

Abstract—This paper presents a discrete artificial bee colony
algorithm to solve the assignment and parallel machine
scheduling problem in DYO paint company. The aim of this
paper is to develop some algorithms to be employed in the DYO
paint company by using their real-life data in the future.
Currently, in the DYO paint company; there exist three types of
filling machines groups. These are automatic, semiautomatic
and manual machine groups, where there are several numbers
of identical machines. The problem is to first assign the filling
production orders (jobs) to machine groups. Then, filling
production orders assigned to each machine group should be
scheduled on identical parallel machines to minimize the sum of
makespan and the total weighted tardiness. We also develop a
traditional genetic algorithm to solve the same problem. The
computational results show that the DABC algorithm
outperforms the GA on set of benchmark problems we have
generated.

I. INTRODUCTION
HE DYO paint company produces several number of
industrial paints for Turkish market. The DYO paint
company is the first domestic brand of Turkish paint

industry. In the DYO Paint Company, there are different
types of paints, different types of packages and three types of
filling machines groups, namely, automatic, semiautomatic
and manual, where there are several number of identical
machines. Currently, they face two main problems in the
factory. The first one is how to assign the jobs to machine
groups, and the second one is how to schedule these assigned
jobs on the identical parallel machines. These two main
problems are carried out by human expertise based on
experience without employing any intelligent algorithm. Due
to the poor assignment and scheduling of jobs in the paint
filling unit, the machine utilization is very low and customer
orders are mostly not satisfied on time.

Parallel machine scheduling has a wide range of literature.
Since the parallel machines are identical in the DYO paint
company, the literature related to identical parallel machines
is given below.

In parallel machine scheduling problem, ݊ jobs are
scheduled through ݉ machines in parallel and different

performance measures such as total flow time, maximum
completion time (makespan) and total tardiness are
considered.

For the single machine systems, it is stated that minimizing
the total tardiness is NP-hard problem in [1], therefore, the
parallel machine problem with total tardiness criterion is
strongly NP-hard, too [2]. This paper considers the
scheduling problem involving identical parallel machines
where the objective is the minimization of makespan and total
weighted tardiness of all jobs. By using the notation in [3-4], ܲ// ∑ ܶ denotes that ܲ is the identical parallel machine
problem, and ∑ ܶ is the total tardiness. Regarding the
makespan and total flowtime criteria, ܲ//ܥ௫ and ܲ// ∑ w୨ܥ are both NP-hard, too [5-6].
 The first study about parallel machine was at the end of the
50s in [7]. Then, some priority rules are developed to assign
jobs to the identical parallel machines in [8]. Some exact
algorithms can be found in [9-12]. However, due to the
NP-Hard nature of these problems, many researchers have
concentrated on heuristic methods. Most heuristic methods
are based on List Scheduling, in which the jobs are sorted
using a rule and based on this rule, they are assigned to the
machines according to their earliest time to finish their
operations. These kinds of heuristic methods are studied in
[13]-[16]. In addition, a decomposition heuristic and hybrid
simulated annealing heuristic are proposed in [17]. Also, for
the scheduling problem in parallel machines which has
objective to minimize the total tardiness, a genetic algorithm
was used in [18]. For minimizing the completion time of the
parallel machine flowshop scheduling problem, a tabu search
was used in [19]. The tabu search and simulated annealing
algorithms were compared in [20]. Recently, a hybrid
heuristic algorithm was proposed in [21]. In order to
minimize total tardiness of parallel machine problems, that
include non-cumulative setup times, a tabu search was used in
[22].

The remaining paper is organized as follows. Section 2
introduces the problem definition whereas Section 3
introduces the discrete artificial bee algorithm. The details of
the genetic algorithm proposed for the problem is provided in
Section 4. Section 5 discusses the computational results over

A Discrete Artificial Bee Colony Algorithm for
the Assignment and Parallel Machine Scheduling

Problem in DYO Paint Company

 Damla Kizilay, M. Fatih Tasgetiren, Onder Bulut, Bilgehan Bostan
 Dept of Engineering, Dept of Engineering, Dept of Engineering Production Planning Manager
 Yasar University, Yasar University, Yasar University, DYO Paint Company
 İzmir, Turkey, İzmir, Turkey, İzmir, Turkey, İzmir, Turkey
damla.kizilay@yasar.edu.tr fatih.tasgetiren@yasar.edu.tr onder.bulut@yasar.edu.tr bilgehan.bostan@dyo.com.tr

T

653

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

benchmark problems in total of both objectives – makespan
and total flowtime. Finally, Section 6 summarizes the
concluding remarks.

