8459015e-010 1.9998708e+001 1.9969694e+001 1.6580585e+001 7.3335387e+000 
TF6 7.9580786e-013 5.3816735e-002 1.8396041e-004 3.4445483e-003 1.0642149e-002 
TF7 0.0000000e+000 5.6623494e-002 1.7226294e-002 1.8583556e-002 1.4468310e-002 
TF8 0.0000000e+000 1.1368684e-013 0.0000000e+000 6.6874612e-015 2.7016019e-014 
TF9 9.9495906e-001 7.9596674e+000 3.9798362e+000 3.4921111e+000 1.4537646e+000 
TF10 6.2454441e-002 7.0172878e+000 3.7472665e-001 2.1369189e+000 2.3422584e+000 
TF11 3.4149607e+000 2.6033799e+002 1.2204066e+002 9.6276037e+001 7.6480825e+001 
TF12 5.5313035e-006 1.2515415e-001 4.2251393e-002 4.2227834e-002 2.8159324e-002 
TF13 1.3164533e-002 7.2168471e-002 3.4303739e-002 3.5533498e-002 1.4427346e-002 
TF14 3.5090763e-002 1.9656057e-001 8.2094714e-002 8.9059202e-002 3.3743724e-002 
TF15 2.0707686e-001 9.2743499e-001 4.0737798e-001 4.3460098e-001 1.4115855e-001 
TF16 3.8829686e-001 2.1665315e+000 1.4593894e+000 1.4485149e+000 4.0681434e-001 

Hybrid 
functions 

TF17 2.0819470e-001 3.9795023e+001 1.1173069e+001 9.3566657e+000 1.0203322e+001 
TF18 7.8135446e-003 3.1372986e+000 1.0082690e+000 7.8259990e-001 7.5051405e-001 
TF19 2.3484966e-002 7.9774510e-001 1.0627733e-001 1.5834023e-001 1.7257304e-001 
TF20 1.0797286e-003 1.7006967e+000 1.5382139e-001 3.1255588e-001 3.9449412e-001 
TF21 1.6782275e-003 1.7177388e+001 3.3086879e-001 1.9347212e+000 4.9969079e+000 
TF22 2.5193267e-002 1.8482503e+000 2.0400219e-001 2.6288606e-001 2.7868574e-001 

Composition 
functions 

TF23 3.2945747e+002 3.2945747e+002 3.2945747e+002 3.2945747e+002 2.2963616e-013 
TF24 1.0000000e+002 1.1345264e+002 1.0979901e+002 1.0922582e+002 2.9792711e+000 
TF25 1.0000000e+002 1.3056547e+002 1.1654164e+002 1.1612595e+002 7.3027971e+000 
TF26 1.0001183e+002 1.0005666e+002 1.0003187e+002 1.0003227e+002 1.1270960e-002 
TF27 7.3602613e-001 4.0013955e+002 1.5999972e+000 1.7201876e+001 7.8121553e+001 
TF28 1.0001846e+002 4.7638378e+002 3.5710324e+002 3.6105482e+002 4.4886214e+001 
TF29 1.2763910e+002 2.2569749e+002 1.6006349e+002 1.8140214e+002 3.8833199e+001 
TF30 4.6365669e+002 5.6635445e+002 4.8716618e+002 4.9174528e+002 2.3026773e+001 

 

TABLE II.  RESULTS FOR 30D 

Type Function Best Worst Median Mean Std. 

