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Abstract—This paper provides a novel approach to predict 

the Protein-Protein Interaction (PPI) network using a modified 
version of the Bat Algorithm. The attractive trait of the proposed 
approach is that it attempts to analyze the impact of 
physicochemical properties, structural features and evolutionary 
relationship of proteins, to predict the PPI network. Computer 
simulations reveal that our proposed method effectively predicts 
the PPI of Saccharomyces Cerevisiae with a sensitivity of (0.85) 
and specificity of (0.87) and outperforms other state-of-art 
methodologies.    

Keywords—protein–protein interaction networks; domains; 
phylogenetic profiles; accessible solvent area; bat algorithm. 

I.   INTRODUCTION  
Proteins regulate every process in the cell. Proteins do not 

function in isolation. Proteins interact with each other or 
ligands to arbitrate biological processes. Protein-Protein 
Interactions (PPIs) play a vital role in understanding the action 
mechanism of protein. A number of high throughput methods 
have been proposed for detecting PPIs. The high throughput 
methods including yeast two-hybrid (Y2H) and tandem affinity 
purification (TAP) provide interactions for several organisms 
such as S. cerevisiae [1], C. Elegans [2], D. Melanogaster [3] 
and H. Sapiens [4]. However there are evidences of PPIs not 
satisfying the presumed conditions of high throughput 
screening, for inferring PPIs[5]. Naturally, a failure to catch 
transient interactions often leads to false negative PPI 
prediction. The experiments are also very tiresome and 
laborious and it is very difficult to verify individual interaction 
as the number of interactions within a cell is very high. This 
motivated the use of computational methods for PPI prediction. 

A number of computational approaches to PPI prediction 
have been developed over the past decade utilizing different 
characteristic features of existing PPIs [6-10].  The most 
important aspect of the paper is that the PPI prediction problem 
has been formulated in an evolutionary optimization 
framework, optimizing the objective responsible for the 
configuration of a PPI.  

In the present context, optimal prediction of PPI is inspired 
by maximization of a fitness function satisfying three criteria– 
1) similarity in phylogenetic sequences [11], 2) deviation of the 
accessible solvent area (ASA) [12] of the PPI with respect to 

that of individual proteins, and 3) similarity in domain-domain 
interaction profiles of two predicted interacting proteins in the 
PPI. The first criterion of the fitness function is based on the 
evolutionary relationship of proteins. The design philosophy 
adopted here relies on the fact that proteins with similar 
phylogenetic profiles are more likely to interact with each other 
[13]. PPI prediction remains incomplete if the energy of the 
stable protein-protein complex is not considered. In [14], 
solvation energy of proteins are used to describe the energetics 
at protein interfaces. In [12], it is shown that the free energy of 
protein solvation is linearly related to ASA in a continuum 
approach. It has motivated us to introduce ASA of the 
predicted protein-protein complex as a second fitness measure 
to ensure stable connectivity between the proteins in the PPI. 
The third criterion of the fitness function is based on the 
underlying premise that proteins interact with one another 
through some interacting domains, and it has become a 
common approach for predicting protein-protein interaction by 
identifying these domains [15]. 

In this paper, we study the scope of proposed Chaotic Local 
Search-based Bat Algorithm (CLSBA) to judiciously predict 
PPIs. The choice of Bat Algorithm (BA) [16] in the present 
context is inspired partly heuristically because of the 
background of the algorithm in the topic, and partly because of 
its established performance in the literature [16]. Bat 
Algorithm (BA) is selected for its fewer control parameters, 
good run-time accuracy and faster speed of convergence. 
CLSBA is an evolutionary strategy that utilizes the composite 
benefit of global exploration of BA [16] and the chaotic local 
search capability realized with logistic map [17] and 
Rechenberg’s 1/5 mutation rule [18].  

The rest of the paper is divided into four sections: Section II 
gives a brief idea about the formulation of the PPI 
identification problem and explains the criteria used. Section 
III describes the traditional BA. The proposed CLSBA is 
presented in section IV. Section V presents the discussion of 
results. Section VI concludes the paper. 

II.   FORMULATION OF PROTEIN-PROTEIN INTERACTION 
IDENTIFICATION PROBLEM 

In this paper, combination of three important characteristics 
of PPI is considered as primary objective for its prediction. 
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A. Predicting Protein-Protein Interactions using 
Phylogenetic Analysis 

The presence or absence of N proteins in a collection of K 
completely sequenced genomes G from different organisms is 
represented in a specific pattern called the phylogenetic profiles 
[11]. For each protein pi, a phylogenetic profile is represented 
as a K-length binary string s = s1s2 · · · sk where sj = 1 if protein 
pi is present in genome gj and sj = 0 if protein pi is absent in 
genome gj. The clustering of proteins based on the similarity of 
their phylogenetic profiles can provide crucial information 
regarding the protein networks. It is observed that proteins 
present in the same cluster are functionally related. The logic 
underlying this reasoning is that proteins with similar 
phylogenetic profiles are likely to interact in performing some 
biological process. 