II. PROBLEM DEFINITION
The problem will be handled by considering two stages:
Assignment of the jobs to the machine groups and then
scheduling of the partial jobs in each machine group having
identical parallel machines.
 The generalized assignment problem (GAP) is to find a
minimum cost assignment of jobs to agents such that each job
is assigned to exactly one agent, subject to capacity constraint
of agents [23-25]. The mathematical model of GAP can be
described as follows. Let ܫ ൌ ሼ1,2, … , ݉ሽ be a set of agents,
and let ܬ ൌ ሼ1,2, … , ݊ሽ be a set of jobs. Define ܿ as the cost
of assigning job ݆ to agent ݅ (or assigning agent ݅ to job ݆); ݎ
as the resource required by agent ݅ to perform job ݆, and ܾ as
the resource availability (capacity) of agent ݅. In addition, ݔ
is a 0 െ 1 variable that is 1 if agent ݅ performs job ݆ and 0
otherwise. The standard integer mathematical formulation of
the GAP is as follows:
 ݉݅݊ ܼ ൌ ∑ ∑ ܿݔאאூ .ݏ (1) ∑ :ݐ ூאݔ ൌ ݆ 1 א ∑ (2) ܬ ݔݎ ܾא ݅ א ݔ (3) ܫ א ሼ0,1ሽ ݅ א ݆ ܫ א (4) ܬ

 Constraint (2) ensures that each ensures that each job is
assigned to exactly one agent and constraint (3) ensures that
the total resource requirement of the jobs assigned to an agent
does not exceed the capacity of the agent. The GAP may have
no solution, and even the problem of finding a feasible
assignment is NP-complete [26].
 The assignment problem in DYO is similar to the GAP.
Jobs and agents can be considered as production orders and
parallel machine groups, respectively. Processing times of the
jobs can be considered as the total resource requirement and
capacity of each machine group can be considered as the
capacity of agents. However, it is very difficult to determine
the cost of assigning jobs to machine groups in our problem
on hand. By inspiring from the above GAP formulation, we
develop a heuristic solution representation and the problem
formulation by defining an agent ݔ (machine groups) as
follows:

• ݆ ൌ number of jobs, ݆ ൌ ሼ1,2, . . , ݊ሽ
• ݅ ൌ number of parallel machine groups, ݅ ൌ1,2, . . , ݃
• ݊ ൌ number of jobs assigned to each machine

group ݅.
• For this reason, ݊ ൌ ∑ ݊ୀଵ .
ߨ • ൌ partial set of jobs assigned to each machine

group ݅.
ߨ • ൌjob ݆ assigned to machine group ݅.

 • ൌ processing time of job ݆ on machine group ݅.
• ݀ ൌ due date of job ݆ on machine group ݅.
ݓ • ൌ weight of job ݆ on machine group ݅.

Since DYO schedules 80 jobs every day and finish them to

completion in one shift, the ready times are considered to be
zero.

Once the assignments are made and partial job sets ߨԢݏ are
determined by the proposed algorithms, the completion time
of jobs ܥగೕ and the tardiness గܶೕ can be computed as
follows: ܥ௫ ൌ ݔܽ݉ ቄܥగೕቅ. (5)

గܶೕ ൌ ݔܽ݉ ቄ0, గೕܥ െ ݀గೕቅ. (6) ܹܶܶ ൌ ∑ ∑ గೕݓ గܶೕୀଵୀଵ ௫௫ܥ (7) . ൌ ݅ ሻ൯ߨ௫ሺܥ൫ݔܽ݉ ൌ 1, . . , ݃ (8)

Since the objective function is bi-objective, we give a
weight α to the first part of the objective function whereas 1 െ ݊݅݉ :is given to the second part as follows ߙ ݂ሺߨሻ ൌ ௫௫ሻܥሺߙ ሺ1 െ ሻܹܶܶ (9)ߙ

The first part tries to maximize the machine utilization and
the second part tries to minimize the total weighted tardiness.
To solve the problem described above, we propose a DABC
and a GA and their details are given in subsequent sections.

III. DISCRETE ARTIFICIAL BEE COLONY ALGORITHM

A. Traditional ABC Algorithm
In the ABC model, the colony consists of three groups of

bees: employed bees, onlookers and scouts [27]. The number
of solutions in the population is equal to the number of food
sources and represented by D-dimensional real-valued vector.
The ABC algorithm is stated to be an iterative process [27-32].
The ABC algorithm can be summarized as follows:

Initial food sources of the basic ABC algorithm are
randomly created according to the range of the boundaries as
follows: ݔ ൌ ݔ ൫ݔ௫ െ ൯ݔ ൈ ܲܰ (10) ݎ represents the number of food sources, namely, ݅ ൌ 1, . . . , ݆ ,represents the number of decision variables ܦ ;ܲܰ ൌ 1, . . , ܦ ; and r represents a uniform random number
between 0 and 1. In the initial population a counter value 0 is
used for each food source, i.e. ܿݐ݊ݑ ൌ 0 .

In the employed bee phase, the neighboring food source is
generated as follows: ݒ ൌ ݔ ݔ൫ െ ൯ (11)ݔ

Where j א ሼ1, . . , Dሽ and k א ሼ1, . . , NPሽ. ୧୨ is a uniform
random number which is generated in the range ሾെ1,1ሿ. If v୧୨
does not fit the boundaries, it is restricted to initial range with
equation 10. Then its fitness value is obtained as follows:

654

ݏݏ݁݊ݐ݂݅ ൌ ൜ 1 ሺ1 ݂ሻ⁄ ݂݅ ݂ 01 ሺݏܾܽ ݂ሻ ݂݅ ݂ ൏ 0 (12)

If the new food source ݒ is better than ݔ, it is replaced by ݒ in a greedy manner. The counter ܿݐ݊ݑ is kept as 0, else it
is increased by 1. For all the employed bees in the population,
the same process goes over again.

