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Abstract— During the software testing process many test
suites can be generated in order to evaluate and assure the
quality of the products. In some cases the execution of all
suites cannot fit the available resources (time, people, etc).
Hence, automatic Test Case (TC) selection could be used to
reduce the suites based on some selection criterion. This process
can be treated as an optimization problem, aiming to find a
subset of TCs which optimizes one or more objective functions
(i.e., selection criteria). The majority of search-based works
focus on single-objective selection. In this light, we developed
mechanisms for functional TC selection which considers two
objectives simultaneously: maximize requirements coverage
while minimizing cost in terms of TC execution effort. These
mechanisms were implemented by deploying multi-objective
techniques based on Particle Swarm Optimization (PSO). Due
to the drawbacks of original binary version of PSO we im-
plemented five binary PSO algorithms and combined them
with a multi-objective versions of PSO in order to create new
optimization strategies applied to TC selection. The experiments
were performed on two real test suites, revealing the feasibility
of the proposed strategies and the differences among them.

I. INTRODUCTION

The importance of software testing in the software de-
velopment process has grown due to the need of high
quality products. Software testing aims to assure quality and
reliability of the products. However, it is a very expensive
activity, sometimes reaching 40% of the final development
cost [1]. In this scenario, automation seems to be the key
solution for improving the efficiency and effectiveness of the
testing process.

We can identify in the related literature two main testing
approaches: White Box (structural) or Black Box (functional)
testing. In both approaches, the testing process relies on
the (manual or automatic) generation and execution of a
Test Suite (TS). The aim is to provide a good coverage
of an adopted test adequacy criterion (e.g., code coverage,
requirements coverage) in order to satisfy the test goals.
Tools for automatic TC generation usually deliver large test
suites, trying to cover all possible scenarios (e.g., [2]). Even
manually created test suites may be large when a good level
of coverage is accomplished. Although it is desirable to
fully satisfy the test goals, the execution of large suites is a
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very expensive task, demanding a great deal of the available
resources (time and people) [3].

Large test suites usually contain some redundancies (i.e.,
two or more TCs covering the same requirement/piece of
code). Hence, it is possible to reduce the suite in order to
fit the available resources. The task of reducing a test suite
based on a given selection criterion is known as Test Case
selection [4].

TC selection is a hard task, since there may be a large
number of TC combinations to consider when searching
for an adequate TC subset. A very effective approach to
deal with this problem relies on the use of optimization
techniques, which is the focus of our research (see [5], [6],
[7], [8], [9]). This approach aims to select a TC subset that
optimizes a given objective function (i.e., the given selection
criterion). Regarding multi-objective selection, we can cite
the use of evolutionary approaches [6], [10] and the use
of Particle Swarm Optimization (PSO) techniques in our
previous work [11].

In [11], we investigated the multi-objective TC selection
considering both the requirements coverage (quality) and
the execution effort (cost) of the selected subset of TCs
as objectives of the selection process. In [11], we devel-
oped Binary Multi-Objective PSO (BMOPSO) techniques
for TC selection by combining: (1) the binary version of
PSO proposed in [12], since the TC selection problem by
definition has a binary search space; and (2) the MOPSO [13]
and MOPSO-CDR [14], which deals with multi-objective
problems. Despite the good results obtained by the BMOPSO
techniques on a case study, some limitations can be pointed
out, such as the search operators adopted to binary search
spaces. Although we adopted a classical binary PSO version
(originally proposed in [12]), there are recent alternatives
that can be more effective, supported by empirical results
obtained in single objective problems.

In this light, in the current work we investigated dif-
ferent single objective PSO algorithms for binary search
spaces and combined them with a multi-objective strategy
in order to create new binary multi-objective algorithms.
More specifically, five different binary PSO techniques were
implemented and extended to multi-objective optimization.
The developed algorithms were applied to the TC selection
problem aiming to provide to the user a set of solutions (test
suites) with different values of requirements’ coverage versus
execution effort. The user could then choose the solution that
best fits the available resources for executing the tests. It is
important to highlight that although the focus of our research
is the TC selection problem the proposed techniques can also

2164

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



be applied to binary multi-objective optimization in other
contexts.

The next section explains the Particle Swarm Optimization
(PSO) algorithm and its binary versions. After that, section
III details the developed multi-objective strategies. Section
IV details the experiments performed to evaluate the pro-
posed algorithms and presents the obtained results. Finally,
Section V presents some conclusions and future work.

