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Abstract— Mean-Variance Mapping Optimization (MVMO) 
constitutes an emerging heuristic optimization algorithm, whose 
evolutionary mechanism adopts a single parent-offspring pair 
approach along with a normalized range of the search space for 
all optimization variables. Besides, MVMO is characterized by 
an archive of n-best solutions from which the unique mapping 
function defined by the mean and variance of the optimization 
variables is derived. The algorithm proceeds by projecting 
randomly selected variables onto the corresponding mapping 
function that guides the solution towards the best set achieved so 
far. Despite the orientation on the best solution the algorithm 
keeps on searching globally. This paper provides an evaluation of 
the performance of MVMO when applied for the solution of 
computationally expensive optimization problems. Experimental 
tests, conducted on the IEEE-CEC 2014 optimization test bed, 
highlight the capability of the MVMO to successfully tackle 
different complex problems within a reduced number of allowed 
function evaluations.  

Keywords— Expensive Optimization; Heuristic optimization; 
mean-variance mapping optimization; single objective optimization. 

I. INTRODUCTION 
Many real-world optimization problems exhibit a large-

scale, nonlinear, non-convex and mixed integer nature, which 
do not lend themselves to solution by classical optimization 
methods [1]. Thus, the development and improvement of 
heuristic optimization algorithms has received great attention, 
especially in recent years. These algorithms generally adopt a 
certain mechanism to repetitively generate new candidate 
solutions based on preceding solutions, which is commonly 
evaluated through a fitness measure [2]. Each fitness (function) 
evaluation usually requires computationally intensive computer 
simulations, so that the number of fitness evaluations that can 
be performed is limited by time or some other computing 
resource constraints.  This motivates the exploration and 
development of new algorithmic procedures, which allow a 
more efficient and quicker solution of complex and high-
dimensional optimization problems. 

Mean-variance mapping optimization (MVMO), conceived 
by I. Erlich and first reported in [3], is an emerging 
optimization algorithm, whose basic conceptual framework 
has certain similarities to other state-of-art heuristic 
approaches. Its novel distinguishing feature, however, is its 
use of a special mapping function applied for mutating the 
offspring on the basis of mean and variance of the set 

comprising of the n-best solutions attained so far and saved in 
the archive. Based on simple mathematical relationships, the 
shape of the mapping curve is adjusted according to the 
progress of the search process. As the mapping function is 
defined in the interval [0, 1] for all optimization variables the 
original variables have to be rescaled to within this range. 
However, the fitness evaluation is performed using the actual 
values in the problem space (i.e. conversion to the original 
dimension is embedded in this task). MVMO represents a 
single particle approach based on random search and its own 
experiences in the search process.  

The MVMO has already been applied successfully for the 
solution of different power system optimization problems, 
such as the solution of the optimal reactive power allocation 
problem [4, 5], (the optimal dispatch of energy and reserve) 
unit commitment and optimization of control energy [6], (the 
identification of dynamic equivalents) dynamic equivalencing 
[7, 8], and the development of optimal control strategies [9]-
[11]. These applications have indeed evidenced that thanks to 
the well-designed balance between search diversification and 
intensification the MVMO exhibits a fast convergence 
behavior and can find the optimum solution quickly with 
minimum risk of premature convergence.  

Based on the IEEE-CEC 2014 expensive optimization test 
bed, this paper aims at examining and discussing the 
performance of MVMO, as a generic optimization engine, that 
can be used for solving a variety of problems with different 
dimensions and mathematical properties within reduced 
computing time. The outline of the paper is as follows: Section 
II presents a thorough review of MVMO theory. Section III 
shows the experimental setup and provides a discussion on 
numerical results of the study. Finally, conclusions are 
summarized in Section IV. 

II. REVIEW OF MVMO 
The flowchart of MVMO is given in Fig. 1. As every 

population-based stochastic optimization technique, the 
solution framework of MVMO starts with an initialization 
stage (i.e. definition of the algorithm’s parameter settings and 
generation of random samples for control variables from the 
space of possible solutions). This is followed by an iterative 
loop to perform fitness evaluation (i.e. in terms of fulfillment 
of preset conditions), to update the solution database (i.e. 
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inclusion or exclusion of candidate solutions in the archive), to 
select the global best solution (i.e. parent assignment), and to 
create new candidate solutions (i.e. mutation by projection of 
the selected variables onto the mapping function and 
crossover).  

