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Abstract—In this paper, we propose a clustering based mul-
tiobjective evolutionary algorithm (CLUMOEA) to deal with
the multiobjective optimization problems with irregular Pareto
front shapes. CLUMOEA uses a k-means clustering method to
discover the population structure by partitioning the solutions
into several clusters, and it only allows the solutions in the
same cluster to do the reproduction. To reduce the computational
cost and balance the exploration and exploitation, the clustering
process and evolutionary process are integrated together and
they are performed simultaneously. In addition to the clustering,
CLUMOEA also uses a distance tournament selection to choose
the more similar mating solutions to accelerate the convergence.
Besides, a cosine nondominated selection method considering the
location and distance information of the solutions are further
presented to construct the final population with good diversity.
The experimental results show that, compared with some state-
of-the-art algorithms, CLUMOEA has significant advantages on
dealing with the given test problems with irregular Pareto front
shapes.

I. INTRODUCTION

In real world, many optimization problems have several
objectives, and these objectives are usually conflicting. This
kind of optimization problems are called multiobjective opti-
mization problems (MOPs). Different from the scalar-objective
optimization problems, it is impossible to find a solution to
optimize all the objectives at the same time for a MOP. Instead,
a set of tradeoff solutions (Pareto optimal solutions) among
the different objectives, named Pareto set (PS) in the solution
space and Pareto front (PF) in the objective space, are of
interests [1], [2]. Obviously, for an MOP, there exists plenty
of Pareto optimal solutions. However, in the solving process,
we do not hope to obtain all of them, but limited number
of representative ones, which converge to the PF as close as
possible and distribute along the PF as uniforming as possible.

Evolutionary algorithms (EAs) play an important role in
dealing with MOPs, and they have the potential to get multiple
nondominated solutions to approximate the PFs in a single
run. For this reason, multiobjective optimization evolutionary
algorithms (MOEAs) have attracted more and more attention
in both scientific research and engineering applications [3],
[4], [5], [6], [8], [9]. In the evolutionary multiobjective op-
timization community, there are three kinds of well-known
algorithms, i.e., indicator based MOEAs [7], dominance based
MOEAs [5] and decomposition based MOEAs (MOEAs/D)
[8], [9]. Usually, if the objective spaces of MOPs are given,
and the PF shapes are close to a quarter of circle or spherical

surface, the MOEA/D has significant advantages to deal with
them. However, for the problems, whose objective spaces are
unknown and the PF shapes are irregular, MOEA/D may not
work well. This is due to the fact that, MOEA/D uses a set of
uniformly distributed weight vectors to guide the solutions to
approach to the PF. The location that each vector point projects
to the PF is the solution’s final convergence location guided
by that vector. Obviously, when the PF shapes are similar to a
quarter of circle or spherical surface, the weight vector points
will have uniformly distributed projection locations, which
means that the final solutions will have a uniform distribution
on the PF. On the other hand, if the objective space of a
MOP is unknown or its PF shape is irregular, it is hard to
set the uniform weight vectors, and the projection points are
uneven, which will lead the solutions to converge to undesired
regions. To deal with this drawback, a dynamic weight design
method based on the projection of the current nondominated
solutions and equidistant interpolation was proposed in [15].
This strategy, however, may lead to additional computational
cost.

According to the above analysis, we can see that, the
weight vector is a key point for an MOEA/D, and it is
highly related to the properties of the problems to tackle. The
dominance based MOEAs do not need weight vectors to guide
the convergence, and compared with MOEA/D, they might
be more suitable to tackle the MOPs with unknown objective
space or irregular PF shapes in a sense. Therefore, in this paper,
we focus on dominance and propose a clustering based mul-
tiobjective optimization evolutionary algorithm (CLUMOEA),
to deal with this kind of MOPs.

CLUMOEA is an approach of combining a machine learn-
ing (ML) method and an EA. Its main characteristic is that,
an individual in the EA is regarded as a training example; the
population forms a training data set, and the ML is used to ex-
tract population information and to guide the EA search. This
combination is promising to improve the performance of the
EA in a sense. In our previous work [11], we have applied a k-
means clustering method [12] to EA and proposed a clustering
based mating selection (CMS). The CMS was adopted in two
scalar-objective EAs and it speeded up the convergence and
improved the quality of final solutions dramatically. Different
from the previous work, in this paper, our attention is paid on
the the combination of a clustering method and an MOEA.