II. BINARY PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) was originally devel-
oped by Eberhart and Kennedy [15]. The PSO is a pop-
ulation based search algorithm based on the simulation of
the social behavior of birds and it has been successfully
applied in many research and engineering areas [16]. Also,
PSO has shown to be a simple and efficient algorithm
compared to other search techniques, including for instance
the widespread Genetic Algorithms [17].

The conventional continuous PSO algorithm starts its
search process with a random population (also called swarm)
of particles. Each particle represents a candidate solution for
the problem being solved and it has four main attributes:

1) the position (t) in the search space (each position
represents an individual solution for the optimization
problem);

2) the current velocity (v), indicating a direction of move-
ment in the search space;

3) the best position (̂t) found by the particle (the cognitive
component);

4) the best position (ĝ) found by the particle’s neighbor-
hood.

The velocity and position of each particle is updated by
using equations 1 and 2

v = ωv + c1r1(̂t− t) + c2r2(ĝ− t) (1)

where ω represents the inertia factor; r1 and r2 are random
values in the interval [0,1]; c1 and c2 are constants which
control the trade-off between the particle’s memory and the
social guide impact on the particle.

t = t + v (2)

For a number of iterations, the particles fly through the
search space, being influenced by their own experience t̂
(particle memory) and by the experience of their neighbors ĝ
(social guide). Particles change position and velocity contin-
uously, aiming to reach better positions and to improve the
objective functions considered.

The conventional continuous PSO and most of its variants
were originally developed for continuous valued spaces but
many problems are, however, defined for discrete valued
spaces where the domain of the variables is finite. So, some
authors [12], [18], [19], [20] and [16] have proposed binary
versions of PSO in order to deal with these kind of problems.

But, there is not yet a consensus about which one of their
approaches are better than others.

Since the solutions of TC selection problem could be rep-
resented as binary vectors this work combined five versions
of binary PSO with the MOPSO-CDR approach, creating five
new multi-objective strategies aiming to verify which one is
better when applied to the TC selection problem.

Following the versions of binary PSO are explained and,
after that, the multi-objective approaches are presented.

A. Discrete Binary PSO

Kennedy and Eberhart (see [12]) developed the first dis-
crete binary version of PSO. In the discrete binary PSO, the
velocity of a particle is used as a probability to determine
whether a bit should be changed to one.

The eq. (2) is modified to:

t =
{

1, if r3 ≤ sig(v)
0, otherwise (3)

where r3 is a random number sampled in the interval [0,1]
and sig(v) is defined as:

sig(v) =
1

1 + e−v (4)

Equations (3) and (4) were proposed in order to certify
that the new positions are binary vectors. The position value
t tends to 1 when the velocity assumes higher values. In turn,
t tends to 0 for lower values of velocity;

B. Novel binary particle swarm optimization

Khanesar et al (see [18]) introduces two velocity vectors
for each particle v0 and v1 where the first is the probability
of the bits of the particle change to zero and the second is
the probability of change to one.

Two temporary values d1 and d0 are also introduced and
are updated as:

If t̂ = 1 Then d11 = c1r1 and d01 = −c1r1
If t̂ = 0 Then d01 = c1r1 and d11 = −c1r1
If ĝ = 1 Then d12 = c2r2 and d02 = −c2r2
If ĝ = 0 Then d02 = c2r2 and d12 = −c2r2
These temporary values are used to update the v0 and v1

as follows:

v0 = ωv0 + d01 + d02 (5)

v1 = ωv1 + d11 + d12 (6)

Hence the eq. (1) is substituted by:

v =

{
v1, if t = 0
v0, if t = 1

(7)

And the eq.(3) is replaced by:

t =
{

t, if r3 ≤ sig(v)
t, otherwise (8)
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Where t is the complement of t. That is, if t = 0 then
t = 1 and if t = 1 then t = 0.

C. Memory Binary PSO

Zhen et al (see [19]) propose a memory binary particle
swarm optimization based on a new updating strategy where
the position or status of a particle is updated based on its
previous position or status.

In their method, the velocity v represents the probability
that one bit stays still. When the current position of one
particle is consistent with his best position and the best
position within its neighborhood its position should remain
the same, otherwise it should change with high probability.