To meet this issue, we evaluate the accuracy of the produced 
PPI network by comparing the phylogenetic profiles of two 
predicted interacting proteins in the network with the hope that 
if the two proteins interact with each other in reality then the 
cosine similarity (dot product) between their corresponding 
phylogenetic profiles will be more. Let, N be the total number 
of proteins in the network and K be the length of phylogenetic 
profile of each protein. sk,i represents the presence or absence 
of proteins pi in genome gk and Seti symbolizes the set of 
proteins predicted to be interacting with protein pi. Then the 
similarity between the phylogenetic profiles of interacting 
proteins in the PPI can be measued by (1). 
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B. Accessible Solvent Area 
The hydrophobic effect is usually defined as the reduction of 

the unfavorable interactions in PPI occurring between water 
and non-polar atoms, such as hydrophobic residues in protein 
which are incapable of forming hydrogen bonds in aqueous 
solution [19]. Hence upon binding, the binding sites of two 
interacting proteins must be desolvated. Once bound, the side-
chain or main-chain non-polar functional groups in the binding 
sites of bound protein-pair become (partially or completely) 
immobilized and now they construct intermolecular interaction. 
These non-polar molecules (functional groups) stay together to 
minimize water-exposed Accessible Solvent Area (ASA). As a 
consequence, a strong binding between two proteins pi and pj 
can be ensured by the extent of reduction in the ASA of the 
protein complex, ASA(pi_pj) with respect to their individuals 
ASAs, i. e., ASA(pi)+ASA(pj) by maximizing (2). Here Seti 
represents the set of proteins predicted to be interacting with 
protein pi. 
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C. Protein-Protein Interaction Prediction based on Domain-
Domain Interaction 

Proteins interact with each other through their small 
substructures, known as domains. Such domain architecture 
governs the protein-protein complex formation, offering a 
framework for prediction model of PPI [20]. In the domain-
based structural quantification approach, the knowledge about 
the strength of interaction between domain di in protein p1 and 
domain dj in protein p2 is used to predict whether proteins p1 
and p2 interact. 

Let, 
M   be the number of domain-domain interactions of  yeast, 
dom(p)  be the set of domains present in protein p, 
ddi(p)  be the set of domains interacting with domain 

dk∈dom(p), for k= [1, |dom(p)|], where |dom(p)| is the 
number of unique domains present in protein p. 

The DOMINE database [25] is used to extract domain-
domain interaction data of yeast. Given the domain-domain 
interaction data we can measure the similarity between 
predicted interacting protein-pair, pi and pj based on their 
domain-domain interaction information using Pearson 
coefficient as follows. 
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Here |ddi(p)| represents the number of domains present in 
ddi(p) for any arbitrary protein p. It is apparent from (3) that if 
all the domains present in dom(pi) and dom(pj) are same, i.e., 
1≤|ddi(pi)|=|ddi(pj)|=|ddi(pi)∩ddi(pj)|≤M, r(pi, pj)=1. It in turn 
represents a high possibility of interaction between these two 
proteins with high structural similarity. On the other hand, r(pi, 
pj)<0 if there is no common domain-domain interaction of 
proteins pi and pj i.e., ddi(pi)∩ddi(pj)=φ, indicating a rare 
chance of interaction.  

Hence the value of r(pi, pj) diminishes with increase in the 
dissimilarity between domain-domain interaction data of 
proteins pi and pj (a reduction in the first term of numerator of 
(3)). Consequently, the accuracy of prediction of interaction 
between any two proteins, mediated by a great variety of 
interacting domains, can be improved by maximizing the third 
objective as given in (4). 
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We now construct a fitness function, the maximization of 
which yields a possible solution to the PPI identification 
problem. The expressions to be considered are (1), (2) and (4). 
Hence the overall fitness function to be maximized is given by  

3322114 CwCwCwCfit ×+×+×==                     (5) 
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where w1, w2, and w3 (>0) are scale factors. These parameters 
are set in a manner to have all the terms on the right hand side 
of (5) in the same order of magnitude. The larger the value of 
the function fit the better is the performance of PPI 
identification. 