Unimodal 
functions 

TF1 6.9284155e-004 1.3416580e-003 1.0937358e-003 1.0664527e-003 1.5126562e-004 
TF2 3.9343897e-006 2.3398313e-004 1.1902408e-005 2.3800519e-005 3.6577863e-005 
TF3 2.0615637e-005 2.9302342e-003 1.0312443e-003 1.1057164e-003 6.9600696e-004 

Simple 
multimodal 
Functions 

TF4 2.2737368e-013 8.5265128e-013 3.9790393e-013 4.3802870e-013 1.4167320e-013 
TF5 1.9995461e+001 1.9999967e+001 1.9999802e+001 1.9999556e+001 7.0056880e-004 
TF6 5.0337088e-001 9.9452370e+000 3.0441230e+000 3.6202263e+000 2.1431794e+000 
TF7 4.5474735e-013 5.6564598e-002 1.3642421e-012 2.9900416e-003 9.7666655e-003 
TF8 5.6843419e-013 2.9848772e+000 9.9495909e-001 8.5841154e-001 7.7121192e-001 
TF9 1.0944550e+001 3.7808409e+001 2.3879002e+001 2.5127580e+001 7.6704529e+000 
TF10 2.4224955e+000 1.7305505e+002 9.7602007e+000 1.7863610e+001 3.2232646e+001 
TF11 7.2655596e+002 2.1761397e+003 1.5936079e+003 1.5416901e+003 3.3984542e+002 
TF12 2.1218576e-002 1.8692749e-001 6.2435019e-002 7.2055202e-002 4.1222550e-002 
TF13 9.9612318e-002 2.2697784e-001 1.6201751e-001 1.5729416e-001 3.1523838e-002 
TF14 1.4427060e-001 2.5404204e-001 1.9918166e-001 1.9885619e-001 2.2474439e-002 
TF15 2.0101268e+000 5.3070854e+000 2.6858825e+000 2.8552269e+000 6.5069647e-001 
TF16 8.4915258e+000 1.2904543e+001 9.8367522e+000 1.0209492e+001 1.2670829e+000 

Hybrid 
functions 

TF17 1.4295717e+002 1.5310445e+003 1.0256839e+003 9.0081976e+002 3.8675498e+002 
TF18 6.4637000e+000 8.3344861e+001 2.0831026e+001 2.8938239e+001 2.0575334e+001 
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Type Function Best Worst Median Mean Std. 
TF19 2.0805409e+000 7.3274197e+000 3.0246453e+000 3.0799649e+000 7.4693924e-001 
TF20 9.6456491e+000 4.5813273e+002 5.6901662e+001 1.0915718e+002 1.0924229e+002 
TF21 3.5559068e+001 8.7034775e+002 4.8856072e+002 4.6661696e+002 2.3476450e+002 
TF22 6.4369174e+000 3.3656003e+002 1.4590697e+002 1.4457451e+002 8.1369703e+001 

Composition 
functions 

TF23 3.1524410e+002 3.1524410e+002 3.1524410e+002 3.1524410e+002 5.7409039e-014 
TF24 2.2193350e+002 2.2898638e+002 2.2467779e+002 2.2475384e+002 1.0561426e+000 
TF25 2.0259082e+002 2.0583540e+002 2.0322925e+002 2.0329514e+002 5.4842879e-001 
TF26 1.0009903e+002 1.0025226e+002 1.0015760e+002 1.0016223e+002 3.3392707e-002 
TF27 4.0061039e+002 4.0211259e+002 4.0107149e+002 4.0113199e+002 3.6783055e-001 
TF28 7.4880562e+002 9.5279994e+002 8.7765601e+002 8.7677005e+002 3.7514823e+001 
TF29 4.7833087e+002 7.9946761e+002 7.4225190e+002 7.3608474e+002 4.6567941e+001 
TF30 8.3367481e+002 3.3641456e+003 2.0773313e+003 2.0011468e+003 6.3275860e+002 

 
 

TABLE III.  RESULTS FOR 50D 

Type Function Best Worst Median Mean Std. 

