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Abstract— The paper aims at designing new strategies to 
extend traditional Non-dominated Sorting Bee Colony 
algorithm to proficiently obtain Pareto-optimal solutions in 
presence of noise on the fitness landscapes. The first strategy, 
referred to as adaptive selection of sample-size, is employed to 
balance the trade-off between accurate fitness estimate and 
computational complexity. The second strategy is concerned 
with determining statistical expectation, instead of conventional 
averaging of fitness-samples as the measure of fitness of the 
trial solutions. The third strategy attempts to extend 
Goldberg’s approach to examine possible placement of a 
slightly inferior solution in the optimal Pareto front using a 
more statistically viable comparator. Experiments undertaken 
to study the performance of the extended algorithm reveal that 
the extended algorithm outperforms its competitors with 
respect to four performance metrics, when examined on a test-
suite of 23 standard benchmarks with additive noise of three 
statistical distributions. 

Keywords— multi-objective optimization; artificial bee 
colony; noise-handling; non-dominated sorting. 

I. INTRODUCTION  
The fitness functions in a multi-objective optimization 

(MOO) capture the mathematical relationship between the 
input (measurement) and the output (estimator) variables, 
characterizing functionality of a physical system. Hence the 
objectives in a MOO problem are functions of both 
measurement and estimator variables. However, the 
measurement variables of a real-world problem often are 
contaminated with noise because of noisy ambience, poor 
sensor characteristics and/or faulty measurement procedure. 
It in turn persuades noise in the trial solutions in a MOO 
attempting to optimize the noisy objectives. Consequently, an 
infiltration of noise in the measurement variables induces 
inaccuracies in the estimator variables or fitness functions or 
both. Hence in noisy fitness landscape, a quality trial solution 
may be deceived due to its poor (noisy) fitness estimates and 
may be discarded from the optimal Pareto front, while a 
deceptive solution with illusive good fitness may be 
promoted to the next generation. The paper addresses the 
issues of uncertainty management (regarding selection of 
qualitative trial solutions) in MOO in presence of noise. 

“Sampling” is one of the most popular approaches to 
improve fitness measurement in noisy MOO problem [1]. 
Among the other noisy MOO techniques, periodic re-
evaluation of archived solutions [2], probabilistic Pareto 

ranking [3], and extended averaging approach [4] need 
special mentioning.  

The present paper addresses the issues of uncertainty 
management in ranking trial solutions by incorporating the 
following three policies. First, the sample-size of the fitness 
of each trial solution is adapted with the fitness variance in 
their local neighborhood to competently balance the accuracy 
in fitness estimation and run-time. Second, the paper 
introduces a novel strategy to evaluate expected fitness of the 
trial solutions from the fitness samples for fitness estimation. 
The third policy taken up here is an extension of Goldberg’s 
original work [5] which states that if a good member 
occupies the optimal Pareto front, a weaker member can also 
occupy the same front, if their difference in mean fitness is 
less than the average of their fitness variances, scaled by a 
“neighborhood restriction factor”. In our extension, the mean 
is substituted by expected value and the variance of each trial 
solution is replaced by the pooled variance of the two 
competitor solutions, supposing that the sample-sizes of two 
members are different. 

Any traditional MOO algorithm, such as Non-dominated 
Sorting Bee Colony (NSBC) [6], Differential Evolution for 
Multi-objective Optimization (DEMO) [7], Multi-objective 
Particle Swarm Optimization (MOPSO) [8], Non-dominated 
Sorting Genetic Algorithm-II (NSGA-II) [9] can be extended 
by the proposed approach in the present context. However, 
here we selected NSBC for its simplicity in coding, fewer 
control parameters, good accuracy and fast speed of 
convergence. 

Experiments have been undertaken to investigate the 
efficacy of the proposed approach for noisy optimization by 
adding three different types of stochastic noise: i) Gaussian 
noise with mean zero and increasing variance; ii) Poisson 
noise distribution with increasing variance and iii) random 
noise with positive and negative excursions of the noise 
amplitude within ± 25% of the fitness function values. The 
performance of the proposed noisy MOO algorithm realized 
with NSBC (hereafter referred to as Noisy Non-dominated 
Sorting Bee Colony—NNSBC) is compared with traditional 
NSBC [6], modified NSGA-II [5], NSGA-II with α-
dominance operator (NSGA-II-A) [10], elitist Evolutionary 
Multi-Agent System (elEMAS) [11],  Noise-Tolerant 
Strength Pareto Evolutionary Algorithm (NT-SPEA) [2], and 
Differential Evolution for Multi-objective Optimization with 
Random Scale-Factor and Threshold Selection (DEMO-RSF-
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TS), DEMO with Noise [17], extended MOPSO [17] and 
extended NSGA-II [17] on the noisy version of a set of 23 
benchmark functions [13]. The performance of traditional 
DEMO, MOPSO and NSGA-II are also compared with their 
amended versions realized with the proposed noise handling 
strategies. Experiments reveal that the proposed algorithm 
outperforms other algorithms by four important aspects, 
namely inverted generational distance, spacing, error ratio 
and hyper-volume ratio. 