D. Formation of a Protein-Protein Interaction Network 
In the proposed method for N proteins of interest, each with 

K dimensional phylogenetic sequence, a solution is 
represented by a two dimensional binary matrix Z= [zj,k], ∀ j, 
k ∈ [1, N] of dimension N × N. It describes the presence or 
absence of an interaction between two proteins. Hence 
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III.  BAT ALGORITHM (BA) 
An overview of the Bat Algorithm (BA) is given below. 

1. Initialization: The position { })(),...,(),()( ,2,1, tx txtxtX Diiii =
G

, 

velocity { })(),...,(),()( 21 tv tvtvtV Di =
G

, loudness Ai(t) and the pulse 
emission rate ri(t) of the i-th bat at generation t=0 is selected 
randomly in the range ],[ maxmin XX

GG
, ],[ maxmin VV

GG
, [Amin, Amax] 

and [rmin, rmax] respectively for i= [1, NP] 
where { }minmin

2
min
1

min ,...,, Dx xxX =
G

, { }maxmax
2

max
1

max ,...,, Dx xxX =
G

and

{ }minmin
2

min
1

min ,...,, Dv vvV =
G

, { }maxmax
2

max
1

max ,...,, Dv vvV =
G

 respectively.  

2. Evaluating the Global Best Position: The fitness 
))(( tXfit i

G
is evaluated for i= [1, NP]. The position of a bat  

with highest fitness is selected as the global best position 
)(tX best

G
 at generation t.  

3. Frequency Selection: The frequency fi of the emitted 
pulse by the i-th bat is determined as follows for i= [1, NP]. 

)( minmaxmin ffff i −×+= β                   (7) 

Here β is a random number within (0, 1), fmin and fmax are 
minimum and maximum frequencies respectively. 

4. Velocity Update: The velocity of the i-th bat for i=[1, NP] 
is updated as follows: 

))()(()()1( tXtXftVtV bestiiii
GGGG

−×+=+                    (8) 

5. Position Update: The position of the i-th bat for i=[1, NP] 
is updated as follows. 

)1()()1( ++=+ tVtXtX iii
GGG

                           (9) 

6. Generating Local Position : A new position 
{ })(),...,(),()( ,2,1, tx txtxtX Diiii ′′′=′  is discovered by the i-th bat around 

{ })(),...,(),()( 21 tx txtxtX best
D

bestbestbest =
G

 for i=[1, NP] with a 
probability (1–ri) following (10) for j= [1, D]. 

)()()(, tAtxtx avg
best
jji ×+=′ ε                    (10) 

Here ε is slected randomly from [–1, 1]. Aavg(t) is the average 
loudness of all NP bats in the current population. 

NPtAtA
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i
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)()(                                  (11) 

7. Selection: )(tX best
G

is replaced with new )(tX i′
G

 with a 

probability Ai provided that  ))(())(( tXfittXfit best
i

GG
>′ . This is 

repeated for for i=[1, NP]. 

8. Update Loudness and Pulse Emission Rate: If )(tX best
G

is 

successfully replaced by )(tX i′
G

, the loudness is reduced and 
pulse emission rate is increased by following (12) and (13) 
respectively for i=[1, NP]. 

)()1( tAtA ii ×←+ α                                 (12) 
        ))exp(1()()1( ttrtr ii ×−−×←+ γ                     (13) 

This process is iterated from step 2 till termination condition 
has been reached.  

IV.  PROPOSED CHAOTIC LOCAL SEARCH BAT 
ALGORITHM (CLSBA) 

A proper tuning of the frequency of pulse emission fi in (8) 
plays a significant role in the generation of new promising 
position of the bats. This paper proposes a Chaotic Local 
Search-based Bat Algorithm (CLSBA) combining standard 
BA with chaotic sequences generated by the logistic map [17]. 
The use of chaos makes the frequency adaptive and more 
random in nature to balance the trade-off between global 
exploration and local exploitation. The chaotic behavior in fi 
follows the non-linear dynamics of logistic map. 

))(1()()1( tftftf iii −××=+ μ                  (14) 

Here µ is a control parameter. When we set µ=4 and fi(0)≠ 
{0, 0.25, 0.5, 0.75, 1} then the value of fi(t) distributes with 
proper randomness and irregularity. Moreover, the local 
search capability of the traditional BA being a crucial 
deterministic factor of its performance has been further 
improved here by adapting the step-size parameter ε . The 
value of ε  lies within the range [–1, 1] in the traditional BA 
while it varies within the range [–SF(t), SF(t)] in the proposed 
CLSBA with magnitude of the perturbation in (10) being 
guided by the scaling factor (SF). A lower value of SF(t) 
influences the local exploitation while a larger value of SF(t) 
accelerates the global search. Here, automatic tuning of SF(t) 
is performed using Rechenberg’s 1/5 mutation rule [18]. It 
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adapts SF(t) based on φ(m), the ratio of the number of 
successful replacements of the global best position with the 
newly discovered neighborhood position to the total number of 
local search carried out around the best position in m cycles of 
the algorithm. The adaptation rule of SF(t) is given below. 