The equations (1) and (3) are replaced by:

v = ωv + c1r1Equal(̂t, t) + c2r2Equal(ĝ, t) (9)

t =
{

t, if r3 ≤ sig(v)
t, otherwise (10)

Where Equal() is a function defined as:

Equal(a, b) =

{
1, if a == b
−1, otherwise (11)

D. New Binary PSO with Velocity Control

Lanzarini et al (see [20]) propose two velocity vectors v1
and v2 in order to improve the discrete binary version of
PSO. Each particle has two vectors (v1 and v2) where v1 is
updated as:

v1 = ωv1 + c1r1(2̂t− 1) + c2r2(2ĝ− 1) (12)

Each element of v1 is controlled by applying:

v1 =

 δ1, if v1 > δ1
−δ1, if v1 ≤ −δ1
v1, otherwise

(13)

Where

δ1 =
limit1upper − limit1lower

2
(14)

The velocity vector v1 is calculated with eq. (12) and
controlled with eq. (13) and its value is used to update the
velocity vector v2 as:

v2 = v2 + v1 (15)

Vector v2 is also controlled as v1 by changing limit1upper
and limit1lower by limit2upper and limit2lower, yielding δ2
to control values of v2 as in eq. (13). Limit1 and limit2 are
predefined algorithm parameters.

Then, t is calculated as in eq. (3) by using v2 instead of
v.

E. Hybrid Binary PSO

Menhas et al (see [16]) propose a hybrid approach that
combines concepts of PSO and genetic algorithms (GA).
The proposed hybrid strategy comprises a crossover and a
mutation operator. The crossover operation is performed to
wholly realize the cognitive and social concepts of the PSO
and then a mutation operator is added to maintain population
diversity.

Their work use a crossover operator after the position
update (eq. 3). A random number (r4 ∈ {0, 1}) is generated
to determine the actual state of each bit of every candidate
solution from the population of current solutions and the
position t is updated again as:

t =


t, if 0 ≤ r4 ≤ α
t̂, if α < r4 ≤ 2α
ĝ, if 2α < r4 ≤ 1

(16)

The authors proposed to use α = 0.33 meaning that a
solution has a probability of 33.33% to remain in its current
state (previously defined by the eq. 3) and 66.67% chances
to be replaced by t̂ or ĝ.

The mutation mechanism generates another random num-
ber (r5 ∈ {0, 1}) and compares it with a predefined mutation
probability parameter (m) to perform mutation as:

t =
{

t, if r5 ≤ m
t, otherwise (17)

III. BINARY MULTI-OBJECTIVE PSO TO TEST CASE
SELECTION

In this work, we propose some methods that adopt Particle
Swarm Optimization (PSO) to solve multi-objective TC
selection problems. In contrast to single-objective problems,
Multi-Objective Optimization (MOO) aims to optimize more
than one objective at the same time.

A MOO problem considers a set of k objective functions
f1(x), f2(x), ..., fk(x) in which x is an individual solution
for the problem being solved. The output of a MOO al-
gorithm is usually a population of non-dominated solutions
considering the objective functions. Formally, let x and x′ be
two different solutions. We say that x dominates x′ (denoted
by x � x′) if x is better than x′ in at least one objective
function and x is not worse than x′ in any objective function.
x is said to be not dominated if there is no other solution
xi in the current population, such that xi � x. The set of
non-dominated solutions in the objective space returned by
a MOO algorithm is known as Pareto front.

We developed in our work five binary multiobjective PSO
approaches by merging: (1) each binary version of PSO
presented in Section II; and (2) the MOPSO-CDR algorithm
proposed by [14]. We chose the MOPSO-CDR because of
its good results in our previous work [9]. Furthermore, the
proposed approaches were applied to select functional tests.

The objective functions to be optimized in our work are
the functional requirements coverage and the execution effort
of the selected TCs, in such a way that we maximize the first
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function and minimize the second one. The proposed meth-
ods return a set of non-dominated solutions (a Pareto front)
considering the aforementioned objectives. By receiving a set
of diverse solutions, the user can choose the best one taking
into account its current goals and available resources (e.g.,
the amount of time available at the moment to execute the
test cases).

In our previous works (see [8] and [9]), we applied PSO
to solve a constrained TC selection problem. However, to
the best of our knowledge, besides our other work (see
[11]), there is no previous work investigating PSO on a
multi-objective functional TC selection problem. We also
highlight that no previous work, besides ours, was found
in the literature that performed test selection considering
both requirements coverage and execution effort in a multi-
objective way in the context of functional software testing.
Hence, this is an promising study area and this work aim to
explore a little further this problem by creating new multi-
objective algorithms.