The distinctive features of MVMO can be summarized as 
follows: 
- A novel mapping function that is used for mutating genes in 

the offspring based on the mean and variance of the solution 
archive  

- A compact and dynamically updated solution archive that 
serves as the knowledge base for guiding the search 
direction (i.e. adaptive memory). The n-best individuals that 
MVMO has found so far are saved in the archive and sorted 
in a descending order of fitness. 

- A single parent-offspring pair concept 
- The restriction of the range of the search space for all 

optimization variables internally to [0, 1]. This is a 
precondition for using the mapping function; on the other 
hand, it guarantees that the generated offspring is always 
within the search boundaries. However, fitness evaluation is 
carried out in the original physical dimension. 

A. Fitness evaluation and local search 
The elements of the candidate solution array (i.e. 

optimization variables) are de-normalized from [0, 1] range to 
their original [min, max] boundaries before fitness evaluation 
or local search is performed. In case of unconstrained 
optimization problems, the fitness corresponds with the value 
of the objective function associated to the candidate solution 
being evaluated, whereas for constrained problems, it also 
includes a possible penalty value resulting from constraint 
violation.  

One of the available local search strategies (IPM, SQP) is 
included in this step as a local improvement option. After a 
given number of fitness evaluations, local search is performed 
with a probability LSγ  for any child of the population 

 LSrand < γ   (1) 

and runs in the range 
 LS_ min LS_ max max,    /i iα < α < α α =   (2) 

where i denotes fitness evaluation number, and rand is a 
random number with uniform distribution in [0,1]. 

B. Solution archive 
In the basic MVMO the n best individuals are stored in the 

solution archive. The archive size is fixed for the entire 
process and has to be defined by the user beforehand. 
Experience so far reveals that an archive size of 2-5 is usually 
sufficient. A larger archive size will result in a rather 
conservative search with orientation on the saved best 
populations. The archive is filled up progressively over the 
iteration steps in a descending order of fitness, so that the first 
ranked individual is always the best found so far. Once the 
archive is filled up, an update is performed only if the fitness 

of the new individual is better than those in the archive. As 
fitness improves over iterations, the population members keep 
changing. 

 
Fig. 1. Flowchart of MVMO. The fitness evaluation counter is denoted by i, 
whereas ΔFE and rand stand for number of fitness evaluations and uniform 
random number between [0, 1], respectively. 

Mean and shape variables are calculated after every update 
of the archive for each optimization variable xi (i=1,…,D) 
using (3) and (4), respectively. 
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At the beginning, ix corresponds with the initialized value 
of xi, and vi is set to 1. The shape variable used directly for the 
mapping function is a derivative of the variance. It can be 
modified by the scaling variable fs which represents an 
alternative way to control the form of the mapping function 
and thus the search process, as will be discussed in the next 
section.  

C. Offspring generation  
At every iteration the individual with the best fitness so far 

in the archive (first position) is used to generate a new 
descendant (i.e. assigned parent). Besides, m out of D 
dimensions of the optimization problem are selected for 
mutation operation via mapping function while the remaining 
dimensions inherit the corresponding values from the parent. 
Alternative selection methods are described in [3, 4]. The 
number m of dimensions to be selected for mutation operation 
is progressively reduced from inim  to finalm  as follows: 

 ( )( )final finalround m rand * mm m= + −   (6) 

 ( )( )2
ini ini final* round m m mm = − α −   (7) 

 
max

i
i

α =   (8) 

where i denotes fitness evaluation number. 
The new value of each selected dimension ix  is determined 

by 
 *

i x 1 0 i 0(1 )x h h h x h= + − + ⋅ −   (9) 

where i
*x  is a variable varied randomly with uniform 

distribution and the term h refers to transformation mapping 
function, which is defined as 

 i1 i2(1 )
i 1 2 i i( , , , ) (1 ) (1 )x s x sh x s s x x e x e− ⋅ − − ⋅= ⋅ − + − ⋅   (10) 

hx, h1 and h0 are the outputs of the mapping function, based on 
different inputs given by 

 *
x i 0 1( ), ( 0), ( 1)h h x x h h x h h x= = = = = =   (11) 

Both input and output of the mapping function cover the 
range [0, 1]. Note that the shape of the mapping function is 
determined by the mean ix  and the shape factors i1s and i2s . 