The paper is divided into five sections. Section II 
introduces the NSBC algorithm. Section III provides the 
noise handling mechanism in NNSBC. A comprehensive 
discussion on the experimental settings for the benchmarks 
and simulation results are presented in section IV. 
Conclusions are given in section V. 

II. NON-DOMINATED SORTING BEE COLONY 
The following definitions are referred to frequently to 

explain a MOO. 

Definition 1. In a MOO problem, a trial solution iX
G

is 

said to dominate other solution jX
G

, denoted by ji XX
G

≺
G

, if 

iX
G

is no worse than jX
G

in all fitness functions and for at least 

one fitness measure iX
G

is strictly better than jX
G

. 

Definition 2. Let P be a set of solutions to a MOO 
problem. PP ⊆′ is called the non-dominated set of 
solutions if the members of P/ are not dominated by any 
member of P.  

Definition 3. Let fit1 and fit2 be two fitness functions in a 
MOO problem, and X

G
, iX
G

and jX
G

are the members of a non-

dominated list of solutions. Furthermore, iX
G

and jX
G

 are the 

nearest neighbors of X
G

 in the fitness landscape. Crowding 
distance of X

G
delineates the perimeter of a hypercube 

formed by considering its nearest neighbors, i.e., iX
G

and jX
G

, 
at the vertices of the fitness landscape, given by 

( ) ( ) ( ) ( )jiji XfitXfitXfitXfit
GGGG

2211 −+− .  

One of the most popular members of the MOO family is 
Non-dominated Sorting Bee Colony (NSBC) [6]. An 
overview of the main steps of the NSBC algorithm is 
presented next. 

A. Initialization   
NSBC starts with a population Pt of NP, D-dimensional 

food sources )}(),...,(),({)( ,2,1, txtxtxtX Diiii =
G

 at the current 
generation t = 0 by uniformly randomizing in the range min min min min

1 2= { , ,..., }DX x x x
G

and max max max max
1 2= { , ,..., }DX x x x

G
, 

and its k-th fitness function ))0(( ik Xfit
G

is evaluated with i= 
[1, NP] and k= [1, n]. 

B. Employed Bee Phase 
An employed bee obtains a new food 

source )}(),...,(),...,({)( ,,1, txtxtxtX Dijiii ′=′
G

in the neighborhood 

of )}(),...,(),...,({)( ,,1, txtxtxtX Dijiii =
G

by computing xi,j
/(t) parameter 

using the following expression for j∈  [1, D]. 

))()(()1,1()()( ,,,,, txtxrandtxtx jkjijijiji −×−+=′       (1) 

where randi,j(-1, 1)  is a uniform random variable in [-1, 1] 
and k is randomly selected from the range [1, NP] but k ≠i. 
The k-th fitness function ))(( tXfit ik ′

G
 is evaluated for the 

food source )(tX i′
G

with i= [1, NP] and k= [1, n]. 

C. Selection by Employed Bee 

If )(tX i′
G

 dominates )(tX i
G

, the bee memorizes )(tX i′
G

and 

forgets )(tX i
G

. However if )(tX i
G

and )(tX i′
G

are non-
dominated, she keeps both solutions in her memory Pt. This 
step is repeated for i= [1, NP] and hence, a population of food 
sources is obtained with size N in between NP and 2NP. 

D. Non-dominated Sorting 
The population Pt, thus obtained, is sorted into a number 

of Pareto fronts according to non-domination. All the non-
dominated solutions of the current population are ranked one 
(named optimal Pareto front Front_Set(1)). The second front 
is formed by identifying the non-dominated solutions from 
the set Pt –Front_Set(1). The ranking process thus continues 
until all the non-dominated sets are identified and ranked as 
Front_Set(1), Front_Set(2), Front_Set(3), and so on. 

E. Truncation of the extended Population 
The parent population P/

t (of size NP) for the onlooker 
bee phase is constructed by selecting the non-dominated sets 
of solutions from Pt (of size N) according to the ascending 
order of their Pareto ranking. Let Front_Set(l) be the set 
beyond which no other set can be accommodated in P/

t (i.e., 
by adding Front_Set(l) its size exceeds NP). Then the 
solutions in Front_Set(l) are sorted in descending order of 
crowding distance CD. To ensure diversity in population the 
solutions in Front_Set(l) with the highest crowding distances 
are included in P/

t until its size becomes NP. 