In CLUMOEA, a clustering based distance tournament
mating selection (CDTMS) operator is designed. Similar to the
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CMS, CDTMS uses a k-means clustering method to partition
the population into several classes in each generation, and only
the solutions in the same class are allowed to mate with each
other. In the early stages, the classes might not be accurate, and
this is suitable for exploration; while in the latter stages, the
classes will be expected to be accurate, and this is suitable for
exploitation. Different from CMS, CDTMS develops a distance
tournament selection to select mating parents in the same class.
The difference between the distance tournament selection and
the well-known binary tournament selection [10] is that, when
two individuals are competing to become a parent, the one
with a smaller Euclidean distance to the current individual will
become the winner. In addition to CDTMS, for CLUMOEA,
a cosine crowding measurement based nondominated solution
selection is proposed to improve its performance. Seven MOPs
with irregular PS shapes are chosen to construct a test suite;
and the representatives of dominance based MOEAs and
decomposition based MOEAs, NSGA-II [5] and MOEA/D-
DE [9], are utilized as the comparison algorithms to show the
advantages of CLUMOEA.

The rest of the paper is organized as follows. Section II
presents the proposed CDTMS including the k-means clus-
tering method and CDTMS procedures. Section III intro-
duces the cosine crowding measurement based selection for
nondominated solutions. Section IV depicts the CLUMOEA
procedures. Section V compares CLUMOEA with MOEA/D-
DE and NSGA-II based on the constructed test suite, and
analyzes the performance. Finally, the paper is concluded in
Section VI.

II. CLUSTERING BASED DISTANCE TOURNAMENT
MATING SELECTION

This section introduces the CDTMS in details including
the k-means clustering method which is used in this paper and
the concrete procedures of CDTMS.

A. K-means Clustering Method

As stated before, CDTMS depends on the k-means clus-
tering method to locate the population individuals into several
classes. Suppose there are N data points x1, x2, . . . , xN that
need to be partitioned into K clusters. The k-means algorithm
works as follows.

Step 1 (Initialization) Initialize the cluster centers
m1,m2, . . . ,mK , and set K empty clusters
C1, C2, . . . , CK .

Step 2 (Assignment) For each data point xi, (i =
1, 2, . . . , N), assign it to the k-th cluster Ck, which
satisfies

k = arg min
j=1,2,...,K

dis(xi,mj),

where dis(a, b) measures the distance between two
points a and b.

Step 3 (Update) For each cluster Ck, (k = 1, 2, . . . ,K),
update its center as

mk =

∣

∣

∣

∣

1

Ck

∣

∣

∣

∣

∑

x∈Ck

x.

Step 4 If the stop condition is not satisfied, go to Step
2; otherwise, terminate and return the partition
C1, C2, . . . , CK .

It should be noted that (a) there are many ways to initialize
the cluster centers in Step 1, and in this paper, we randomly
choose K training points as the cluster centers; (b) we use the
Euclidean distance in Step 2 to measure the similarity among
points; (c) the k-means iteration stops, once the partition does
not change in two consecutive iterations.

B. Clustering Based Distance Tournament Mating Selection

From above description, we can see that the k-means
method has heavy computational cost on the distance cal-
culations and similarity comparisons. Especially, the k-means
technique also contains an iteration process as an EA does, if
it is called in each generation, which makes the computational
cost even severe. In order to apply the k-means method with
a low cost, the idea adopted here is to combine the clustering
iteration process and the MOEA evolutionary process together.
In each generation of CLUMOEA, the k-means method does
the clustering operation on the population for only one itera-
tion, then the population individuals are set into several clusters
according to the operation results. Based on the population
partition, only the solutions in the same cluster are selected to
generate new trial solutions.

Mate selection always works with the mating mechanism.
In CLUMOEA, differential evolution (DE) [13] is chosen as
the reproduction method, which requires three mating solutions
to produce a new solution. In our algorithm, the DE operations
are performed for each solution, which means that, each
individual will alternatively become the current individual to
take part in the DE, and the other two individuals mating with
current one are selected from the whole population. Therefore,
the task of CDTMS is to choose proper mating solutions for
each solution and assist their DE crossover .

In one generation, the CDTMS procedures are as follows:

Step 1 Perform a clustering operation with one iteration on
population P = (x1, x2, . . . , xN ), and update the
clustering model.

Step 2 Based on the current clustering model, partition the
population P into K clusters C1, C2, . . . , CK .