In the onlooker bee phase, the roulette wheel selection is
used and for the each food source a probability is generated as
follows: ൌ ௧௦௦∑ ௧௦௦ಿುసభ (13)

A uniform random number r is generated in the range [0,1].
if ݎ is smaller than the probability , a neighboring food
source is generated with equation 11. If the new food source ݒ is better than ݔ, it is replaced by ݒ in a greedy manner.
The counter ܿݐ݊ݑ is kept as 0, else it is increased by 1. For
all the onlooker bees in the population, same process goes
over again.

In the scout bee phase, the sources abandoned are
determined according to the counter of each solution.
Determination is done through the comparison between the
value of the counter ܿݐ݊ݑ and the control parameter
 means that ”ݐ݈݅݉݅“ than theݐ݊ݑܿ Having greater .”ݐ݈݅݉݅“
the food source ݔ is abandoned. In order to provide
diversification for the ABC algorithm, abandoned ݔ is
forgotten and the new one is generated instead by using
equation 10.

Because, the original ABC algorithm is designed for the
real-parameter optimization problems, some modifications
are needed for discrete/combinatorial problems. These
modifications are explained below:

B. Discrete ABC
In the discrete version, we still follow the basic framework

of the original one as follows:
1. Initialize the population.
2. Employed bee phase to exploit the food sources.
3. Onlooker bee phase to search for new food sources.
4. Scout bee phase to search for new food sources.
5. Keep the best food source found so far.
6. If a termination criterion has not been satisfied, go to

step 2; otherwise stop the procedure and report the
best food source found so far.

C. Solution Representation
We employ a unique solution representation inspired from

the GAP. For 15 production orders and 3 machines groups,
the solution representation is given in Fig. 1:

Fig. 1. Solution Representation

In Fig. 1, ߨଵ ൌ 1 represents the jobs ݆ assigned to manual
machine group, ߨଶ ൌ 2 represents the jobs ݆ assigned to

semi-automatic machine group, and ߨଷ ൌ 3 represents the
jobs ݆ assigned to automatic machine group.

D. Initial Population
In the DABC algorithm, the initial population is

established randomly by assigning ߨ values in the range
[1,3]. For each food source in the population, one strategy
amongst three is assigned to each food source randomly.
These strategies generating new food sources will be
explained later on.

E. An Example
In the following example in Fig. 2, there are 15 jobs and 3

machine groups. Fig.2 indicates that the partial job set of
machine groups will be determined as ߨଵଵ ൌ ሼ4,5,7,10,12ሽ
for manual machine group, ଶଶߨ ൌ ሼ2,3,11,14,15ሽ for
semi-automatic machine group, and ߨଷଷ ൌ ሼ1,6,8,9,13ሽ ,
respectively.

Fig. 2. An Example of Solution representation

We assume that there are two parallel machines in each
machine groups. So these partial job sets will be scheduled on
parallel machine by using a list-scheduling approach as
illustrated in Fig. 3 to Fig. 5 as follows:

Fig. 3. Manual Machines

Fig. 4. Semi-automatic Machines

Fig. 5. Automatic Machines

655

F. Neighborhood Structures
As the neighborhood structures, we employ shift and swap
moves in the DABC algorithm. As shown in Fig. 6, ଵܰሺߨሻ ൌݐ݂݄݅ݏሺߨሻ means that machine group assignment of job 4 is
shifted from 1 to 3 and of job 12 from 1 to 3, too. Since the
assignments are changed in the solution ߨ , the new partial
solutions will be obtained as ߨଵଵ ൌ ሼ5,7,10ሽ ଶଶߨ , ൌሼ2,3,11,14,15ሽ, ߨଷଷ ൌ ሼ1,4,6,8,9,12,13ሽ, respectively.

Fig. 6. Shift move

 In the swap move, machine assignments of two randomly
selected jobs will be exchanged. As shown in Fig. 7, ଶܰሺߨሻ ൌ ሻ means that machine group assignment ofߨሺܽݓݏ
job 4 and job 13 were exchanged. Again, because the
assignments are changed in the solution ߨ , the new partial
solutions will be obtained as ߨଵଵ ൌ ሼ5,7,10,13ሽ ଶଶߨ , ൌሼ2,3,11,14,15ሽ, ߨଷଷ ൌ ሼ1,4,6,8,9,12ሽ, respectively.

Fig. 7. Swap move

G. Employed Bee Phase
In the employed bee phase, new food sources are obtained

through some strategies around the neighborhood of the
current position. We employ three types of neighborhood
structures. These structures are based on shift and swap
operators. Using these strategies denoted as ܵ൫ߨ൯ , new
food sources in the neighborhood are obtained for the
employed bees as follows:

 ଵܵ: Perform one shift, one swap move to solution ߨ . ܵଶ: Perform two shifts, two swap moves to solution ߨ . ܵଷ: Perform three shift, three swap moves to solution ߨ .

After obtaining a neighboring food source by employing
strategy ܵ൫ߨ൯ assigned to the food source ݅ , we apply a
variable neighborhood search algorithm (VNS) [33] to the
new food source to further enhance the solution quality. For
the selection, a new source will always be accepted if it is
better than the current food source.

The number of employed bees is taken as the population
size ܰܲ. The VNS local search procedure will be explained in
detail later on.