F. Probability Calculation 
Let Seti denotes the set of all food sources that are 

dominated by )(tX i
G

 based on ))(( tXfit ik
G

 for k= [1, n]. The 

probability of each food source )(tX i
G

to be selected by the 
onlooker bee is calculated by (2). 

NPSetiprob i=)(                                     (2) 

G. Onlooker Bee Phase 
An onlooker bee evaluates the fitness of food sources 

from all employed bees and probabilistically selects a food 
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source )(tX i
G

based on its probability prob(i), as calculated 
by the expression (2). After that, onlooker bee also produces 
a modification on the position as described in (1). The 
population P/

t of size between NP and 2NP is formed by 
following the principle as stated in section II. C. Then using 
the methodology of non-dominated sorting and crowding 
distance, the non-dominated food sources are found out from 
P/

t to form the resulting population Pt+1 of size NP. 

H. Scout Bee Phase 
If a position of a food source cannot be improved further 

through a predefined number of cycles called ‘limit’, it is 
abandoned and is replaced by a randomly reinitialized 
position by the scout. 

After each evolution, we repeat from step B until 
termination condition for convergence is satisfied. 

III.  OPTIMIZATION IN PRESENCE OF NOISE 
The paper attempts to handle noise in NSBC by taking 

repeated samples of the fitness functions for each food source 
and then consider the expected value of the measured fitness 
samples as the fitness estimate. It is apparent that a large 
sample-size enhances the quality of estimated fitness (of a 
trial solution), at the cost of additional overhead in 
computational complexity. The trade-off (between quality 
and complexity) is balanced here by means of adaptive 
selection of sample-size in NSBC. It relies on the underlying 
premise that the fitness variance of a selected sub-population 
around a given food source anticipates a measure of the 
possible creeping of noise in the local neighborhood of the 
given food source. Hence, it is necessary to estimate the 
noise-level in the small neighborhood of each food source by 
assessing the variance of the (probably noisy) fitness measure 
of the food sources located at the small neighborhood around 
it. If the variance is high (i.e., above a user-defined 
threshold), the sample-size of the given food source is 
increased.  

Let,  

},...,,{ 21 iDiii xxxX =
G

be a D-dimensional food source 
with n noisy fitness functions, 

)( ik Xfit
G

be the k-th fitness function of iX
G

for k= [1, n], 

)(, ilk Xfit
G

 be the l-th observed sample of )( ik Xfit
G

, 

sk,i  be the used sample size of )( ik Xfit
G

, 

vk,i be the fitness variance in the neighborhood of iX
G

for 
the k-th fitness  

vk
max be the maximum fitness variance in the 

neighborhood of all food sources for the k-th objective 

In a D-dimensional search space the neighborhood of a 
food source iX

G
is formed by selecting the food sources (from 

a population of size NP) lying within a hyperspace bounded 
by minΔ iX

G
={xi,1–∆x1, xi,2–∆x2,…, xi,D–∆xD}  and 

maxΔ iX
G

={xi,1+∆x1, xi,2+∆x2,…, xi,D+∆xD}. The neighborhood 
of two or more solutions, however, may be overlapped. Here 
∆xj= (xj

max–xj
min)/NP for j= [1, D]. 

The functional relationship of sample-size, sk,i against 
fitness variance in local neighborhood, vk,i (Fig. 1) here is 
selected as a non-linearity of the following form.  

)arctan(
2 ,

minmaxminmax
, kikik Thv

ssss
s −×

−
+

+
=

π
  (3) 

where Thk denotes the (globally selected) threshold for the k-
th fitness variance in local neighborhood, smin and smax 
represent predefined minimum and maximum sample-size, 
and sav= (smax+smin)/2 respectively. The lower quartile of the 
fitness variances in the neighborhood of each member in the 
population is favored as the global threshold. Hence the 
sample-size increases even when the noise-level is even one-
fourth of its largest possible occurrence.  

Traditional noisy optimization algorithms [1], [3] 
consider an average of the fitness samples for a given trial 
solution as the effectual measurement of the fitness. An 
averaging presumes equal probability of occurrence of all 
fitness samples, thereby, providing a poor fitness estimate. 
This, however, can be surmounted by considering expected 
fitness of the samples for a given food source. Let, 

)( ik XE
G

and )( ik XV
G

be the expected value and variance of 

the samples of )( ik Xfit
G

, for k= [1, n]. We first determine 
the minimum and the maximum values of the observed 
fitness samples, say )(min ik Xfit

G
−  

and )(max ik Xfit
G

− respectively. Now the entire range 

)](),([ maxmin ikik XfitXfit
GG

−−  is divided into q intervals of equal 
length as shown in Fig. 2. The number of samples residing in 
the j-th interval (specified by [j-min, j-max]) is denoted by nj 
for j= [1, q]. Then the probability of occurrence of fitness 
samples in the j-th interval, pj, is calculated as follows. 