Step 3 For each solution x ∈ Ck(k = 1, 2, . . . ,K),

Step 3.1 Select two different mating solutions
u1, u2 from Ck by using a distance tour-
nament selection (DTS) method.

Step 3.2 x, u1, u2 make up a mating group
(MG).

Step 3.3 Perform the DE operation on the MG,
and generate a new trial solution.

We have several comments on above CDTMS procedures.

1) In Step 2, if there is an empty cluster, the cluster will
be discarded.
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2) In Step 3.1, if x ∈ Ck, and the size of Ck is less than
3, for x, the other two mating solutions are selected
from the group composed of n closest solutions to it,
n = 20 in this paper.

3) In Step 3.1, the method of using the DTS to choose
a mating solution u1 for solution x, where x belongs
to cluster Ck, obeys following steps.

First Randomly choose two solutions y1, y2
from Ck.

Second Determine the distances of y1 and y2 to
x, d1 and d2, which have been calculated
in clustering process.

Last If d1 < d2, y1 is the winner, and u1 ←
y1; or y1 wins, and u1 ← y2.

With respect to CDTMS, the following analysis is made.

1) In CDTMS, in each generation of an EA, the k-means
clustering process is not iteratively implemented, and
instead it iterates only once. The iterations of the
clustering and the evolutions of the EA are performed
simultaneously. In this way, the computational cost of
the clustering calculations is reduced greatly.

2) Usually, for an EA, in its early stages, we hope that
the mating solutions are very dissimilar so that it
can generate the solutions with big differences and
maintain the population diversity well; but in the later
convergence stages, we also expect that the mating
solutions have a certain similarity. This is because
that mating among the similar solutions is helpful to
produce high quality solutions and to accelerate the
convergence. In CDTMS, since it only does a rough
clustering operation, in the early stages of the EA,
the solutions assigned into the same cluster are quite
different; and after converging to the later stages, the
solutions in the same cluster are also similar. Thus,
in a sense, the CDTMS selects the solutions in the
same cluster to mate, and it can promote the EA to
meet our requirements and to balance the exploration
and exploitation.

3) A distance tournament selection method is designed
in CDTMS, which aims to guide similar solutions to
mate. In the early stages, since the differences among
the solutions in the same cluster are very large, and
the DTS does not have a significant effect; however,
in the later stages, the candidate mating solutions in
the same cluster have a high similarity, and the DTS
guides the similar solutions to mate further, which
is quite effective to improve the solution quality.
Therefore DTS can accelerate the convergence speed
greatly.

III. COSINE CROWDING MEASUREMENT BASED
NONDOMINATED SOLUTION SELECTION

It is well known that the selection for nondominated
solutions is very important for a dominance based MOEA;
it directly determines the convergence and distribution of
the final nondominated solutions. To our best knowledge,
the popular nondominated solution selection method is the

fast nondominated sorting approach proposed by Deb in his
NSGA-II algorithm [5]. In NSGA-II, each solution is first as-
signed a rank according to its dominance relationship with the
others; next for each rank, it calculates the crowding distances
of the solutions belonging to it; finally, the solutions with lower
ranks and larger crowding distances are selected into the next
generations. As a matter of fact, the NSGA-II method has
its drawbacks. In the crowding distance measurement, it just
considers the distances among the adjacent solutions, and the
location information of each solution is not considered, which
is not beneficial to obtain uniformly distributed solutions.
Besides, the crowding assessments are limited within each
rank, and the distance value of each solution represents its
crowding degree with the solutions in the same rank, which
can not reflect its actual crowding status with the solutions
in the whole population. Thus, the selected solutions with
large crowding distances might be not desired. In order to
improve the performance of nondominated solution selection,
in CLUMOEA, we propose a cosine crowding measurement
based nondominated solution selection (CNDS) method. The
basic idea of CNDS is that a cosine crowding measurement
involving the location information is appied to calculate the
distances among the solutions, and the crowding assessments
are carried out from the perspective of the whole population so
that the final nondominated solutions we obtain are as diverse
and uniform as possible.

A. Cosine Crowding Measurement

The cosine crowding measurement (cCM) is a new calcu-
lation method for the crowding distances of the solutions. It is
designed in our previous work [14]. To calculate the crowding
degree of a solution, the basic idea of cCM is utilizing a cosine
function to combine its location and distance information to
the adjacent solutions and getting a comprehensive crowding
degree. For a MOP F = (f1, . . . , ft, . . . , fT ), there are N
solutions; FV is the set of their objective values. The pseudo-
code of using the cCM to calculate the crowding distances of
the solutions are shown in Algorithm 1.