The effect of these parameters on the form of the function is 
illustrated in Fig. 2, where it is inferred that the search 
diversity can be enhanced through effective assignment of the 
shape variables. Note also that, with increasing value of the 
shape parameter, the mapping curve becomes flatter so that 
the space to be searched focuses on the region near to the 
mean value. Fig. 3 demonstrates this characteristic for two 
variables.  

 

 
Fig. 2. Change of the mapping function shape for different values of mean 
and shape factors. 

The factor sf can be used to change the shape of the 
function (cf. (9)). A small value (e.g. 1.0) allows the slope of 
the mapping curve to increase and thus enable better 
exploration, whereas values above 1.0 will result in a rather 
flat curve and thus lead to improved exploitation. Therefore, 

sf  is increased as the optimization progresses from a small 

initial value *
s_inif  to a higher final value *

s_finalf  by using 

(12) and  (13). A considerably high final value of sf , e.g. 
*
s_final 20f =  , could be used for real-parameter optimization 

problems with high accuracy concerns. 

 ( )*
s s 1f f rand= +   (12) 

 ( )* * 2 * *
s s_ini s_final s_inif f f f= + α −   (13) 

where rand is a random number with uniform distribution in 
[0,1]. 

The shapes factors i1s  and i2s of the variable ix  are not 
calculated directly from (4) but by using the strategy defined 
in  (14). 
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Fig. 3. Search space depending on the shape factor; nu

1x =0.25, 2x =0.75, si=s1 =s2 for both variables 
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The initial values of id  are set to 1 for al
beginning of the optimization. At every iter
scaled up or down with the factor Δd , wh
varied between 1 and 01 2 Δd+ ⋅ . If di > si , 
divided by Δd  which is always larger than 1
to reduced value of di. In case di < si, di will 
Δd  resulting in increased di. In this way
oscillate around the current shape factor si. Th
si and di to si1 or si2 takes place randomly.  

According to our experience, it is recomm
non-zero value equal to or smaller than 0.4 
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the current di is 
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he assignment of 

mended to take a 
for 0Δd . A high 
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would lead to concentrated local 
improvement. By using the d
asymmetric characteristic of the 
exploited by using different values
enhanced search performance and z
variance can occur when all value
identical. In this case the previous n
further. However, this value may r
in stagnating convergence behavior
this problem as the mean and varia
non-identical values of xi saved in th

The mean and variance are not 
number of solutions are available i
usually start the calculation imme
have been obtained. However, it is
archive is filled up completely w
robust initial solutions. In this stag
with si1=si2=0 which corresponds w
zero and one as the mapping functi
case does not have any effect on the

D. Termination criteria 
Like many of the heuristic op

MVMO search process can be ter
completion of a specified number o
of a fitness threshold, or lack of fitn
last iterations. In any case, the
determined by the user for a given 
worth emphasizing that the number
equivalent to the number of off
which is in practical applications 
consuming than the optimization alg

III. EXPERIMENTAL RESUL

Numerical experiments were per
Intel® Core™ i7-47500 HQ CPU, 2
under Windows 8.1 pro, 64 bit O
MVMO-SH was done in Matlab®
functionalities of the Parallel Comp
set a cluster with 8 cores to perform
distributed manner. Stochastic in
performing independent initializa
streams on individual processes wi
process identifier. 

A. Experimental setting 
MVMO-SH is used to solve the 

optimization test problems listed i
these problems, which are treated 
the competition, are given in [12].  

Statistical tests on convergence 
final solution provided by MVMO 
following considerations: 

ntail wider global search 
ace whereas a smaller one 
search aiming at accuracy 
described procedure the 
mapping function is also 
s for si1 and si2 leading to 
ero variance handling. Zero 
es of xi in the archive are 
non-zero value can be used 
esult, under circumstances, 
. The procedure overcomes 

ance are calculated only for 
he archive.  

calculated before a certain 
in the archive. The authors 
diately after two solutions 
s possible to wait until the 
which will result in more 
ge, the search is performed 
with a straight line between 
ion. The mean value in this 
e mapping function.  

ptimization algorithms, the 
rminated either based on a 
of iterations, the attainment 
ness improvement over the 

e termination criterion is 
optimization problem. It is 

r of iterations in MVMO is 
fspring fitness evaluations 

usually much more time 
gorithm itself.  