                             ikjj snp ,=                         (4) 

We now obtain )( ik XE
G

by (5) and )( ik XV
G

by (6).  

 ∑ +×=
=

q

j
jik jjpXE

1
)2min)_max_(()(

G
                  (5) 

2

1

2 ))(()2min)_max_(()( ik
q

j
jik XEjjpXV

GG
−∑ +×=

=
   (6) 

Although adaptive sample-size selection strategy attempts 
to diminish the impact of noise in MOO problem, it cannot 
guarantee that the fitness-based ranking adopted for 
placement of the members in the Pareto fronts (during Non-
dominated Sorting) to be always accurate. To give a 
relatively worse-looking member a possibility to occupy the 
optimal Pareto front, Goldberg proposed the following 
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strategy [5]. The strategy verifies whether the difference 
between the sample means of individual members is less than 
the scaled sum of their variances, i.e.,  

 2/))()((|)()(| jkikjkik XVXVKXX
GGGG

−<− μμ    (7) 

where, )( ik X
G

μ denotes the mean sample value 
of )( ik Xfit

G
and K is called ‘neighborhood restriction 

parameter’. Here, Goldberg’s method is amended as follows:  

1. The expectation being a better measure of the statistical 
fitness, we substitute mean by expectation of the fitness 
samples for individual food source.  

2. The sample-size of two food sources being different, here, 
we replace variance in (7) by the pooled variance given as 
follows. 

2
)()1()()1(

),(_
,,

,,

−+
×−+×−

=
jkik

jkjkikik
jik ss

XVsXVs
XXVP

GG
GG

   (8) 

Incorporation of above mentioned points in (7), yields a 
new criterion (9) for analyzing Pareto co-ranking of two 
members of the population. 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+<−

jkik
jikjkik ss

XXVPKXEXE
,,

11),(_|)()(|
GGGG

, for k= [1, n] (9) 

To keep the slightly worse solutions an opportunity to 
enter the optimal Pareto front during the early exploration 
phase of the NNSBC and restrict their ingress gradually, 
expression (10) is employed to design K that captures the 
above requirement automatically.  

                                tCK )1( 2σ−=                            (10)                                       

Here, σ2 is the variance of the noise in the fitness 
function. 

 

Fig. 1.  The non-linearity used to adapt sample size with fitness variance in 
local neighborhood 

 

Fig. 2.  Fitness intervals in the sample space 

The pseudo code of NNSBC is given below. 

Procedure NNSBC 
Begin 
1. Initialize a population Pt of NP, D-dimensional food sources 

)(tX i
G

at generation t=0 with triali=0 for i= [1, NP]. 

2. Evaluate ))((, tXfit ilk
G

 for i= [1, NP], k= [1, n] and l= [1, smin]. 

3. Evaluate ))(( tXE ik
G

 and ))(( tXV ik
G

 using (5) and (6) 
respectively from the measured fitness samples for i= [1, NP] 
and k= [1, n]. 

4. While termination condition is not reached do 
Begin 
//Employed Bee Phase 
4.1. Produce a new food source )(tX i′

G
using (1) for i= [1, NP]. 

4.2. Determine the k-th fitness variance vk,i in the local 
neighborhood of )(tX i′

G
 for i= [1, NP] and k= [1, n]. 

4.3. Sort vk,i for i= [1, NP] in ascending order and select the 
lower quartile as Thk for k= [1, n]. 

4.4. Determine sample size sk,i of the k-th fitness of )(tX i′
G

using 
(3) for i= [1, NP] and k= [1, n]. 

4.5. Evaluate ))(( tXE ik ′
G

 and ))(( tXV ik ′
G

 using (5) and (6) 

respectively from ))((, tXfit ilk ′
G

for i= [1, NP], k= [1, n] and 
l= [1, sk,i]. 

4.6. If )()( tXtX ii
G

≺
G

′ Then replace )(tX i
G

 with )(tX i′
G

; triali= 0; 

Else If )()( tXtX ii ′
G

≺
G

 Then triali= triali +1; 

Else ∪
G

)(tXPP itt ′← ; 
End If 
Repeat the step for i= [1, NP]. 

4.7. Sort Pt in to subsequent Pareto fronts Front_Set using non-
dominated sorting principle. 

4.8. For each ∈)(tX i
G

 Front_Set(1) and ∉)(tX j
G

 Front_Set(1), 

place )(tX j
G

in Front_Set(1) if (9) is satisfied. 
4.9. Truncate Pt of size NP<N<2NP to P/

t using crowding 
distance criterion and the principle as stated in section II.E. 