Algorithm 1 Pseudo-code of a cosine crowding measurement
1: proc CosineCrowdingMeasurement(FV )
2: CD = zeros(N ,1);
3: for t = 1 : T do
4: cd← zeros(N ,1);
5: [s, p]← sort(FV[t]);
6: for i = 1 : N do
7: if i == 1 or i == N then
8: cd(1)← T ;
9: cd(N)← T ;

10: else
11: m← (s(i+ 1) + s(i− 1))/2;
12: d← s(i+ 1)− s(i− 1);
13: r ← (s(i)−m)/(d/2);
14: cd(i)← cos(r × pi/2)× d/(s(N)− s(1));
15: end if
16: end for
17: CD ← CD + cd(p, 1);
18: end for
19: end proc CosineCrowdingMeasurement

When assessing the crowding degree of a solution, cCM
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calculates its crowding distance along each objective, and sums
them to get the total result. In Algorithm 1, CD is the set of
the total crowding distance values of all the solutions. T is the
MOP objective number. FV[t] denotes the set of the objective
value of each solution along the tth objective. Along the tth
objective, for the ith solution, Line 11 determines the central
location of the interval constructed by two adjacent solutions;
Line 12 measures the interval length; Line 13 gives the degree
that the ith solution drifts from the central location, and Line
14 calculates the crowding distance. From the calculation, we
can see that cCM sufficiently involves the distance and location
information to assess the crowding degree. It is very helpful
to obtain the solutions with good uniformity and diversity.
Algorithm 1 only gives the main procedures of cCM, and the
other details can be found in Ref. [14].

B. CNDS Procedures

In the nondominated solution selection method in NSGA-
II, the crowding distance of a solution only reflects its crowd-
ing status with the solutions in the same rank, which does not
consider the crowding degree from a perspective of the whole
population. It is not beneficial to obtain the final uniformly
distributed nondominated solutions. To overcome this short-
coming, we propose an improved mechanism in CNDS. The
procedures of selecting N solutions from P , a population with
size 2N , are as follows:

Step 1 Assign a rank for each solution in population P
according to the rank assignment method in NSGA-
II, and the nondominated solutions are set in the first
rank.

Step 2 Construct an auxiliary empty population P ′; add the
solutions in rank 1 into P ′, and measure the size of P ′
as N ′. If N ′ ≥ N , terminate the addition and output
P ′; otherwise, continue to add the solutions of rank 2
into P ′ and start another size measurement. Perform
such additions repeatedly until N ′ ≥ N .

Step 3 Judge whether N ′ > N , if yes, repeat the following
deletions until N ′ == N ; otherwise, stop the opera-
tion, and obtain the final population.
∙ regard the solutions in population P ′ as a

whole to calculate their crowding distances
using the above cosine crowding measure-
ment method;

∙ delete the solution with the highest rank and
the minimum crowding degree, and obtain a
new P ′.

From the procedures, we can see that CNDS can preserve
the solutions in low ranks; and it maintains the diversity
of the selected solutions from the perspective of the whole
population by deleting the worse solutions one by one; besides,
it can obtain the uniformly distributed solutions via cosine
crowding measurement. According to our analysis, CNDS is
well capable of selecting desired solutions.

IV. ALGORITHM FRAMEWORK OF CLUMOEA

Integrating the CDTMS and CNDS mechanisms, we give
the procedures of CLUMOEA in this section as follows.

Step 1 Randomly initialize a population P =
(x1, x2, . . . , xN ), and set the generation counter
g = 0.

Step 2 If mod(g,G) = 0, initialize the cluster centers
m1,m2, . . . ,mK .

Step 3 Based on the cluster centers defined, apply CDTMS
and DE operations to each solution of population P ,
generate a new population Po, and update the cluster
centers m1,m2, . . . ,mK .

Step 4 Perform a polynomial mutation [19] on Po.
Step 5 Combine P and Po to get a union population Pu.
Step 6 Select N solutions from Pu by CNDS to form the

population of next generation P .
Step 7 If g is less than maxGens, set g = g + 1, and go

to Step 2; otherwise, terminate and output the final
population P as the approximation of PF.

We provide more details of simulations as follows.

- In Step 1, for a MOP with two and three objectives,
the population size N is defined as 100 and 300,
respectively.