LTS AND DISCUSSION 
rformed on a computer with 
2.0 GHz and 16 GB RAM, 

OS. The implementation of 
® Version R2013b and the 
puting Toolbox are used to 

m the optimization trials in a 
ntegrity is guaranteed by 
ation of random number 
ith respect to time plus the 

IEEE-CEC 2014 expensive 
in Table I. The details of 
as black-box problems for 

performance and quality of 
were carried out under the 
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• Dimension: D=10 for problems {1,4,7,10,13,16,19,22}; 
D=20 for problems {2,5,8,11,14,17,20,23}; and D=30 
for problems {3,6,9,12,15,18,21,24}. 

• Maximum number of function evaluations:  50*D. 

• Repetitions of the optimization: 20 runs. 

• Uniform random initialization within the search space. 
The random seed is based on time, which is done using 
the command rand('state', sum(100*clock)) in Matlab 
environment. 

• The objective function is defined as the error value
i iOF=TF ( ) - TF ( *),x x where iTF ( *)x is the theoretical 

global optimum of the i-th benchmark function TF 
given in the problem definitions reported in [12]. The 
values of OF smaller than 1E-08 are taken as zero. 

• The optimization is terminated upon completion of the 
maximum number of function evaluations. 

TABLE I.  EXPENSIVE OPTIMIZATION TEST PROBLEMS 

No. Function type Search range

1-3 Shifted sphere [-20,20]

4-6 Shifted ellipsoid [-20,20]

7-9 Shifted and rotated  ellipsoid [-20,20]

10-12 Shifted step [-20,20]

13-15 Shifted Ackley’s [-32,32]

16-18 Shifted Griewank’s [-600,600]

19-21 Shifted rotated Rosenbrock [-20,20]

22-24 Shifted rotated Rastrigin [-20,20]
 

MVMO was executed for all dimensions D=10, 20, 30 with 
the following parameters:  

Np=1, * *
s_ini s_final0.1 , 20f f= = , 0 0.25dΔ = , 

ini D / 6m = , final D / 2m = , LS_ min 0.23α = , LS_ maxα  is 
defined in such a way that only one LS run is performed (

LSγ = 1.0) 

The statistical attributes of the error value OF (i.e. best, 
worst, mean, median, and standard deviation values) calculated 
after 20 runs are summarized in Tables II to IV in the 
Appendix, for each D-dimensional case.  The following 
remarks can be deduced from these results: 

• 10D and 20D problems: MVMO-SH is capable of finding 
near to zero error values for OF in all runs. Thus, it 
constitutes an efficient tool to solve different types of 
optimization problems with 10 and 20- dimensional search 
space, irrespective of the underlying properties (e.g. 
multimodal, separable/non-separable, discontinuous). 

• 30D problems: The algorithm also allows obtaining error 
values that are close to zero for almost all problems in all 

runs, except for TF9, TF21 and TF24, where errors in the 
order of 102 were encountered in some runs. 

• Although not shown in the paper, further tests with 
different parameter settings revealed that the algorithm 
would have an enhanced performance for these problems. 
Nevertheless, the use of the same set of parameters 
evidences the effectiveness of MVMO, as a generic 
optimization tool, for successfully tackling optimization 
tasks within a restricted amount of iterations.  

Fig. 4- Fig. 11 demonstrate the convergence behaviour of 
MVMO by using 1 and 6 particles, respectively. Details on the 
multi-particle approach of MVMO are given in [14]. Besides 
the   factor  *

s_finalf
 
has been varied by setting it either to1 or 5. 

As  can be seen, the fastest convergence occurs when only one 
particle is used. However, nearly the same final results are 
achieved by 6 particles too but the initial convergence is 
slower. Also, increasing *

s_finalf does not contribute to fitness 
improvement; on the contrary, it results in much slower 
convergence. However, in our experience, larger *

s_finalf  
values can contribute to improve the final accuracy of the 
fitness provided that a large fitness evaluation budget is 
available. The computational complexity measures associated 
to all test problems are summarized in Table V in the 
Appendix. 

 
Fig. 4. Average convergence of OF when optimizing TF1.  

 
Fig. 5. Average convergence of OF when optimizing TF4. 
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Fig. 6. Average convergence of OF when optimizing TF7. 

 
Fig. 7. Average convergence of OF when optimizing TF10. 