A. Problem Formulation

In this work, the particle’s positions were defined as binary
vectors representing candidate subsets of TCs to be applied
in the software testing process. Let T = {T1, . . . , Tn} be a
test suite with n test cases. A particle’s position is defined as
t = (t1, . . . , tn), in which tj ∈ {0, 1} indicates the presence
(1) or absence (0) of the test case Tj within the subset of
selected TCs.

As said, two objective functions were adopted. The re-
quirements coverage objective (to be maximized) represents
the amount (in percentage) of requirements covered by a
solution t in comparison to the amount of requirements
present in T . Formally, let R = {R1, . . . , Rk} be a given
set of k requirements of the original suite T . Let F (Tj)
be a function that returns the subset of requirements in R
covered by the individual test case Tj . Then, the requirements
coverage of a solution t is given as:

R Coverage(t) = 100 ∗
|
⋃

tj=1{F (Tj)}|
k

(18)

In eq. (18),
⋃

tj=1{F (Tj)} is the union of requirements’
subsets covered by the selected test cases (i.e., Tj for which
tj = 1).

The other objective function (to be minimized) is the
execution effort (the amount of time required to manually
execute the selected suite). Formally, each test case Tj ∈ T
has a cost score cj . The total cost (effort) of a solution t is
then defined as:

Cost(t) =
∑
tj=1

cj (19)

In this approach, the cost cj is computed for each test case
by using the execution effort estimation model developed by
Aranha and Borba [21]. The MOO algorithms will be used
to find a good Pareto front regarding the objective functions
R Coverage and Cost.

B. The DBMOPSO-CDR algorithm

The Discrete Binary Multiobjective Particle Swarm Op-
timization with Crowding Distance and Roulette Wheel
(DBMOPSO-CDR) was created by merging the MOPSO-
CDR algorithm by [14] and the original discrete binary
version of PSO by [12].

The MOPSO-CDR uses an External Archive (EA) to store
the non-dominated solutions found by the particles during the
search process. The EA can be seen as a secondary swarm,
which interacts with the primary swarm in order to define the
social guidance (ĝ) and the particle memory (̂t) components
of the particles at each search iteration.

The following algorithm summarizes the DBMOPSO-
CDR:

1) Initialize the swarm by randomly initializing the posi-
tion t and the velocity v of each particle;

2) Evaluate each particle according to the considered
objective functions and store in the EA the particles’
positions that are non-dominated solutions;

3) Calculate de Crowding Distance value (see [22]) for
each non-dominated solution from EA and sort these
solutions by this (CD) value;

4) Initialize the memory t̂ of each particle as:

t̂ = t (20)

5) WHILE stop criterion is not verified DO
a) Compute the velocity v of each particle1 by using

eq. 1.
The social guide (ĝ) in the above eq. 1 is defined
as one of the non-dominated solutions stored
in the current EA. The following procedure is
adopted in order to select the (ĝ) component for
each particle:

i) Select one EA’s solution as the ĝ value by us-
ing Roulette Wheel, in which the probability
of choosing a given solution is proportional to
it CD value. Hence, solutions with higher CD
values (corresponding to not well explored
regions in the objectives’ space) has a higher
probability of being selected;

b) Compute the new position t of each particle by
using eq. 3;

c) Use the mutation operator as proposed by [13];

d) Evaluate each particle of the swarm and update
the solutions stored in the EA by inserting all the
new non-dominated solutions and by removing
all previous EA’s solutions that were dominated.
Since the size of the EA is limited, whenever it
gets full, the solutions in more crowded areas are
removed from the EA (see [14]);

1As v is a vector with dimensionality dependent on the problem, it is
necessary to compute each dimension.
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e) Update the particle’s memory t̂ using eq. (20)
if the new position t dominates the previous
memory (i.e., if t � t̂). If neither t � t̂ nor t̂ � t
is verified (i.e., no solution dominates the other
one), then the choice is made using the EA. The
algorithm search in the EA for the solutions with
minimum Euclidean distance for the t̂ and for t.
If the closer solution to t in the EA is in a less
crowded region than the closer solution to the t̂,
then the particle’s memory is changed to t using
eq. (20). Otherwise, it remains;

6) END WHILE and return the current EA as the Pareto
front.