H. Onlooker Bee Phase
In the onlooker bee phase, a food source ߨ is determined

by the tournament selection of size 2. In the tournament
selection, two food sources are randomly chosen from the
population, and the better one is chosen according to their

fitness values (ߨ ൌ ܶܵ௦௧ ௧௪൫ߨ א ܰܲ൯). Then,
similar to the employed bee phase, corresponding strategy ܵ൫ߨ൯ is applied to the food source selected. After applying
the corresponding strategy, the VNS algorithm is applied to
the food sources.

The number of onlooker bees is taken as the population
size ܰܲ. The VNS local search procedure will be explained in
detail later on.

I. Scout Bee Phase
In the scout bee phase, a tournament selection with the size

of 2 is again used to discard the worse of two randomly
selected food sources that have been picked out from the
population. Then, the scout obtains a food source by the
strategy assigned to it.

J. Variable Neighborhood Search
The following VNS local search described in [34] is

employed in both the employed bee and onlooker bee phases.
The aim is to further improve the objective function on the
partial job sets. Sequentially, the VNS local search is applied
to each partial job set. As the neighborhood structures, single
insert and swap move is applied to the permutation in the each
partial job set. The VNS local search is given in Fig. 8.

݈݃݊݅ݑ݄݀݁ܿܵݐݏ݅ܮܸܵܰ ቀߨ א ൫ߨ൯ቁ
 ݀௫ ൌ 2
כߨ ൌ ߨ ݀ ൌ ሼ݀ 1

ଵߨ ൌ ௗܰሺכߨሻ % ଵܰሺכߨሻ ൌ ሻכߨሺݐݎ݁ݏ݊ܫ

 ݂݅ ݂ሺߨଵሻ ൏ ݂ሺכߨሻ ݄݊݁ݐ % ଶܰሺכߨሻ ൌ ሻכߨሺܽݓܵ
כߨ ൌ ଵߨ

 ݀ ൌ 1
 ݁ݏ݈݁

 ݀ ൌ ݀ 1
 ሽ݈݄݁݅ݓ ሺ݀ ݀௫ሻ ܴ݁݊ݎݑݐ ݂ሺכߨሻ

Fig. 8. Referenced Local Search

The complete computational procedure of the DABC
algorithm is given in Fig. 9.
 ܥܤܣܦ ݁ݎݑ݀݁ܿݎܲ

Step 1. ܵ݁ݏݎ݁ݐ݁݉ܽݎܽ ݐ ܰܲ ൌ 10 ܽ݊݀ ܵ௫ ൌ 3

Step 2. ݕ݈݉݀݊ܽݎ ݊݅ݐ݈ܽݑ ݈ܽ݅ݐ݅݊݅ ݄ݏ݈ܾ݅ܽݐݏܧ

Step 3. ݕ݈݉݀݊ܽݎ ݁ܿݎݑݏ ݂݀ ݄ܿܽ݁ ݐ ݕ݃݁ݐܽݎݐݏ ܽ ݊݃݅ݏݏܣ
൯ߨ൫ܵ ݕܾ ൌ ௦௧ߨ ݂݀݊݅ ݀݊ܽ ݊݅ݐ݈ܽݑ ݁ݐܽݑ݈ܽݒܧ .ሺሻ%ܵ௫ Step 4݀݊ܽݎ