⎪
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(m) if              tSF
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(m) if     tSF
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V. EXPERIMENTS AND RESULTS 

A. Simulation Results 
The performance of the proposed CLSBA is examined here 

with respect to minimizing 25 CEC-2005 recommended 
benchmark functions [21] of 50 dimensions each. Here, we 
compare CLSBA with traditional Bat Algorithm, Global Best 
Particle Swarm Optimization (g-best PSO) [22] and Harmony 
Search (HS) [23] algorithms. For each algorithm, the 
population size is kept at 50 and the maximum function 
evaluations (FEs) is set as 500000. We employ the best 
parametric set-up for all these four competitor algorithms as 
prescribed in their respective sources. For the proposed 
CLSBA algorithm, we have selected Ai(0)= 1, ri(0)= 0.5, fmin= 
1, fmax= 2, m=50 and SF(0)=1.  

The mean and standard deviation (within parenthesis) of the 
best-of-run values of 50 independent runs for each of the four 
algorithms are presented in Table-I. In the sixth column of 
Table-I we present the statistical significance level of the 
difference of the mean of the best two algorithms using t-test of 
25 samples. Note that here “+” indicates that the t value of 49 
degrees of freedom is significant at a 0.05 level of significance 
by two-tailed test, whereas “−” means the difference of mean is 
not statistically significant, and “NA” stands for not applicable, 
covering cases for which two or more algorithms achieve the 
best accuracy results. The best algorithm is marked in bold. A 
close scrutiny of the simulation results in Table-I reveals that 
CLSBA remains consistently superior to its competitors with 
respect to the quality of solutions outperforming its competitors 
over 19 cases out of 25 benchmark instances in a statistically 
significant manner. In two cases (f06 and f25), BA, which 
remains the second best algorithm outperforms CLSBA.  

B. Performance of CLSBA in PPI Prediction 

B.1. Experimental Set-up 
In each generation of CLSBA, the position of the bat is 

decoded to obtain the corresponding PPI network. In order to 
identify the PPI network, we need to maximize the expression 
in (5) which determines the best position of the bat. The raw 
data set consists of 118,363 interactions involving 6593 
Saccharomyces Cerevisiae proteins, of which 75,748 
interactions are unique. The dataset is pruned by removing 
unannotated protein, self-interactions and repeated interactions 
to obtain the final dataset which consists of 69,331 interaction 
pairs involving 5386 annotated proteins. For experiments, the 
Cartesian coordinates of the proteins in Saccharomyces 

Cerevisiae are obtained from Protein Data Bank 
[http://www.rcsb.org/pdb/home/home.do]. The phylogenetic 
profile of these proteins is generated with respect to ten 
species namely Saccharomyces Cerevisiae, Caenorhabdities 
Elegans, Aedens Aegypti, Anopheles Gambiae, Drosophila 
Melanogaster, Ciona Intestinalis, CionaSavignyi, Tetraodon 
Nigroviridis, Takifugu Rubripes and Oryziaslatipes using 
PhyloPat: Phylogenetic Patterns 
[http://www.cmbi.ru.nl/cdd/phylopat/52/]. The ASA is 
calculated using GETAREA 
[http://curie.utmb.edu/getarea.html].  The protein domain 
information is gathered from Pfam [24], which is a protein 
domain family database that contains multiple sequence 
alignments of common domain families. In total, there are 
4293 Pfam domains defined by the set of proteins in 
Saccharomyces Cerevisiae. The domain-domain interaction is 
obtained from DOMINE [25]. 

B.2. Competitor Algorithms and Parameter Settings 
We have compared our proposed method with other 

computational methods including Support Vector Machines 
(SVM) [26], Random Forests (RF) [27], Artificial Neural 
Networks (ANN) [28], Bayesian Classifiers (BC) [29], 
Maximum Likelihood Estimate (MLE) [15] and Phylogenetic 
Profile (PP) [30]. We have also compared the proposed 
CLSBA-based PPI prediction approach with other 
swarm/evolutionary algorithm based methods including 
traditional BA [16], PSO [22] and HS [23] algorithms for the 
same application. All the competitor algorithm-based 
simulations use same solution representation scheme (6) and 
fitness function (5) as in case of CLSBA-based approach. 