C. The NBMOPSO-CDR algorithm

The Novel Binary Multiobjective Particle Swarm Op-
timization with Crowding Distance and Roulette Wheel
(NBMOPSO-CDR) was created by merging the MOPSO-
CDR algorithm by [14] and the novel binary version of PSO
by [18].

In the NBMOPSO-CDR the equations (1) and (3) (from
DBMOPSO-CDR) are replaced by equations (7) and (8).

D. The MBMOPSO-CDR algorithm

The Memory Binary Multiobjective Particle Swarm Op-
timization with Crowding Distance and Roulette Wheel
(MBMOPSO-CDR) was created by merging the MOPSO-
CDR algorithm and the memory binary version of PSO by
[19]. The equations (1) and (3) are replaced by equations (9)
and (10).

E. The VCBMOPSO-CDR algorithm

The Velocity Control Binary Multiobjective Particle
Swarm Optimization with Crowding Distance and Roulette
Wheel (VCBMOPSO-CDR) was created by merging the
MOPSO-CDR algorithm by [14] and the binary PSO with
velocity control by [20].

In the VCBMOPSO-CDR then t is calculated as in eq. (3)
by using the v2 value (see section II-D) instead of v.

F. The HBMOPSO-CDR algorithm

The Hybrid Binary Multiobjective Particle Swarm Op-
timization with Crowding Distance and Roulette Wheel
(HBMOPSO-CDR) was created by merging the MOPSO-
CDR algorithm by [14] and the hybrid binary PSO by [16].

The HBMOPSO-CDR uses a crossover operator (eq. 16)
after the position update (eq. 3). The MOPSO-CDR has orig-
inally a mutation mechanism (see [14]) but the HBMOPSO-
CDR replaces the mutation mechanism of the MOPSO-CDR
by its own (eq. 17).

IV. EXPERIMENTS AND RESULTS

This section presents the experiments performed in order
to evaluate the search algorithms implemented in this work.
The experiments were performed on a case study related to
mobile devices. Other case studies in different domains will
be performed as future work.

A. Experiments Preparation

Initially, we selected two test suites related to different
features in the context of mobile devices2: an Integration
Suite and a Regression Suite. Both suites have 80 TCs, each
one representing an exhaustive test case scenario (see Table
I). The Integration Suite (which covers 410 requirements)
is focused on testing whether the various features of a
mobile device can work together, i.e., whether the integration
of the features behaves as expected. The Regression Suite
(covering 248 requirements), in turn, is aimed at testing
whether updates to a specific main feature (e.g., the message
feature) have not introduced faults into the already developed
(and previously tested) feature functionalities.

Table I summarizes the characteristics of each suite and a
more detailed explanation about them can be seen on [9].

TABLE I
CHARACTERISTICS OF THE TEST SUITES

Integration Suite Regression Suite
Total Effort to Execute 1053.91 min 699.31 min
all Test Cases
# of Requirements 410 248
Redundancy 0.36% 14.09%
# of Test Cases 80 80

B. Metrics

In our experiments, we evaluated the results (i.e., the
Pareto fronts) obtained by the algorithms DBMOPSO-
CDR, NBMOPSO-CDR, MBMOPSO-CDR, VCBMOPSO-
CDR and HBMOPSO-CDR for each test suite according to
four different quality metrics usually adopted in the literature
of multi-objective optimization. The following metrics were
adopted in this paper: Hypervolume [22], Generational Dis-
tance [23], Inverted Generational Distance [23] and Coverage
[22]. Each metric considers a different aspect of the Pareto
front:

1) Hypervolume (HV) [22]: computes the size of the
dominated space, which is also called the area under
the curve. A high value of hypervolume is desired in
MOO problems.

2) Generational Distance (GD) [23]: The Generational
Distance (GD) reports how far, on average, one Pareto
set (called PFknown) is from the true Pareto set (called
as PFtrue).

3) Inverted Generational Distance (IGD) [23]: is the
inverse of GD by measuring the distance from the
PFtrue to the PFknown.

4) Coverage (C) [22]: The Coverage metric indicates the
amount of the solutions within the non-dominated set
of the first algorithm which dominates the solutions
within the non-dominated set of the second algorithm.