- In Step 2, the cluster centers are re-initialized every
G generations, and G = 20. It is aimed at prevent
the clustering process trapped in local optima. The
cluster number used in CLUMOEA is K = 10.

- In Step 3, two control parameters of DE are F = 0.5
and CR = 1, respectively.

- In Step 4, the mutation probability is Pm = 1/d, and
d is the variable dimension of the MOPs to be solved.

- In Step 7, maxGens denotes the maximum evolu-
tionary generations, and maxGens = 1000.

V. COMPARISON WITH OTHER MOEAS

This section compares CLUMOEA with other MOEAs to
assess its performance. The comparison algorithms chosen are
MOEA/D-DE [9] and NSGA-II [5]. All the parameters of these
two algorithms used here are the same as the original literatures
except for the population sizes and maximum evolutionary
generations. In order to have a fair comparison, the population
sizes of these three MOEAs are all 100 for the MOPs with
two objectives and 300 for the three objective MOPs. 1000 is
set as the maximum evolutionary generations.

A. Test Suite

To show the advantages of CLUMOEA, we select seven
test MOPs with irregular PS shapes from [15][16][17] to con-
struct a test suite in Table II. All the problems are minimization
problems.

B. Performance Metric

The performance of MOEAs for a problem is often eval-
uated from two aspects, convergence and diversity. we use
the inverted generational distance (IGD) metric [18] to assess
them. Let P ∗ be a set of uniformly distributed Pareto optimal
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TABLE I. TEST MOPS WITH IRREGULAR PS SHAPES

MOPs n Objective functions Variable bounds

MOP1 10

{

f1(x) = (1 + g)x1

f2(x) = (1 + g)(2− x1 − sign(cos(2�x1)))
[0, 1]× [−1, 1]n−1

where
g =

∑n

i=2
(xi − cos(2�x1 +

iπ
10
))2.

MOP2 10

{

f1(x) = (1 + g)(1− cos(πx1

2
))

f2(x) = (1 + g)(10− 10 sin(πx1

2
))

[0, 1]× [−1, 1]n−1

it has the same g expression with MOP1

MOP3 10







f1(x) = (1 + g)x1

f2(x) = (1 + g)

{

1− 19x1 if x1 ≤ 0.05
1

19
− x1

19
else

[0, 1]× [−1, 1]n−1

it has the same g expression with MOP1

MOP4 10

{

f1(x) = (1 + g)x1

f2(x) = (1 + g)(2− 2x0.5
1 cos(3�x2

1)
2)

[0, 1]× [−1, 1]n−1

it has the same g expression with MOP1

MOP5 30

{

f1(x) = x1

f2(x) = 1−
√

f1
g
− f1

g
sin(10�f1)

[0, 1]n

where
g = 1 + 9

∑n

i=2
xi

MOP6 12







f1(x) = cos(πx1

2
) cos(π(1+2gx2)

4+4g
)(1 + g)

f2(x) = cos(πx1

2
) sin(π(1+2gx2)

4+4g
)(1 + g)

f3(x) = sin(πx1

2
)(1 + g)

[0, 1]n

where
g =

∑n

i=3
(xi − 0.5)2

MOP7 12







f1(x) = cos(πx1

2
) cos(π(1+2gx2)

4+4g
)(1 + g)

f2(x) = cos(πx1

2
) sin(π(1+2gx2)

4+4g
)(1 + g)

f3(x) = sin(πx1

2
)(1 + g)

[0, 1]n

where
g =

∑n

i=3
x0.1
i

TABLE II. THE MEAN AND MINIMUM VALUES OF CLUMOEA, MOEA/D-DE AND NSGA-II IN 20 INDEPENDENT RUNS FOR EACH TEST PROBLEM

IGD-values mean minimum
Problems CLUMOEA MOEA/D-DE NSGA-II CLUMOEA MOEA/D-DE NSGA-II

MOP1 0.002214 0.003713 0.702780 0.00216153 0.00371350 0.70278020
MOP2 0.033620 0.436478 5.001584 0.03334574 0.43647814 5.00158370
MOP3 0.005100 0.018697 0.239214 0.00509396 0.01869650 0.23921392
MOP4 0.005753 0.014467 0.925396 0.00572749 0.01446658 0.92539580
MOP5 0.005035 0.010665 0.005370 0.00473140 0.01066528 0.00536952
MOP6 0.001772 0.007349 0.001829 0.00158892 0.00734901 0.00182897
MOP7 0.001403 0.007191 0.142951 0.00140189 0.00719133 0.14295100

points in the true PF. Let P be an nondominated front of the
problems. The IGD metric is defined as

IGD(P ∗, P ) =

∑

υ∈P∗ d(υ, P )

∣P ∗∣
where d(υ, P ) is a minimum distance between υ and any point
in P , and ∣P ∗∣ is the cardinality of P ∗. A lower IGD value
is desirable. To get a low value, P must be close to the true
PF, and cannot miss any part of the whole PF.