Step 5. ܴ݁ߨ ܾ݁݁ ݀݁ݕ݈݉݁ ݄ܿܽ݁ ݎ݂ ݃݊݅ݓ݈݈݂ ݄݁ݐ ݐܽ݁ሺ݁ݏ݄ܽܲ ݁݁ܤ ݀݁ݕ݈݉ܧሻ

a. ߨ ݕ݃݁ݐݎܽݐݏ ݕܾ ݁ܿݎݑݏ ݂݀ ݓ݁݊ ܽ ݁ݐܽݎ݁݊݁ܩ௪ ൌ ܵ൫ߨ൯

656

b. ߨ ݏ݊݅ݐݑ݈ݏ ݈ܽ݅ݐݎܽ ݁݊݅݉ݎ݁ݐ݁ܦ , c. ݎܨ ݄݁ܽܿ ݅, ௪ߨ ݕ݈ܽ ൌ ߨ൫݈݃݊݅ݑ݄݀݁ܿܵݐݏ݅ܮ ܸܵܰ ൯ d. ݁ݑ݈ܽݒ ݊݅ݐܿ݊ݑ݂ ݁ݒ݅ݐ݆ܾܿ݁ ݁ݐݑ݉ܥ, ݂ሺߨ௪ሻ e. ݂݅ ݂ሺߨ௪ሻ ൏ ݂൫ߨ൯, ߨ ൌ ௪ሻߨ௪ f. ݂݅ ݂ሺߨ ൏ ݂ሺߨ௦௧ሻ ߨ ݄݊݁ݐ௦௧ ൌ ߨ ݊݅ݐ݈ܿ݁݁ݏ ݐ݊݁݉ܽ݊ݎݑݐ ݕܾ ݁ܿݎݑݏ ݂݀ ܽ ݐ݈ܿ݁݁ܵ .ሻ a݁ݏ݄ܽܲ ݁݁ܤ ݎ݁݇ ሺܱ݈݊ݔ ܾ݁݁ ݎ݈݁݇݊ ݄ܿܽ݁ ݎ݂ ݃݊݅ݓ݈݈݂ ݄݁ݐ ݐܴܽ݁݁ .௪ Step 6ߨ ൌ ܶܵ௦௧ ௧௪൫ߨ א ܰܲ൯ b. ݕ݃݁ݐݎܽݐݏ ݕܾ ݁ܿݎݑݏ ݂݀ ݓ݁݊ ܽ ݁ݐܽݎ݁݊݁ܩ ܵ ߨ௪ ൌ ܵ൫ߨ൯ c. ߨ ݏ݊݅ݐݑ݈ݏ ݈ܽ݅ݐݎܽ ݁݊݅݉ݎ݁ݐ݁ܦ d. ݎܨ ݄݁ܽܿ ݇, ௪ߨ ݕ݈ܽ ൌ ߨ൫݈݃݊݅ݑ݄݀݁ܿܵݐݏ݅ܮ ܸܵܰ ൯ e. ݁ݑ݈ܽݒ ݊݅ݐܿ݊ݑ݂ ݁ݒ݅ݐ݆ܾܿ݁ ݁ݐݑ݉ܥ, ݂ሺߨ௪ሻ f. ݂݅ ݂ሺߨ௪ሻ ൏ ݂൫ߨ൯, ߨ ൌ ௪ሻߨ௪ g. ݂݅ ݂ሺߨ ൏ ݂ሺߨ௦௧ሻ, ߨ௦௧ ൌ ߨ ݊݅ݐ݈ܿ݁݁ݏ ݐ݊݁݉ܽ݊ݎݑݐ ݕܾ ݁ܿݎݑݏ ݂݀ ܽ ݐ݈ܿ݁݁ܵ .ሻ a݁ݏ݄ܽܲ ݁݁ܤ ݐݑ ሺܵܿߨ ܾ݁݁ ݐݑܿݏ ݄ܿܽ݁ ݎ݂ ݃݊݅ݓ݈݈݂ ݄݁ݐ ݐܴܽ݁݁ .௪ Step 7ߨ ൌ ܶܵ௪௦௧ ௧௪൫ߨ א ܰܲ൯ b. ߨ ݇ ݕ݃݁ݐݎܽݐݏ ݕܾ ݁ܿݎݑݏ ݂݀ ݓ݁݊ ܽ ݁ݐܽݎ݁݊݁ܩ௪ ൌ ܵ൫ߨ൯ c. ߨ௪ ൌ ߨ .௪ሻ dߨሺ݈݃݊݅ݑ݄݀݁ܿܵݐݏ݅ܮ ܸܵܰ ݕ݈ܣ ൌ ௪ሻߨ௪ e. ݂݅ ݂ሺߨ ൏ ݂ሺߨ௦௧ሻ, ߨ௦௧ ൌ ,ݐ݁݉ ݐ݊ ݏ݅ ݊݅ݎ݁ݐ݅ݎܿ ݃݊݅ݐݏ ݄݁ݐ ݂ܫ .௪ fߨ ,5 ݁ݐܵ ݐ ݐ݃ ௦௧ߨ ݊ݎݑݐ݁ݎ ݀݊ܽ ݐݏ ݁ݏ݈݁
Fig. 9. Outline of the ABC algorithm

IV. GENETIC ALGORITHM
Genetic algorithms (GA) are a part of parallel search

heuristics originated by the biological process of natural
selection and evolution [35]. In GA optimization, solutions
are coded into chromosomes in order to construct a
population being evolved through generations. At each
generation, we use crossover operator, which is a process of
taking more than one parent solutions and producing a child
solution from them. Then, mutation and perturbation occurs
for some of the individuals. After that, they are gathered to
select new individuals for next generation. This procedure is
repeated until the stopping criterion is satisfied.

In the proposed GA, we select one individual in random and
the second one is with the tournament selection of size 2 to
mate them. By using them, we generate an offspring with
PTL crossover operator [36] where two cut points are
determined and machine groups in cut points are either copied

to the front or the end of the individual. The PTL crossover is
given in Fig. 10.

Parent 1 3 2 2 1 1 3 1 3 3 1 2 1 3 2 2

Parent 2 2 1 1 3 2 3 1 2 1 3 3 2 2 1 3

Offspring1 1 3 1 3 3 1 2 1 1 3 3 2 2 1 3

Offspring 2 2 1 1 3 3 2 2 1 3 1 3 1 3 3 1

Fig. 10. PTL crossover operator

As a mutation operator, offspring is mutated with two shift
and two swap strategy with a mutation probability ܲ ൌ 1/݊.
To consistent with the DABC algorithm, we take crossover
probability as ܲ ൌ 1. After generating offspring population,
selection is carried out by using the tournament selection with
size 2 between current population and offspring population.
This procedure is repeated until the same stopping criterion is
achieved. The following computational procedure explains
the components of the proposed GA:

Step 1. Set the population size ܰܲ,
Step 2. Initialize the population randomly:
Step 3. For ݅ ൌ 1,2, … , ܰܲ, repeat the following sub-steps:

a. For the individual ߨ , select a mate ߨ from the
population by the tournament selection with size 2.

b. Produce a new offspring by recombining them
with PTL crossover.

c. Mutate ߨ with a mutation probability ܲ ൌ 1/݊.
d. Evaluate the new offspring and apply VNS List

Scheduling to .
Step 4. Make selection between current population by using

tournament selection with size of 2 and update best so far
solution ߨ௦௧.