//Onlooker Bee Phase 
4.10. Select a food source ∈)(tX i

G
 P/

t based on its probability of 
selection prob(i) for calculated using (2) for i= [1, NP]. 

4.11. Repeat from 4.1 to 4.9 with Pt+1←P/
t in step 4.9. 

4.12. Reinitialize food source with maximum trial value 
exceeding “limit” by a scout. 

4.13. t←t+1. 
End While 

End 

IV. EXPERIMENTS AND RESULTS 
The performance of the proposed NNSBC algorithm is 

examined here with respect to noisy-version of 23 CEC-2009 

smax

smin 

Thk 0 

sav 

vk
max

vk,i 

 sk,i 

fitk-min fitk-max

……… ……… 

j-min j-max 

1st

segment 
j-th  

segment 
q-th 

segment 
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recommended multi-objective benchmark functions [13]. The 
noisy version of the k-th objective )(Xfk

G
for k= [1, n] is 

given by 

        ( ) ( )k noisy k kf X f X η− = +
K K

           (11) 

where ηk is the injected stochastic noise amplitude that 
follows certain probability density function (PDF). The 
following three variants of ηk are considered in this paper. 

1. Gaussian: ηk has a Gaussian PDF, which is given by 

2( )
221( )

2

k m  

kf e
η

ση
σ π

−
−

=                    (12) 

where m and σ2 denote the mean and variance of the Gaussian 
PDF. The injection of Gaussian noise ηk here is performed 
using a well-known technique called Box-Muller method 
[14]. 

2. Poisson: ηk has a Poisson PDF, which is given by 

                        .( )
!

k

k
k

ef
η λλη
η

−
=    (13) 

where λ represents mean (as well as variance) in Poisson 
distribution. We used Knuth’s algorithm [15] to inject ηk into 
the fitness landscape following Poisson distribution. 

3. Random: Lastly we consider ηk to be a random noise with 
maximum noise amplitude within ±25% of the fitness 
amplitudes. Here, random noise is generated using linear 
congruential pseudo random number generator [16]. 

Comparative Framework: The MOO algorithms used for 
the comparative study include DEMON (Differential 
Evolution for Multi-objective Optimization with Noise) [17], 
NSGA-II with α-dominance operator (NSGA-II-A) [10], 
elitist Evolutionary Multi-Agent System (elEMAS) [11], 
extended MOPSO [17], extended NSGA-II [17], modified 
NSGA-II [5], Noise-Tolerant Strength Pareto Evolutionary 
Algorithm (NT-SPEA) [2], DEMO-RSF-TS [12] [17] and 
traditional NSBC [6]. Similarly, traditional DEMO, MOPSO 
and NSGA-II are also extended with the noise handling 
strategies introduced in this paper to develop three new 
members of our comparative framework, denoted as Noisy 
DEMO (NDEMO), Noisy MOPSO (NMOPSO) and Noisy 
NSGA-II (NNSGA-II). 

Parameter Settings: For all the algorithms the population 
size is kept at 50 and the maximum function evaluations 
(FEs) is set as 100000, 300000 and 500000 for 10-D, 30-D 
and 50-D problems respectively. To make the comparison 
fair, the population for all the algorithms (over all problems 
tested) is initialized using the same random seeds. We 
employ the best parametric set-up for all these algorithms as 
prescribed in their respective sources. In our proposed 
NNSBC algorithm, the minimum and maximum sample-size 
are considered to be 2 and 30 respectively with limit of 50. 

A. Performance Metrics 
Inverted Generational Distance (IGD): Let P* be a set of 
uniformly distributed points along the optimal Pareto front 
(in the objective space). Let A be an approximate set to the 
Pareto front, the IGD metric can be defined as follows. 

||

∑ ),(
),( *

∈* *

P

Avd
PAIGD Pv=                                (14) 

Here d(v, A) is the minimum Euclidean distance between 
v and the points in A. A lower value of IGD is required to 
ensure that the approximate Pareto front, obtained by the 
proposed MOO, is very close to the optimal Pareto front. 

Spacing (S): The metric measures the range variance of the 
neighboring vectors in the non-dominated vectors found by 
the algorithm. It is defined as follows. 

∑=∑ −
−

=
==

M

i
i

M

i
i d

M
ddd

M
S

11

2 1,)(
1

1               (15) 

Here ∑ −=
=≠=

n

k
jkik

M

ijj
i XEXEd

1,1
)()(min

GG
with M as the 

number of non-dominated vectors found by the method. Here 

iX
G

and jX
G

are non-dominated vectors. A value of zero of 
this metric signifies all members of the approximate Pareto 
front are equidistantly spaced.  

Error Ratio (ER): This metric is defined as follows. 