Unimodal 
functions 

TF1 4.2266187e-003 1.1173537e-002 7.3924406e-003 7.5393374e-003 1.6192262e-003 
TF2 1.0424369e-005 4.1093265e-005 1.2963966e-005 1.5210404e-005 5.9390136e-006 
TF3 2.8473395e-003 5.4004028e-003 4.7466100e-003 4.5419901e-003 6.4862612e-004 

Simple 
multimodal 
Functions 

TF4 9.0949470e-013 9.8103112e+001 3.4674486e-012 5.7707713e+000 2.3312773e+001 
TF5 1.9999716e+001 1.9999994e+001 1.9999962e+001 1.9999951e+001 5.2143249e-005 
TF6 5.3564486e+000 2.3550846e+001 9.6660581e+000 1.0513585e+001 3.8081250e+000 
TF7 3.6379788e-012 1.7226294e-002 7.3960403e-003 6.6684322e-003 5.4482413e-003 
TF8 1.0515237e-008 5.9697552e+000 1.9899220e+000 2.2825747e+000 1.5831273e+000 
TF9 3.0843716e+001 1.1243008e+002 8.0591512e+001 7.6931185e+001 1.8507705e+001 
TF10 6.7266472e+000 3.6891721e+002 1.7455123e+001 8.0771513e+001 8.9427244e+001 
TF11 2.3292001e+003 4.3961818e+003 3.6649329e+003 3.5713142e+003 5.5153949e+002 
TF12 1.3209227e-002 2.2067519e-001 3.2788930e-002 4.9288508e-002 4.1326812e-002 
TF13 2.0975908e-001 3.7414928e-001 2.7868431e-001 2.8442643e-001 3.8756850e-002 
TF14 1.7226555e-001 3.1155106e-001 2.3536972e-001 2.3750314e-001 2.8825988e-002 
TF15 2.8945375e+000 8.2415885e+000 5.0008624e+000 4.9989099e+000 1.0526557e+000 
TF16 1.7192708e+001 1.9639758e+001 1.8905269e+001 1.8860060e+001 4.8006770e-001 

Hybrid 
functions 

TF17 4.4531697e+001 1.3079483e+003 6.9129152e+002 6.6477133e+002 3.2215270e+002 
TF18 1.3336089e+001 2.3449333e+002 2.9205293e+001 3.4011400e+001 2.9658419e+001 
TF19 5.1735646e+000 1.0442244e+001 6.4318328e+000 6.7580720e+000 1.1645738e+000 
TF20 8.9056013e+000 4.2452261e+001 2.1094352e+001 2.2867161e+001 7.1048284e+000 
TF21 2.4678505e+002 1.0144064e+003 4.9962669e+002 5.3882652e+002 2.0070027e+002 
TF22 5.1836912e+001 7.1691031e+002 4.9214601e+002 4.5841322e+002 1.4391196e+002 

Composition 
functions 

TF23 3.4400450e+002 3.4400450e+002 3.4400450e+002 3.4400450e+002 4.5927231e-013 
TF24 2.5478846e+002 2.7110735e+002 2.5668673e+002 2.5788394e+002 3.6553819e+000 
TF25 2.0490574e+002 2.1165716e+002 2.0552516e+002 2.0616942e+002 1.6048113e+000 
TF26 1.0014930e+002 2.0017382e+002 1.0023351e+002 1.0414867e+002 1.9586903e+001 
TF27 3.7308822e+002 7.5844507e+002 5.0499714e+002 5.1075826e+002 7.7736033e+001 
TF28 1.1764687e+003 1.4408022e+003 1.3510220e+003 1.3267138e+003 6.2978029e+001 
TF29 5.0088281e+002 1.5527609e+003 1.1249473e+003 1.1056057e+003 2.3284504e+002 
TF30 8.5320111e+003 1.0216084e+004 9.4339035e+003 9.4212668e+003 3.5441959e+002 

 
 

TABLE IV.  COMPUTATIONAL COMPLEXITY 

Dimension 0T  1T   2̂T   ( )2 1 0
ˆ T /TT −   

D=10 1.4062500e-001 1.2082375e+004 1.2108575e+004 1.8630818e+002 
D=30 1.8750000e-001 5.6994922e+004 5.7937346e+004 5.0262628e+003 
D=50 1.4062500e-001 7.4776328e+004 7.4295874e+004 -3.4165588e+003 
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