 
Fig. 8. Average convergence of OF when optimizing TF13. 

 
Fig. 9. Average convergence of OF when optimizing TF16. 

 
Fig. 10. Average convergence of OF when optimizing TF19. 

 
Fig. 11. Average convergence of OF when optimizing TF22. 

IV. CONCLUSIONS 
Despite some similarities with other established heuristic 

optimization methods, MVMO can be characterized as a novel 
evolutionary optimization algorithm on account of its unique 
mapping function and the corresponding search procedure. 
MVMO underlies a single parent-offspring pair concept. It 
proceeds based on its own experiences described by a certain 
number of best solutions saved in the archive. The adaptation 
of the shape factors throughout the optimization process 
allows the mapping function to be able to cover the whole 
search space so that exploration and exploitation is properly 
balanced. Numerical tests on the IEEE-CEC 2014 expensive 
optimization test problems show the ability of MVMO to 
quickly find the global optima of several types of problems 
with different dimensionality and search landscape even for a 
limited number of function evaluations, as in the current 
competition. For this case the single particle approach is the 
most suitable which represents a unique characteristic of 
MVMO.  

Further research is being carried out towards development 
of MVMO-based applications for real-time optimization tasks 
in power system. Possible algorithmic extensions are also 
being investigated. To make MVMO available to a wider 
professional community, a dedicated webpage has been set-up 
[13]. Scientists interested in this topic are encouraged to 
download the Matlab MVMO source code, test the algorithm 
and include new ideas and approaches. 

1089



REFERENCES 
 

[1] K.Y. Lee and M.A. El-Sharkawi, Modern heuristic optimization 
techniques. Hoboken: John Wiley & Sons, 2008.  

[2] D. Simon, Evolutionary optimization algorithms: Biologically inspired 
and population-based approaches to computer intelligence. Hoboken: 
John Wiley & Sons, 2013.  

[3] I. Erlich, G. K. Venayagamoorthy, and W. Nakawiro, “A mean-variance 
optimization algorithm,” 2010 IEEE Congress on Evolutionary 
Computation, pp.1-6, July 2010. 

[4] W. Nakawiro, I. Erlich, and J.L. Rueda, “A novel optimization 
algorithm for optimal reactive power dispatch: A comparative study,” 
4th International Conference on Electric Utility Deregulation and 
Restructuring and Power Technologies, pp. 1555-1561, July 2011. 

[5] I. Erlich, W. Nakawiro, and M. Martinez, "Optimal Dispatch of Reactive 
Sources in Wind Farms," in Proc. 2011 IEEE PES General Meeting, pp. 
1-7, Detroit, USA, July 2011.  

[6] M. S. Chamba, and O. Añó, "Despacho óptimo de energía y reserva en 
mercados competitivos empleando algoritmos meta-heurísticos," in 
Proc. 2012 IEEE Argencon, Córdoba, Argentina, June 2012.  

[7] I. Erlich, F. Shewarega, C. Feltes, F. Koch and J. Fortmann, 
"Determination of Dynamic Wind Farm Equivalents using Heuristic 
Optimization," in Proc. 2012 IEEE PES General Meeting, San Diego, 
USA, July 2012.  

[8] J.C. Cepeda, J.L. Rueda, and I. Erlich, "Identification of Dynamic 
Equivalents based on Heuristic Optimization for Smart Grid 

Applications" in Proc. 2012 IEEE world congress on computational 
intelligence, Brisbane, Australia, June 2012.  

[9] J.L. Rueda, J.C. Cepeda, and I. Erlich, "Estimation of Location and 
Coordinated Tuning of PSS based on Mean-Variance Mapping 
Optimization," in Proc. 2012 IEEE PES General Meeting, San Diego, 
USA, July 2012.  

[10] P. Chakravarty and G.K.Venayagamoorthy, "Development of optimal 
controllers for a DFIG based wind farm in a smart grid under variable 
wind speed conditions," in Proc. 2011 IEEE International Electric 
Machines & Drives Conference, pp. 723-728, Niagara Falls, Canada, 
May 2011.  

[11] H.V. Pham, J.L. Rueda, and I. Erlich, "Online Optimal Control of 
Reactive Sources in Wind Power Plants," IEEE Trans. on Sustainable 
Energy - Special Issue on Real-Time Applications of Intelligent 
Methods in Sustainable Power and Energy Systems. [Online]. Early 
view since Aug. 2013 at http://ieeexplore.ieee.org/Xplore/home.jsp. 