B.3. Performance Metrics 
True Positive (TP): It is the number of interactions that are 
predicted as interactions and are indeed true interactions. 
False Positive (FP): It is the number of predicted interactions 
that are in fact not real interactions. 
False Negative (FN): It is the number of protein pairs that are 
reported as not interacting but are indeed true interactions. 
True Negative (TN): It is the number of protein pairs that are 
correctly predicted not to interact. 

Based on the above four interconnection states, the 
performance of PPI prediction can be analyzed using following 
metrics: 
Sensitivity or Recall: It measures actual proportion of the 
positive interactions (TP) that is predicted correctly.  

FNTP
TPRecally Sensitivit
+

=)(
     

(16) 

Specificity: It measures actual proportion of the negative 
interactions (TN) that is predicted correctly. 

TNFP
TNySpecificit
+

=
  

(17) 

1049



Positive Likelihood Ratio (PLR): It is the probability of TP 
predictions in the PPI network with respect to the probability 
of the incorrectly predicted positive interactions i.e., FP.  

                         ySpecificit
ySensitivitPLR

−
=

1                              
(18) 

Negative Likelihood Ratio (NLR): It is the probability of the 
incorrectly predicted positive interactions i.e., FN predictions 
in the PPI network with respect to the probability of TN 
predictions. 

ySpecificit
ySensitivitNLR −= 1

   
(19) 

Precision or Positive Predicted Value (PPV): It measures the 
percentage of true positive interactions among all of the 
predicted positive interactions.  

FPTP
TPPPV ecisionPr
+

=)(
      

(20) 

Negative Predicted Value (NPV): It measures the percentage 
of true negative interactions among all of the predicted 
negative interactions.  

FNTN
TNNPV
+

=
   

(21) 

Accuracy: It is the overall correctness of the predictive model 
and is calculated as the sum of correct predictions divided by 
the total number of predictions. 

FNFPTNTP
TNTPAccuracy

+++
+=

          
(22) 

F1_score: An F1 score reaches its best value at 1 and worst 
score at 0. 

FPFNTP
TP

callReecisionPr
callReecisionPrscoreF

++×
×=

+
××=

2
22_1 (23) 

Mathews Correlation Coefficient (MCC): It is in essence a 
correlation coefficient between the observed and predicted 
binary classes (positive and negative interaction in case of 
PPI); it returns a value between −1 and +1.  

))()()((
)()(

FNTNFPTNFNTPFPTP
FNFPTNTPMCC

++++
×−×=

  
(24) 

Receiver Operating Characteristic (ROC) curve and Area 
Under Curve (AUC): The accuracy of an algorithm to 
distinguish between TP and FP prediction can be analyzed 
using ROC. It plots the Sensitivity against (1-Specificity) over 

a range of varying control parameter of an algorithm. The 
AUC is the measurement of the area under the ROC curve.  

B.4. Results and Performance Analysis 
To evaluate our proposed method we plot the ROC curves 

 for different PPI prediction algorithms in Fig. 1. The ROC for 
the evolutionary methods (CLSBA, BA, PSO, HS) is drawn for 
various iterations (ranging from 100000 to 500000) and for 
classification methods (SVM, RF, ANN, BC, MLE, PP), they 
are drawn for varying thresholds (ranging from 0.3 to 0.8). The 
closer the curve is to the upper left hand corner (i.e., the larger 
the area under curve), the better the predictive algorithm 
achieving a high value for both sensitivity and specificity. 
From Fig. 1 and Table-II, we note that the AUC for CLSBA 
method attains highest value than other competitor 
classification algorithms. 

A relative analysis of PPI prediction performance of ten 
algorithms based on Precision and Recall, can be obtained 
from Fig. 2. Here we consider a straight line passing through 
the origin making an angle of 450 with the Recall axis and 
intersecting all the curves. The distance of the intersection 
points on the curves (corresponding to different predictive 
algorithms) from the origin is used as a measure of the 
performance of the algorithm. The higher the measure, the 
better is the performance. We use “>=” symbol to represent the 
relative performance of any two algorithms and the ranking 
thus obtained is depicted as: 
CLSBA>=BA>=PSO>=HS>=SVM>=RF>=ANN>=BC>=ML
E>=PP. The mean values of the performance metrics over 50 
runs of each PPI prediction algorithm are plotted in Fig. 3 The 
mean and the standard deviation (within parenthesis) of the 
best-of-run values of the performance metrics for 25 
independent runs of each of the algorithm are presented in 
Table-III. We also use paired t-test to compare the mean of 
each performance metric produced by the best and the second 
best algorithm. In the last row of Table-III the statistical 
significance level of the difference of the mean of the best two 
algorithms is provided. A close inspection of Fig. 3 and Table-
III indicates that the performance of the proposed CLSBA-
based PPI prediction algorithm has remained consistently 
superior to that of the other competitor methods. 