⎪⎩

⎪
⎨
⎧

∉∈

∈∈
=

∑
= =

*,1

*,0
,1

PX and  AX if  

PX and  AX if  
e   

M

e
ER

ii

ii
i

M

i
i

GG

GG
       (16) 

In ideal case, this metric should have a zero value 
indicating that all the non-dominated solutions in the 
approximate Pareto front belong to the optimal Pareto front. 

Hyper Volume Ratio (HVR): It is defined as follows. 

*)(
)()(

PHV
AHVAHVR =                                     (17) 

Here HV(A) and HV(P*) symbolize the hyper-volume of 
the approximate Pareto front A and optimal Pareto front P* 
respectively. The size of the objective space covered by a set 
of non-dominated solutions S is envisaged as its hyper-
volume HV(S). In ideal case, the HVR(A) indicator attains its 
maximum value 1 if and only if its non-dominated vectors in 
the objective space are identical with the members of the 
optimal Pareto-front P*. 

B. Analysis and Results 
The mean and standard deviation (within parenthesis) of 

IGD metric for 50 independent runs (each with 300000 FEs) 
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of each of the thirteen algorithms are presented in Table-I 
with ηk to be the Gaussian noise (mean=0 and variance, 
σ2=0.4). The best solution in each case has been shown in 
bold. Although all the experiments are performed for all three 
variants of noise with noise variance σ2∈ [0, 1] and also for 
10, 30 and 50-dimensional problems, we report here the 
results for 30 dimensions only and for a finite value of σ2 to 
save space. Please note that the results omitted follow a 
similar trend like those reported in Table-I. 

Since all the algorithms commence with the same initial 
population over each problem instance, we use paired t-tests 
to compare the means of the results produced by the best and 
the second best algorithms. The statistical significance level 
of the difference of the means of NNSBC and the best of the 
remaining twelve algorithms is presented in the 15-th column 
of Table-I. Here ‘+’ indicates the t-value of 49 degrees of 
freedom is significant at a 0.05 level of significance by two-
tailed test, ‘–’ means the difference of means is not 
statistically significant and ‘NA’ stands for Not Applicable, 
referring to the cases for which two or more algorithms 
achieve the best accuracy results. 

The simulation results in Table-I shows that NNSBC 
outperforms its competitors over 21 cases out of 23 
benchmark instances. Out of these 21 cases, for 20 instances 
the difference between the mean of IGDs of NNSBC and its 
nearest competitor is statistically significant. In one case 
(UF7), NDEMO achieves the best average IGD-value 
outperforming NNSBC, which remains the second best 
algorithm. 

Fig. 3 shows the evolution of the average S-metric values 
of the population with the noise variance in all the thirteen 
algorithms keeping the number of generations to be fixed at 
300000 for Poisson noise. The plot of the average ER-metric 
against problem dimension (within [10, 50]) is given in Fig. 
4. The convergence characteristics of three difficult test 
functions with different settings of noise variance are shown 
in Fig. 5 in terms of the IGD, S and ER metric values of the 
median run of each algorithm. A close scrutiny of the results 
in Table-I and the plots reveal that NNSBC is much more 
competent and capable to capture the optima in the noisy 
fitness landscape than its competitor algorithms on all the test 
instances, irrespective of the form and variance of noise. 

Two non-parametrical statistical tests, known as 
Friedman and Iman-Davenport tests are also performed on 
the mean of HVR metric for 50 independent runs of each of 
the thirteen algorithms. With the level of significance α=0.05, 
both the statistics show significant differences in operators 
with test values of 275.7054 and 20591.88, respectively, and 
p<0.001. The rankings obtained by Friedman procedure in 
Table-II highlight NNSBC as the best algorithm, so 
Bonferroni-Dunn post-hoc analysis is performed with 
NNSBC as the control method. Here, the critical difference 
(CD) comes as 2.639. The interpretation of this measure is 
that the performance of two algorithms is significantly 
different, only if the corresponding average Friedman ranks 
differ by at least by CD, which is depicted in Fig. 6. It can be 
perceived that only for NDEMO and NMOPSO, the null 
hypothesis cannot be rejected with any of the tests for α = 
0.05. The other ten algorithms, however, may be regarded as 
significantly worse than the NNSBC. 
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Fig. 3.  Plot of average S metric values with Poisson noise variance σ2 for 
300000 FEs for UF3 
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Fig. 4.  Plot of average ER metric values with problem dimension for 
random noise and 300000 FEs for CF8  