Step 5. If the termination criterion is reached, return the best
solution found so far ߨ௦௧; otherwise go to Step 3.

V. COMPUTATIONAL RESULTS
The DABC and GA algorithms were coded in Visual C++

and run on an Intel(R) Core(TM) i5-3360M 2.8 GHz with
8GB memory. We generated our own benchmark problems as
follows: For automatic machines group, the processing times
are generated between 5 and 11, for semi-automatic machines
groups, processing times are generated between 11 and 16,
for manual machines groups, processing times are generated
between 16 and 21. We devised 10 instances for 100 job
problems, 200 job problems, 300 job problems, 400 job
problems and 500 job problems.

For each instance of each problem size, we carried out 5
replications and we provide the average (Avg), minimum
(Min), maximum (Max) and the standard deviation of five
runs of 10 instances for each problem category. We fixed the
population size at 10 for the DABC and 20 for the GA to
make them have the same number of function evaluations.
Since we have two objectives with the weight ߙ, we run both
algorithms with ߙ ranging from 0 to 1, i.e,

657

ߙ ൌ ሼ0.0,0.1,0.2, . . . ,1.0ሽ. For the ߙ ൌ 0.0, the computational
results are given from Table I to Table XXII, respectively:

TABLE I

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 0.0

DABC
Jobs Avg Min Max Std CPU
100 618.60 583.10 709.70 53.58 58.58
200 3910.30 3536.40 4618.20 439.53 200.50
300 10519.50 9380.70 12188.10 1139.34 420.61
400 20306.70 18302.30 23086.50 1906.69 719.32
500 34060.50 30994.70 38144.20 2871.37 1185.57

TABLE II

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 0.0

GA
Jobs Avg Min Max Std CPU
100 639.80 594.60 763.10 72.58 95.81
200 4397.60 3951.00 5081.90 462.92 328.09
300 11724.30 10771.60 13014.80 940.51 694.73
400 22840.40 21503.40 24252.10 1136.55 1186.21
500 37387.30 35755.00 39614.00 1538.86 1812.71

As seen in the tables above, in DABC algorithm, the results

of Avg, Min, Max values are superior to GA. For example,
the deviation for the largest problem size was
37387/34060=1.1 for Avg. value. It indicates that there is
10% improvement over GA. However, for larger size of
problems, GA generated lower STD values, hence it was
more robust than DABC.

TABLE III

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 0.1

DABC
Jobs Avg Min Max Std CPU
100 955,7 916,10 1060,10 62,45 59,59
200 6718,4 6042,80 7904,50 760,95 207,83
300 18386,2 16519,10 21395,90 1959,25 433,94
400 35886,9 32441,90 40375,50 3166,65 730,14
500 59532,4 53967,30 67117,70 5190,48 1125,24

TABLE IV

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 0.1

GA
Jobs Avg Min Max Std CPU
100 1059,9 939,90 1312,90 159,65 96,27
200 7500,9 6743,70 8527,50 765,14 330,33
300 20691,8 18899,40 23154,30 1725,54 683,64
400 40149,9 37961,10 43288,60 2158,85 1160,89
500 67293,3 64563,10 70654,00 2538,63 1779,56

When the DABC and GA algorithms was compared

according to ߙ ൌ 0.1, results of the DABC algorithm yielded
much better results in terms of Avg, Min, Max. For 500 jobs,
the deviation was 67293/59532=1.13 meaning that it is a 13%
improvement over GA. However, GA was more robust.

TABLE V

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 0.3

DABC
Jobs Avg Min Max Std CPU
100 794,4 746,50 908,70 66,72 68,60
200 5319,9 4797,30 6330,30 628,37 228,74
300 14354,9 12837,80 16580,50 1486,34 432,50
400 28428,6 25566,40 32250,20 2687,41 740,31
500 46493,5 42562,00 51923,90 3739,78 1132,64

TABLE VI

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 0.3

GA
Jobs Avg Min Max Std CPU
100 844,4 762,70 1014,50 107,17 98,94
200 6120 5477,80 6951,50 606,31 345,72
300 16268,4 14969,30 17859,10 1174,93 720,17
400 31762,8 30081,40 33760,00 1524,95 1177,26
500 51632,1 48675,20 54943,50 2540,89 1806,78

According to ߙ ൌ 0.3 , while DABC algorithm having

better results than GA algorithm in terms of Avg, Min, Max
values, GA was robust than DABC. The deviation for the
largest problem was 51632/46493=1.11 indicating 11%
improvement over GA.

TABLE VII

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 0.5

DABC
Jobs Avg Min Max Std CPU
100 618,6 583,10 709,70 53,58 58,58
200 3910,3 3536,40 4618,20 439,53 200,50
300 10519,5 9380,70 12188,10 1139,34 420,61
400 20306,7 18302,30 23086,50 1906,69 719,32
500 34060,5 30994,70 38144,20 2871,37 1185,57

TABLE VIII

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 0.5

GA
Jobs Avg Min Max Std CPU
100 639,8 594,60 763,10 72,58 95,81
200 4397,6 3951,00 5081,90 462,92 328,09
300 11724,3 10771,60 13014,80 940,51 694,73
400 22840,4 21503,40 24252,10 1136,55 1186,21
500 37387,3 35755,00 39614,00 1538,86 1812,71

According to the tables for ߙ ൌ 0.5, similar results are

obtained. the DABC algorithm yielded approximately 10%
improvement over GA again. But, GA was more robust than
DABC because it generated lower STD values.