Both GD and IGD metrics requires that the PFtrue be
known. Unfortunately, the PFtrue (for some problems) is

2These suites were created by test engineers of the Motorola CIn-BTC
(Brazil Test Center) research project.
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impossible to know a priori. Instead, a reference Pareto
frontier can be constructed and used when comparing dif-
ferent algorithms with respect to the Pareto frontiers they
produce [6]. The reference frontier (called here PFreference)
represents the union of all found Pareto sets, resulting in a
set of non-dominated solutions found.

C. Algorithms Settings

In this section, we present the main values of the pa-
rameters adopted for the algorithms. We adopted the same
values suggested by the authors from whom we derived our
algorithms.
• number of particles: 20
• mutation rate: 0.5
• inertia factor ω: linearly decreases from 0.9 to 0.4
• constants C1 and C2: 1.49
• Vmax: 4.0
• EA’s size: 200 solutions
• maximum fitness evaluations: 200,000

D. Results

For statistical analysis purposes, we executed each search
algorithm 60 times on each test suite. In each execution, a
Pareto front was produced. The values of coverage and cost
observed in the Pareto fronts were normalized since they are
measured using different scales. After normalizing the Pareto
fronts, all the evaluation metrics were computed.

We initially present the results for metrics Hypervolume,
GD and IGD, which are computed for each algorithm in-
dividually. Tables II and III show the mean and standard
deviation of these metrics for each algorithm respectively
on Integration Suite and Regression Suite. For each metric,
the superiority of an algorithm over the others is verified
using pairwise t-test and when the means are statistically not
different we use an asterisk (*) to indicate this.

From tables II, III, IV and V we observe that the
NBMOPSO-CDR outperformed the other in terms of GD
and Coverage metrics for both Integration and Regression
suites. This means that its solution set has better convergence
to the optimal Pareto set and its solutions has better dom-
inance among the others. So, the user could choose better
combinations between requirements’ coverage and execution
effort.

For the Hypervolume and IGD metrics we do not have
a clearly dominance among the techniques. For Integration
suite the HBMOPSO-CDR obtained the best results for this
metric, but for Regression suite the NBMOPSO-CDR was
the best for Hypervolume and for the IGD metric both
NBMOPSO-CDR and MBMOPSO-CDR were obtained the
best results. Because of that we cannot point out the best
algorithm in terms of coverage of the search space and
distribution to the optimal Pareto set.

One important thing to note is that the NBMOPSO-CDR
for all metrics outperformed the VCBMOPSO-CDR. So,
for our specific TC selection problem and by combination
with the MOPSO-CDR algorithm, the binary work of [18]
outperformed the work of [20], differently from the results

TABLE II
MEAN VALUE AND STANDARD DEVIATION - INTEGRATION SUITE

Hypervolume GD IGD
DBMOPSO-CDR 0.6 7.25E-3 3.93E-3

(5.74E-3) (4.32E-4) (2.01E-4)
NBMOPSO-CDR 0.63 6.24E-4 4.26E-3

(1.32E-2) (1.62E-4) (1.20E-3)
MBMOPSO-CDR 0.65 1.22E-3 2.61E-3

(5.64E-3) (1.89E-4) (4.49E-4)
VCBMOPSO-CDR 0.59 1.07E-3 6.31E-3

(1.22E-2) (3.85E-4) (9.48E-4)
HBMOPSO-CDR 0.66 2.79E-3 1.80E-3

(4.55E-3) (2.16E-4) (1.50E-4)

TABLE III
MEAN VALUE AND STANDARD DEVIATION - REGRESSION SUITE

Hypervolume GD IGD
DBMOPSO-CDR 0.80 1.27E-2 7.36E-3**

(6.87E-3) (1.51E-3) (7.02E-4)
NBMOPSO-CDR 0.88 6.00E-4 3.00E-3*

(7.85E-3) (1.98E-4) (1.15E-3)
MBMOPSO-CDR 0.87 1.32E-3 2.87E-3*

(5.86E-3) (3.75E-4) (9.22E-4)
VCBMOPSO-CDR 0.84 1.14E-3 7.12E-3**

(1.76E-2) (3.70E-4) (2.60E-3)
HBMOPSO-CDR 0.86 5.51E-3 3.57E-3

(4.92E-3) (8.18E-4) (5.56E-4)

obtained by [20]. And also for some metrics it also outper-
formed the work of [19] differing from the results obtained
by [19]. Furthermore, despite of the works of [18] and [20]
represent improvements to the [12] work, for some scenarios
of our experiments, the work of [12] outperformed the other
two. Nevertheless, further experiments should be performed
in order to verify whether these results can be obtained in
different TC selection contexts.