TABLE II.  AVERAGE RANKINGS FROM FRIEDMAN’S TEST 

Algorithm Ranking 
NNSBC 1.109 
NDEMO 1.891 
NMOPSO 3.000 
DEMON 4.000 

NNSGA-II 5.000 
NSGA-II-A 6.000 

elEMAS 7.000 
Extended MOPSO 8.000 

Extended NSGA-II 9.000 
Modified NSGA-II 10.00 
DEMO-RSF-TS 11.00 

NT-SPEA 12.00 
Traditional NSBC 13.00 

Critical Difference α=0.05 2.639 

V. CONCLUSION 
We proposed a novel approach to uncertainty 

management in the noisy fitness landscape of NSBC 
algorithm. The merit of the proposed work lies in the 
following counts: i) adaptive selection of sample-size in the 
local neighborhood of individual food source, ii) expectation 
of the fitness samples, and iii) extending Goldberg’s method 
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using a more statistical basis of comparison. The experiments 
undertaken reveal that the proposed extension, called 
NNSBC, outperforms its competitor algorithms with respect 
to four standard metrics: IGD, S, ER and HVR in presence of 
three different noise distributions (Gaussian, Poisson and 
random noise of limited amplitude) on the standard 23 
benchmark functions. 
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Fig. 5.  Plot of average IGD, S and ER metric values with FEs for different 
settings of noise 
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Fig. 6.  Graphical representation of Bonferroni-Dunn’s procedure 

considering NNSBC as control method 
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TABLE I.  MEAN IGD VALUES OVER 50 INDEPENDENT RUNS GAUSSIAN NOISE WITH MEAN=0 AND VARIANCE σ2=0.4 

Functions NNSBC NDEMO NMOPSO DEMON NNSGA-
II 

NSGA-
II-A elEAMS Extended 

MOPSO
Extended 
NSGA-II

Modified 
NSGA-II NT-SPEA DEMO-

RSF-TS 
Tradition
al NSBC

Statistical 
Significance

UF1 0.0082 
(0.000) 

0.0103 0.0111 0.0111 0.0118 0.0205 0.0277 0.0309 0.0569 0.0583 0.0718 0.0741 0.0861 + (0.000) (0.000) (0.000) (0.000) (0.031) (0.000) (0.046) (0.515) (0.4717) (0.056) (0.001) (0.067) 

UF2 0.0051 
(0.000) 

0.0063 0.0068 0.0069 0.0076 0.0191 0.0216 0.0254 0.0462 0.0466 0.0510 0.0550 0.0586 + (0.000) (0.001) (0.000) (0.001) (0.013) (0.000) (0.010) (0.015) (0.015) (0.018) (0.002) (0.019) 

UF3 0.0595 
(0.002) 

0.0730 0.0817 0.0828 0.0927 0.1171 0.1599 0.1614 0.2497 0.2508 0.2624 0.2832 0.2871 + (0.003) (0.007) (0.008) (0.011) (0.015) (0.007) (0.007) (0.016) (0.016) (0.017) (0.017) (0.017) 

UF4 0.0421 
(0.000) 

0.0517 0.0525 0.0526 0.0535 0.0556 0.0567 0.0568 0.0640 0.0650 0.0749 0.0814 0.0816 + (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) 

UF5 0.3266 
(0.000) 

0.4009 0.4128 0.4132 0.4209 0.4776 0.4875 0.4938 0.5366 0.5457 0.6338 0.6667 0.6727 + (0.000) (0.003) (0.006) (0.0086 (0.011) (0.009) (0.007) (0.016) (0.016) (0.021) (0.014) (0.024) 

UF6 0.0801 
(0.000) 

0.1237 0.0963 0.1263 0.1763 0.2033 0.2284 0.2458 0.3181 0.3207 0.3462 0.3489 0.3550 + (0.003) (0.000) (0.005) (0.007) (0.001) (0.010) (0.000) (0.001) (0.001) (0.001) (0.019) (0.002) 

UF7 0.0210 
(0.008) 

0.0171 0.0363 0.0367 0.0515 0.1103 0.1579 0.1592 0.1763 0.1767 0.1811 0.1832 0.1845 – (0.008) (0.009) (0.009) (0.015) (0.010) (0.018) (0.009) (0.013) (0.013) (0.013) (0.026) (0.014) 

UF8 0.2018 
(0.008) 

0.2477 0.5547 0.5723 0.1626 0.1398 0.1723 0.2246 0.2794 0.2817 0.3046 0.3219 0.3388 + (0.009) (0.010) (0.012) (0.016) (0.019) (0.018) (0.018) (0.023) (0.023) (0.023) (0.024) (0.026) 

UF9 0.0487 
(0.000) 

0.0598 0.0805 0.0845 0.0967 0.1699 0.1664 0.2037 0.3075 0.3114 0.3492 0.3727 0.3799 + (0.000) (0.001) (0.003) (0.006) (0.000) (0.007) (0.000) (0.000) (0.000) (0.001) (0.024) (0.001) 

UF10 0.4720 
(0.015) 