In order to visualize the influence of different objectives (C1 
to C3) for predicting PPI, we have considered a sub-network of 
the PPI dataset of Saccharomyces Cerevisiae (Fig. 4) 
comprising 11 proteins, namely CDC73, CTR9, LEO1, RTF1, 
SPT16, PAF1, POB3, CKA2, CKA1, HTZ1 and GAL11. The 
three objectives (C1 to C3) are measured for one interacting 
protein-pair, CDC73–LEO1 and also for one non-interacting 
protein-pair, LEO1–GAL11 in Table-IV. In Table-IV-A, we 
see that C1 is highest for the interacting protein-pair. In Table-
IV-B a higher C2 value for the interacting pair (3283.68) 
signifies greater reduction in the ASA of the complex resulting 
in a strong binding between them. The consideration of 
domain similarity for PPI prediction is confirmed by a higher 
positive value of C3 (0.30757) for interacting proteins (Table-
IV-C). The predicted PPI for the same sub-network obtained 
using ten competitor algorithms are also pictorially 
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represented in Fig. 5. Comparing Fig. 5 with Fig. 4, it is 
apparent that CLSBA-based method outperforms other 
competitors in predicting correct PPIs. 
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Fig. 1.  ROC plot for different PPI prediction algorithms 
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Fig. 2.  PROC plot for different PPI prediction algorithms 
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Fig. 3.  Plot of performance metrics for different PPI prediction algorithms for 

50 runs 

 

TABLE II:  AREA UNDER CURVE OBTAINED FROM FIG. 1 

CLSBA BA PSO HS SVM RF ANN BC MLE PP 
0.888 
(0.19) 

0.885
(0.24)

0.871
(0.25)

0.868 
(0.25)

0.838 
(0.34) 

0.778 
(0.47) 

0.750 
(0.61) 

0.661
(0.81)

0.611
(0.84)

0.602 
(0.92)

TABLE I. COMPARISON OF  MEAN FITNESS FUNCTION VALUES OF 
CLSBA WITH OTHER COMPETITORS OVER 50 INDEPENDENT RUNS 

Funct
ion 
No. 

HS PSO BA CLSBA Statistical 
Significance

f 01 1.469e-010 
(2.05e-011)

5.684e-014 
(0.00e+000) 

0.000e+000 
(4.18e-014) 

0.000e+000 
(0.00e+000) NA 

f 02 4.124e-005 
(5.60e+002)

1.070e-006 
(1.63e-006) 

0.000e+000 
(9.91e-014) 

0.000e+000 
(0.00e+000) NA 

f 03 1.608e+007 
(2.96e+006)

8.320e+005 
(4.30e+005) 

1.047e+005 
(7.58e+004) 

0.000e+000 
(0.00e+000) + 

f 04 1.714e+004 
(2.32e+003)

9.705e+000 
(8.10e+000) 

5.895e-009 
(1.33e-008) 

0.000e+000 
(0.00e+000) + 

f 05 4.363e+003 
(4.68e+002)

1.385e+003 
(8.44e+002) 

6.656e+002 
(1.68e+002) 

2.273e-012 
(1.31e-012) + 

f 06 4.050e+001 
(1.80e+001)

2.179e+001 
(2.00e+001) 

1.352e+000 
(1.88e+000) 

4.783e-001 
(1.32e+000) – 

f07 1.712e-002 
(8.00e-005)

8.965e-003 
(6.88e-003) 

4.078e-001 
(6.69e-002) 

1.833e-001 
(5.16e-002) + 

f08 6.298e+001 
(1.85e+002)

2.094e+001 
(5.21e-002) 

2.036e+001 
(7.14e-002) 

2.036e+001 
(7.14e-002) NA 

f09 2.778e+002 
(1.59e+007)

1.089e+001 
(2.74e+001) 

1.985e+000 
(6.11e-001) 

0.000e+000 
(2.32e-014) + 

f10 2.275e+002 
(1.15e+003)

1.209e+002 
(1.97e+001) 

1.854e+001 
(5.83e+000) 

1.365e+001 
(1.50e+000) + 

f11 3.841e+001 
(6.25e+002)

2.867e+001 
(1.16e+000) 