TABLE IX

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 0.7

DABC
Jobs Avg Min Max Std CPU
100 450,8 421,30 523,30 42,51 67,54
200 2483,1 2245,30 2887,10 264,60 222,30
300 6541,3 5835,50 7670,90 735,04 466,08
400 12460,8 11255,70 14195,30 1186,71 723,92
500 20559,5 18745,40 23133,90 1751,52 1125,24

658

TABLE X

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 0.7

GA
Jobs Avg Min Max Std CPU
100 473,3 426,60 561,20 56,51 102,58
200 2769,5 2482,00 3188,90 291,11 340,53
300 7390,3 6892,70 8147,30 521,17 741,58
400 13999,5 13330,90 14884,40 642,58 1152,57
500 22875,4 21982,20 24100,50 888,76 1767,12

When the results in the tables IX and X are compared for

the Avg, Min, Max values, again the DABC algorithm
outperformed GA. However, GA algorithm is better than
DABC algorithm in terms of STD values.

TABLE XI

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 0.9

DABC
Jobs Avg Min Max Std CPU
100 268,8 250,30 304,60 22,23 59,66
200 1070,1 965,50 1251,70 117,25 202,20
300 2540,6 2273,40 2938,20 267,37 421,99
400 4766,5 4321,30 5377,00 422,73 723,43
500 7584,7 6915,20 8466,90 620,10 1142,90

TABLE XII

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 0.9

GA
Jobs Avg Min Max Std CPU
100 280,7 255,30 334,80 33,68 95,07
200 1199,5 1088,50 1354,20 110,01 308,85
300 2879,7 2701,90 3116,60 168,48 594,28
400 5322,1 5019,20 5612,40 233,62 1054,16
500 8452,9 8186,80 8831,20 265,56 1654,96

The results are given for ߙ ൌ 0.9 in the tables above. The

DABC algorithm again produced better results than GA.
However, GA was more robust than DABC since it generated
lower STD values.

TABLE XII

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 1.0

DABC
Jobs Avg Min Max Std CPU
100 179,9 165,90 202,60 15,42 40,75
200 377,6 344,30 422,50 32,44 120,28
300 583,1 537,50 644,00 42,84 263,48
400 798 740,60 864,70 49,05 436,75
500 1027,5 973,00 1085,60 45,03 579,37

TABLE XIV

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 1.0

GA
Jobs Avg Min Max Std CPU
100 193,7 181,00 213,00 13,30 67,63
200 413,3 395,70 436,60 17,67 192,59
300 639,1 622,60 663,60 17,25 370,26
400 869,3 857,90 885,90 11,92 621,52
500 1091,9 1083,90 1105,60 9,13 903,04

As seen in the tables above, DABC algorithm generated

slightly better results in terms of Avg, Min, Max values. In

other words, the improvement over GA was 1091/1027=1.06.
However, GA was more robust than DABC.

It is worth noting that for ߙ ൌ ߙ ݀݊ܽ 0.0 ൌ 1.0 , better
results are achieved by the DABC algorithm. However, ߙ ൌ 0.0 indicates only the total weighted tardiness and ߙ ൌ 1.0 indicates only the makespan criterion. When
analyzing these results, it can be seen that the DABC results
was much more better when considering only the total
weighted while DABC and GA performed almost similar
when considering only makespan criterion.

TABLE XIV

COMPUTATIONAL RESULTS OF DABC AND GA FOR ߙ ൌ 0.9

In the Table XIV, results are shown by taking the average

of 5 replications of 100 jobs for each instance for ߙ ൌ 0.9.
According to the results, it can be seen that DABC algorithms
yielded better results than GA for all statistics (Min, Max,
Avg, Std).

VI. CONCLUSION
In this paper, we presented a DABC and GA to solve a

problem from the real-life. We developed DBAC and GA
algorithms to assign the filling production orders to machine
groups, then schedule them on each identical parallel machine
groups. We also presented a unique solution representation
inspired from general assignment problem. In addition, we
developed a VNS local search to further improve the solution
quality. We also devised benchmark instances to test the
performance of the algorithms proposed. The computational
results show that the DABC algorithm outperforms the GA on
set of benchmark problems we generated.

As a future work, we will apply these algorithms to
real-life data from DYO painting company in order to
develop a decision support system for them.

REFERENCES
[1] Du, J. and Leung, J.Y.T., (1990), Minimizing total tardiness on one

machine is NP-hard, Mathematics of Operations Research, 15(3),
483-494.

[2] M. Pfund, J.W. Fowler, J.N.D. Gupta, (2004). A survey of algorithms
for single and multi-objective unrelated parallel-machine deterministic
scheduling. Chinese Journal of Industrial Engineers 21, 230–241.