0.5793 0.6112 0.6226 0.7254 0.8938 0.9706 0.9793 1.9858 2.0273 2.4271 2.6090 2.6251 + (0.019) (0.029) (0.037) (0.045) (0.020) (0.046) (0.018) (0.020) (0.020) (0.021) (0.067) (0.024) 

UF11 0.2810 
(0.000) 

0.3449 0.3583 0.3613 0.3779 0.4922 0.4934 0.4948 0.5136 0.5146 0.5251 0.5320 0.5332 + (0.001) (0.002) (0.008) (0.017) (0.029) (0.021) (0.024) (0.033) (0.033) (0.036) (0.030) (0.036) 

UF12 510.20 
(0.007) 

626.23 697.16 711.35 760.49 726.73 735.48 739.62 767.56 768.23 774.73 786.10 804.21 + (0.009) (0.198) (0.270) (0.324) (0.216) (0.499) (0.327) (0.381) (0.384) (0.413) (0.644) (0.663) 

UF13 2.3230 
(0.061) 

2.8513 3.0269 3.0563 3.1549 3.0461 3.7010 3.8725 4.2427 4.2545 4.3680 4.5156 4.5249 + (0.075) (0.094) (0.112) (0.154) (0.172) (0.226) (0.163) (0.214) (0.214) (0.215) (0.338) (0.218) 

CF1 0.0086 
(0.000) 

0.0105 0.0105 0.0115 0.0140 0.0122 0.0135 0.0138 0.0574 0.0591 0.0764 0.0843 0.0850 + (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) (0.000) (0.001) 

CF2 0.0055 
(0.000) 

0.0055 0.0085 0.0089 0.0112 0.0275 0.0233 0.0243 0.0379 0.0386 0.0463 0.0513 0.0522 
NA 

(0.000) (0.000) (0.0003) (0.000) (0.021) (0.000) (0.021) (0.023) (0.023) (0.024) (0.002) (0.026) 

CF3 0.0702 
(0.000) 

0.0862 0.1156 0.1214 0.1417 0.1060 0.1056 0.1173 0.1969 0.1988 0.2173 0.2497 0.3012 
+ 

(0.000) (0.002) (0.005) (0.006) (0.005) (0.007) (0.018) (0.020) (0.020) (0.021) (0.016) (0.028) 

CF4 0.0396 
(0.000) 

0.0486 0.0519 0.0524 0.0543 0.0505 0.0519 0.0612 0.08118 0.0818 0.0879 0.0958 0.0963 
+ 

(0.000) (0.000) (0.000) (0.001) (0.008) (0.001) (0.008) (0.014) (0.014) (0.014) (0.001) (0.015) 

CF5 0.3335 
(0.000) 

0.4094 0.4310 0.4331 0.4568 0.4327 0.4337 0.4344 0.4808 0.4873 0.5503 0.5921 0.5932 
+ 

(0.000) (0.007) (0.007) (0.007) (0.063) (0.008) (0.062) (0.068) (0.068) (0.071) (0.015) (0.086) 

CF6 0.0817 
(0.000) 

0.1003 0.1520 0.1537 0.1866 0.1918 0.2003 0.2053 0.2388 0.2459 0.3150 0.3408 0.3455 
+ 

(0.001) (0.005) (0.008) (0.016) (0.000) (0.018) (0.000) (0.001) (0.001) (0.001) (0.028) (0.002) 

CF7 0.0212 
(0.000) 

0.0260 0.0637 0.0673 0.1470 0.0536 0.0598 0.0767 0.1470 0.1495 0.1743 0.1770 0.1828 
+ 

(0.000) (0.010) (0.010) (0.008) (0.008) (0.021) (0.007) (0.008) (0.008) (0.011) (0.026) (0.016) 

CF8 0.0653 
(0.002) 

0.0802 0.0802 0.0968 0.1125 0.0990 0.0975 0.1096 0.2643 0.2683 0.3075 0.3261 0.3385 
+ 

(0.002) (0.002) (0.003) (0.006) (0.000) (0.006) (0.000) (0.000) (0.000) (0.000) (0.011) (0.000) 

CF9 0.0633 
(0.007) 

0.0777 0.1148 0.1170 0.1521 0.0925 0.1540 0.2098 0.2680 0.2705 0.2949 0.3133 0.3313 
+ 

(0.009) (0.009) (0.010) (0.013) (0.007) (0.014) (0.006) (0.007) (0.007) (0.010) (0.020) (0.011) 

CF10 0.4880 
(0.013) 

0.5990 0.7831 0.8187 0.9262 0.6881 0.8508 0.9265 2.0502 2.0796 2.3623 2.5003 2.8120 
– 

(0.016) (0.042) (0.043) (0.062) (0.015) (0.062) (0.014) (0.015) (0.015) (0.017) (0.086) (0.020) 
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