6.427e+000 
(4.89e-001) 

5.735e+000 
(6.30e-001) + 

f12 8.870e+005 
(1.18e+005)

1.034e+003 
(1.43e+002) 

1.330e+002 
(2.34e+002) 

9.116e+001 
(2.79e+002) + 

f 13 4.961e-001 
(1.38e-001)

9.948e-003 
(7.12e-003) 

8.965e-003 
(6.88e-003) 

6.062e-000 
(5.15e-002) + 

f14 1.409e+001 
(1.12e-001)

1.413e+001 
(7.26e-002) 

1.387e+001 
(1.13e-001) 

1.011e+001 
(2.23e-001) + 

f 15 2.094e+001 
(5.04e-002)

2.112e+001 
(4.27e-002) 

2.094e+001 
(5.21e-002) 

2.018e+001 
(7.18e-002) + 

f 16 9.045e+001 
(1.15e+000)

1.416e+001 
(8.33e+001) 

1.089e+001 
(2.74e+001) 

7.404e+000 
(2.28e+000) + 

f 17 1.595e+002 
(1.24e+001)

1.828e+002 
(7.32e+001) 

1.209e+002 
(1.97e+001) 

6.938e+000 
(1.06e+000) + 

f 18 7.181e+001 
(1.51+000)

2.828e+001 
(1.66e+000) 

2.867e+001 
(1.16e+000) 

6.670e+000 
(2.09e+000) + 

f 19 1.157e+005 
(1.35e+004)

4.856e+006 
(5.22e+005) 

8.870e+005 
(1.18e+005) 

5.393e+003 
(4.25e+003) + 

f 20 2.443e+001 
(2.38e+000)

1.166e+001 
(1.83e+000) 

4.090e+000 
(2.91e-001) 

1.180e+000 
(2.70e-001) + 

f 21 1.304e+001 
(1.42e-001)

2.303e+001 
(2.09e-001) 

1.311e+001 
(2.23e-001) 

2.880e+000 
(1.38e-001) + 

f 22 1.219e+002 
(1.88e+001)

9.490e+001 
(2.77e+001) 

5.008e+001 
(7.30e+001) 

4.292e+001 
(1.12e+001) – 

f 23 2.012e+002 
(1.46e+001)

1.512e+002 
(5.87e+001) 

1.457e+002 
(1.93e+001) 

1.128e+002 
(1.31e+001) + 

f 24 2.733e+002 
(6.79e+001)

2.672e+002 
(2.53e+001) 

2.178e+002 
(8.04e+001) 

1.340e+002 
(1.84e+001) + 

f 25 8.478e+002 
(2.07e+000)

8.460e+002 
(2.12e+001) 

7.163e+002 
(2.46e-001) 

7.633e+002 
(1.77e+002) – 
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Fig. 4.  Original sub-network in yeast PPI 

   
                      (a)                     (b)                                                  (c)                                            (d)                                            (e)   

 
                      (f)                     (g)                                                  (h)                                            (i)                                            (j) 

Fig. 5.  Sub-network obtained by PPI prediction algorithms: (a) CLASBA (b) BA (c) PSO (d) HS (e) SVM (f) RF (g) ANN (h) BC (i) MLE and (j) PP 

TABLE III.  COMPARISON OF DIFFERENT PPI PREDICTION ALGORITHMS FOR 25 RUNS 

Algorithms Sensitivity Specificity PLR NLR Precision NPV Accuracy F1_score MCC 

CLSBA 0.8503 
(0.196) 

0.8782 
(0.285) 

5.6800 
(0.178)

0.1761 
(0.186)

0.8833 
(0.011)

0.7877 
(0.167)

0.8324 
(0.162) 

0.8665 
(0.078) 

0.8866 
(0.004)

BA 0.7532 
(0.243) 

0.8503 
(0.351) 

3.0519 
(0.193) 

0.3277 
(0.382) 

0.8415 
(0.053) 

0.7085 
(0.327) 

0.8324 
(0.165) 

0.7949 
(0.083) 

0.8630 
(0.084) 

PSO 0.7701 
(0.251) 

0.8204 
(0.380) 

3.3497 
(0.259) 

0.2985 
(0.438) 

0.8026 
(0.075) 

0.6904 
(0.438) 

0.8198 
(0.262) 

0.7860 
(0.152) 

0.8172 
(0.106) 

HS 0.7306 
(0.254) 

0.8159 
(0.549) 

2.7120 
(0.389) 

0.3687 
(0.445) 

0.7998 
(0.129) 

0.6691 
(0.514) 

0.8047 
(0.311) 