C. Results

To learn about the statistical performance of CLUMOEA,
we run CLUMOEA, MOEA/D-DE, and NSGA-II to solve each
test problem independently for 20 times and get 20 final IGD

values. The mean and minimum values are shown in Table II.
The values with dark gray and light gray backgrounds are the
best and second best ones, respectively.

In order to observe the IGD variation along with the
evolutions, we plot the variation curves in Fig.1. In the
evolutionary processes, the IGD values are calculated every
50 generations, and since each algorithm has 20 independent
runs for each test problem, in the curves, each point is the
mean of these 20 metric values.

Among the 20 runs while the algorithms deal with each
MOP, the final PF approximations with the lowest IGD value
are also plotted in Fig. 2 and Fig. 3.

It is clear from Table II that, for every test problem, among
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Fig. 1. The variation curves of IGD values in the processes that CLUMOEA, MOEA/D-DE and NSGA-II solve seven MOPs in 20 times.
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Fig. 2. The PF approximations with the lowest IGD values found by CLUMOEA, MOEA/D-DE and NSGA-II in 20 runs in the search space on MOP1-MOP3
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Fig. 3. The PF approximations with the lowest IGD values found by CLUMOEA, MOEA/D-DE and NSGA-II in 20 runs in the search space on MOP4-MOP7

the 20 IGD values, CLUMOEA always has the best mean
and minimum values. Especially for problems MOP2, MOP3,
MOP4, MOP7, the advantages of CLUMOEA are obvious.
These results confirm that CLUMOEA is effective for the
MOPs with irregular PS shapes than MOEA/D-DE and NSGA-
II.

In Fig. 1, we can see that the IGD values of CLUMOEA
decrease rapidly to reach the locations lower than those of
MOEA/D-DE and NSGA-II; it indicates that, in the evolu-
tionary processes, CLUMOEA does not fall into the local
optimal points, it promotes the populations to approximate the
PFs and to get the final populations with good convergence
and diversity efficiently. The above phenomenon reveals that
CLUMOEA has a rapid convergence and is helpful to balance
the exploration and exploitation. Regarding the IGD curves of
NSGA-II, for MOP1, MOP2, MOP3, MOP4, NSGA-II seems

to get stuck in the premature convergence as shown in Fig. 2.

Figure. 2 and 3 show that, compared with MOEA/D-DE
and NSGA-II, along with the PFs of the test problems, the
final populations obtained by CLUMOEA spread more widely
and uniformly.

VI. CONCLUSIONS

This paper has proposed a clustering based multiobjective
optimization evolutionary algorithm, called CLUMOEA, to
deal with the multiobjective optimization problems with ir-
regular Pareto front shapes. ClUMOEA is a dominance based
multiobjective evolutionary algorithm. The idea is using the
machine learning techniques to guide its search. In CLU-
MOEA, a k-means cluster method is applied to partition the
population of the MOEA into several clusters, and the solutions
in the same cluster are allowed to perform the reproduction; in
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the evolutionary process, CLUMOEA evolves one time and the
k-means algorithm also performs only an iteration to reduce
the computational cost and maintain the balance between ex-
ploration and exploitation. In addition to the clustering method,
CLUMOEA also uses a distance tournament selection method
to choose the more similar mating solutions to accelerate
convergence, and a cosine nondominated selection method
including the location and distance information of the solutions
is further presented to select the final solutions with good
diversity. The experimental results suggested that, compared
with other algorithms, CLUMOEA has a faster convergence
speed, and the obtained final solutions distribute more widely
and uniformly.

The work aims to provide a new approach of utilizing
machine learning to guide the search in MOEAs. In the future
work, the k-means cluster method can be replaced by other
machine learning algorithms to discover the structures of the
populations of MOEAs, and the proposed algorithm needs
to be applied into the test problems with more complicated
PS and PF shapes to verify its performance. Besides, other
machine learning strategies of improving the algorithm per-
formance are also worth studying.
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