V. CONCLUSION

In this work, we propose the use of binary multi-objective
PSO for functional TC selection. The main contribution of
the current work was to investigate some PSO variations
in a multi-objective way for selecting functional test cases
considering both requirements coverage and execution effort.
The binary multi-objective PSO was barely investigated in
the context of TC selection.

We highlight that the developed methods can be adapted
to other test selection criteria and it is not limited to two
objective functions. Furthermore, we expect that these good
results can also be obtained on other application domains.

Knowing that the improvements were made to the orig-
inal discrete binary version of PSO, we implemented
five new binary multi-objective PSO, by combining the
MOPSO-CDR approach (see Section III) with the binary
PSO versions presented in Section II: the DBMOPSO-
CDR, NBMOPSO-CDR, MBMOPSO-CDR, VCBMOPSO-
CDR and HBMOPSO-CDR.

In the performed experiments, the NBMOPSO-CDR out-
performed the others for the GD and Coverage metrics. For
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TABLE IV
COVERAGE - MEAN VALUE AND STANDARD DEVIATION - INTEGRATION SUITE

Algorithm DBMOPSO-CDR NBMOPSO-CDR MBMOPSO-CDR VCBMOPSO-CDR HBMOPSO-CDR
C(DBMOPSO-CDR, -) - 4.07E-4 1.70E-4 5.11E-3 7.25E-4

(1.80E-3) (1.32E-3) (8.94E-3) (3.96E-3)
C(NBMOPSO-CDR, -) 0.92 - 0.72 0.69 0.74

(6.71E-2) (0.12) (0.24) (6.85E-2)
C(MBMOPSO-CDR, -) 0.99 0.10 - 0.22 0.77

(1.19E-2) (7.07E-2) (0.13) (5.38E-2)
C(VCBMOPSO-CDR, -) 0.79 0.19 0.50 - 0.54

(6.88E-2) (0.16) (0.11) (6.63E-2)
C(HBMOPSO-CDR, -) 0.99 1.55E-2 4.37E-2 3.54E-2 -

(4.06E-3) (1.89E-2) (3.34E-2) (2.93E-2)

TABLE V
COVERAGE - MEAN VALUE AND STANDARD DEVIATION - REGRESSION SUITE

Algorithm DBMOPSO-CDR NBMOPSO-CDR MBMOPSO-CDR VCBMOPSO-CDR HBMOPSO-CDR
C(DBMOPSO-CDR, -) - 3.49E-4 0 7.33E-4 1.95E-3

(1.90E-3) (0) (3.31E-3) (7.60E-3)
C(NBMOPSO-CDR, -) 0.96 - 0.82 0.73 0.91

(4.14E-2) (0.12) (0.21) (5.54E-2)
C(MBMOPSO-CDR, -) 0.97 9.92E-2 - 0.36 0.90

(3.57E-2) (9.30E-2) (0.23) (4.87E-2)
C(VCBMOPSO-CDR, -) 0.93 0.15 0.43 - 0.75

(5.37E-2) (0.15) (0.19) (9.64E-2)
C(HBMOPSO-CDR, -) 0.99 5.28E-3 1.46E-2 1.66E-2 -

(1.79E-2) (1.11E-2) (2.01E-2) (2.15E-2)

the others metrics we cannot point out which algorithm
dominated the others. Hence, a deeper investigation and
further experiments should be done as future work.

Another future work is to perform the same experiments
on a higher number of test suites and to verify whether
the obtained results are equivalent to the present work and
whether these results can be extrapolated to other test’s
scenarios other than mobile devices. Furthermore, we plan to
determine whether the adopted metrics are indeed suitable to
measure the quality of test suites and the behavior of them.

Also, we will investigate the impact of changing the
PSO’s parameters in its performance on the TC selection
problem. Besides, we intend to implement theses binary
PSO versions with other multi-objective PSO approaches
for a more complete comparison between techniques and to
determine the distinct advantages of using MOPSO-CDR.
Finally, we will investigate strategies to combine search
techniques, in order to provide hybrid algorithms for multi-
objective TC selection.
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