0.7636 
(0.228) 

0.8005 
(0.259) 

SVM 0.6983 
(0.349) 

0.7934 
(0.567) 

2.3146 
(0.495) 

0.4320 
(0.489) 

0.7742 
(0.337) 

0.6550 
(0.571) 

0.7835 
(0.528) 

0.7343 
(0.442) 

0.7501 
(0.399) 

RF 0.6182 
(0.473) 

0.7863 
(0.585) 

1.6192 
(0.561) 

0.6176 
(0.646) 

0.7615 
(0.469) 

0.6299 
(0.668) 

0.7312 
(0.601) 

0.6824 
(0.450) 

0.7366 
(0.774) 

ANN 0.7340 
(0.616) 

0.7866 
(0.753) 

2.7594 
(0.577) 

0.3624 
(0.709) 

0.6027 
(0.530) 

0.5967 
(0.733) 

0.7178 
(0.654) 

0.6619 
(0.538) 

0.6540 
(0.800) 

BC 0.7136 
(0.814) 

0.6990 
(0.757) 

2.4916 
(0.632) 

0.4013 
(0.754) 

0.5858 
(0.568) 

0.5911 
(0.762) 

0.7146 
(0.689) 

0.6434 
(0.825) 

0.6542 
(0.817) 

MLE 0.6713 
(0.840) 

0.6269 
(0.830) 

2.0423 
(0.644) 

0.4896 
(0.765) 

0.5817 
(0.779) 

0.5473 
(0.849) 

0.6955 
(0.748) 

0.6233 
(0.913) 

0.6191 
(0.868) 

PP 0.6410 
(0.929) 

0.5815 
(0.917) 

1.7855 
(0.651) 

0.5601 
(0.792) 

0.5804 
(0.934) 

0.5160 
(0.909) 

0.6313 
(0.794) 

0.6092 
(0.996) 

0.6151 
(0.961) 

Statistical Significance + + + + + + NA + + 

 

VI. CONCLUSION 
In this paper, a novel method based on CLSBA is used to 

predict PPI Network. An important aspect of our approach is 
the way we combine various criteria of PPI to formulate the 
objective function. We evaluate our result and compare them 
with several existing methods. The results reveal that the 

proposed method outperforms its competitors in predicting 
PPIs with respect to ten performance metrics. 

ACKNOWLEDGMENT 
Funding by Council of Scientific and Industrial Research 

(CSIR) (for awarding Senior Research Fellowship to the 
second author) and UGC (for UPE-II program) are gratefully 
acknowledged for the present work. 

1052



TABLE IV.  CASE STUDY ON FITNESS FUNCTION VALUES FOR INTERACTING 
AND NON-INTERACTING PROTEIN PAIRS 

TABLE IV-A:  SIMILARITY OF PHYLOGENETIC PROFILES 

Phylogenetic Profiles Of Interacting Proteins 
 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 

CDC73 1 1 1 1 1 1 0 1 1 0 
LEO1 1 1 1 1 1 1 1 1 1 1 

C1= 0.89442 
Phylogenetic Profiles Of Non-interacting Proteins 

 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 
LEO1 1 1 1 1 1 1 1 1 1 1 

GAL11 1 0 0 0 0 0 0 0 0 0 
C1= 0.31623 

TABLE IV-B:  REDUCTION IN ACCESSIBLE SOLVENT AREA 

Accessible Solvent Area of Interacting Protein Complex 
CDC73 9576.88 
LEO1 9751.94 

CDC73-LEO1 15046.36 
C2= 4282.46 

Accessible Solvent Area of Non-interacting Protein Complex 
LEO1 9056.16 

GAL11 9576.88 
LEO1-GAL11 15349.36 

C2= 3283.68 

TABLE IV-C:  SIMILARITY OF DOMAIN INTERACTION PROFILES 

Domain-Domain Interaction of Interacting Proteins 

Proteins Unique 
Domains Interacting Domains 

CDC73 PF05179 PF00069, PF00923, PF01214, PF03985, PF04004 

LEO1 PF04004 PF00999, PF03985, PF00324, PF04037, PF04046, 
PF05179 

C3= 0.30757 
Domain-Domain Interaction of Non-interacting Proteins 

Proteins Unique 
Domains Interacting Domains 

LEO1 PF04004 PF00999, PF03985, PF00324, PF04037, PF04046, 
PF05179 

GAL11 PF05397 
PF00125, PF02002, PF02186, PF03902, PF04934, 
PF05001, PF05669, PF05983, PF07544, PF08601, 

PF08633 
C3= -0.00214 
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