[12] B. Liu, Q. Chen, Q. Zhang, J.J. Liang, P. N. Suganthan, and B.Y. Qu, 
“Problem Definitions and Evaluation Criteria for Computational 
Expensive Optimization,” Technical Report, Dec. 2013. [Online]. 
Available at: http://www.ntu.edu.sg/home/epnsugan/ 

[13] MVMO Webpage: http://www.uni-due.de/mvmo/ 
[14] I. Erlich, J.L. Rueda, and S. Wildenhues, " Evaluating the Mean-

Variance Mapping Optimization on the IEEE-CEC 2014 Test Suite," 
submitted to 2014 IEEE World Congress on Computational Intelligence, 
Beijing, China, July 2014.  

 
 

APPENDIX 
 
 

TABLE II.  RESULTS FOR 10D 

Function Best Worst Median Mean Std. 
TF1 0.0000000e-000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 
TF4 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 
TF7 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 
TF10 0.0000000e+000 7.0000000e+000 2.0000000e+000 2.6500000e+000 1.8144160e+000 
TF13 1.2468125e-007 8.3263338e+000 5.1898291e+000 4.9190611e+000 2.4288541e+000 
TF16 0.0000000e+000 2.4393548e+000 8.8035763e-002 4.3974484e-001 8.0298629e-001 
TF19 0.0000000e+000 4.9205325e+000 2.1478707e-001 1.0744827e+000 1.6241784e+000 
TF22 9.9495855e+000 4.9747634e+001 2.4873898e+001 2.6171493e+001 1.1377795e+001 

 
 

TABLE III.  RESULTS FOR 20D 

Function Best Worst Median Mean Std. 
TF2 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 
TF5 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 
TF8 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 
TF11 3.0000000e+000 1.6000000e+001 6.0000000e+000 6.5500000e+000 3.3946552e+000 
TF14 5.4411689e+000 1.0203427e+001 7.9987297e+000 7.9352529e+000 1.4153127e+000 
TF17 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 
TF20 1.2592298e+000 1.3439683e+001 1.1758541e+001 1.0727035e+001 2.9437431e+000 
TF23 1.3929417e+001 7.6611498e+001 4.0793231e+001 4.2534391e+001 1.6766867e+001 
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TABLE IV.  RESULTS FOR 30D 

Function Best Worst Median Mean Std. 
TF3 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 
TF6 3.5262512e-005 1.8856361e-001 1.0588107e-002 2.6469859e-002 4.2612482e-002 
TF9 2.1086442e-004 4.6591473e+000 2.2189939e-001 8.8494586e-001 1.3624276e+000 
TF12 6.0000000e+000 2.7000000e+001 1.2000000e+001 1.2700000e+001 4.9107830e+000 
TF15 3.5187283e+000 1.0254779e+001 7.8756990e+000 7.9180254e+000 1.5723034e+000 
TF18 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 0.0000000e+000 
TF21 2.1169883e+001 8.0979721e+001 2.4897872e+001 3.4402636e+001 2.1365974e+001 
TF24 5.6712515e+001 1.3829882e+002 8.4073811e+001 8.4925808e+001 2.0512060e+001 

 
 

TABLE V.  COMPUTATIONAL COMPLEXITY 

Function 1 0
ˆ /TT  Function 1 0

ˆ /TT   Function 1 0
ˆ /TT   

TF1 3.7205556e+001 TF2 3.9785000e+001 TF3 4.7105000e+001 
TF4 4.4750000e+001 TF5 5.3330000e+001 TF6 6.8845000e+001 
TF7 5.3011111e+001 TF8 6.6170000e+001 TF9 9.0460000e+001 
TF10 6.0572222e+001 TF11 8.1975000e+001 TF12 1.1618500e+002 
TF13 6.8533333e+001 TF14 9.6250000e+001 TF15 1.4070500e+002 
TF16 7.6088889e+001 TF17 1.0863000e+002 TF18 1.6124000e+002 
TF19 8.4311111e+001 TF20 1.2277000e+002 TF21 1.8323000e+002 
TF22 9.2000000e+001 TF23 1.3605000e+002 TF24 2.0491500e+002 
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