[3] E.L. Lawler, J.K. Lenstra, Kan Rinnoy, A.H.J., D.B. Shmoys, (1993).
Sequencing and scheduling: algorithm and complexity. In: Handbooks
in Operations Research and Management Science, Logistic of

Jobs Ins Min Max Avg Std Min Max Avg Std
100 1 248,00 371,00 289,00 52,21 255,00 501,00 330,00 103,85

2 260,00 280,00 267,00 7,68 244,00 310,00 265,00 27,27
3 248,00 302,00 265,00 22,69 251,00 322,00 269,00 30,07
4 250,00 277,00 258,00 10,98 240,00 275,00 253,00 14,47
5 237,00 263,00 244,00 11,54 262,00 273,00 265,00 5,00
6 257,00 331,00 283,00 29,72 253,00 334,00 285,00 30,46
7 253,00 296,00 266,00 17,74 264,00 315,00 289,00 21,32
8 243,00 305,00 270,00 23,69 266,00 358,00 286,00 40,14
9 257,00 310,00 271,00 22,33 252,00 304,00 273,00 28,12
10 250,00 311,00 275,00 23,76 266,00 356,00 292,00 36,10

DABC_VNS GA_VNS
ࢻ ൌ , ૢ

659

Production and Inventory, vol. 4. North-Holland, Amsterdam, pp.
445–524.

[4] B. Chen, C.N. Potts, G.J. Woeginger, (1998). A review of machine
scheduling: complexity, algorithms and applications. In: Du, D.-Z.,
Pardalos, P.M. (Eds.), Handbook of Combinatorial Optimization.
Dordrecht, Netherlands, Kluwer, pp. 21–169.

[5] M. Haouari, and M. Jemmali. (2008). Tight Bounds for the Identical
Parallel Machine Scheduling Problem: Part II. International
Transactions in Operations Research 15 (1): 19–34.

[6] M. Skutella, and G. Woeginger. (2000). A PTAS for Minimizing the
Total Weighted Completion Time on Identical Parallel Machines.
Mathematics of Operations Research 25 (1): 63–75.

[7] McNaughton, R., “Scheduling with deadlines and loss functions.
Management Science,” 6(1):1–12., 1959.

[8] Graham, R. L. (1969). Bounds on multiprocessing timing anomalies.
SIAM Journal on Applied Mathematics, 17(2):416–429.

[9] J.G. Root Scheduling with deadlines and loss function on k paralel
machines. Management Science 1965;11: 460-75.

[10] E.L. Lawler, A ‘pseudopolynomial’ algorithm for sequencing jobs to
minimize total tardiness. Annals of Discrete Mathematics
1977;1:331-42.

[11] S.E, Elmaghraby, S.H. Park, Scheduling jobs on a number of identical
machines. AIIE Transactions 1974;6:1-13.

[12] M.M. Dessouky, Scheduling identical jobs with unequal ready times on
uniform parallel machines to minimize the maximum lateness.
Computers and Industrial Engineering 1998; 34(4):793-806.

[13] L.J. Wilkerson, J.D. Irwin, An Improved Algorithm for Scheduling
Independent Tasks. AIIE Transactions 1971; 3: 239-245.

[14] A. Dogramaci, J. Surkis, Evaluation of a Heuristic for Scheduling
Independent Jobs on Parallel Identical Processors. Management
Science 1979; 25: 1208-1216.

[15] J.C. Ho, Y.L. Chang, Heuristics for Minimizing Mean Tardiness for m
Parallel Machines. Naval Research Logistics 1991; 38: 367-381.

[16] C.P. Koulamas, The Total Tardiness Problem: Review and Extensions.
Operations Research 1994; 42: 1025-1041.

[17] C. Koulamas, Decomposition and Hybrid Simulated Annealing
Heuristics for the Parallel-Machine Total Tardiness Problem. Naval
Research Logistics 1997; 44: 109-125.

[18] J.C. Bean, Genetic Algorithms and Random Keys for Sequencing and
Optimization. ORSA Journal on Computing 1994; 6: 154-160.

[19] E. Nowicki, C. Smutnicki, The Flow Shop with Parallel Machines: A
Tabu Search Approach. EJOR 1998; 106: 226-253.

[20] M.W. Park, Y.D. Kim, Search Heuristics for a Parallel Machine
Scheduling Problem with Ready Times and Due Dates. Computers and
Industrial Engineering 1997; 33 (3-4): 793-796.

[21] D. Anghinolfi and M. Paolucci. Parallel machine total tardiness
scheduling with a new hybrid metaheuristic approach. Computers and
Operations Research, 34:3471/3490, 2007.

[22] U. Bilge, F. Kyra»c, F. Kurtulan, and M. Pekgun. A tabu search
algorithm for parallel machine total tardiness problem. Computers and
Operations Research, 31:397/414, 2004.

[23] M. Yagiura., T. Yamaguchi, T. Ibaraki,. (1998). A variable depth
search algorithm with branching search for the generalized assignment
problem. Optimization Methods and Software, 10, 419–441.

[24] M. Yagiura,. T. Ibaraki,. F. Glover, (2004). An ejection chain approach
for the generalized assignment problem. INFORMS Journal of
Computing, 16 (2), 133–151.

[25] M. Yagiura,. T. Ibaraki,. F. Glover (2006). 2006. A path relinking
approach with ejection chains for the generalized assignment problem.
European Journal of Operational Research, 169, 548–569.

[26] M.L. Fisher, R., Jaikumar, (1981). A generalized assignment heuristic
for vehicle routing. Networks 11, 109–124.

[27] D. Karaboga, (2005) ‘An idea based on honey bee swarm for numerical
optimization’, Technical Report TR06, Computer Engineering
Department, Erciyes University, Turkey.

[28] D. Karaboga, B. Basturk, (2007) ‘A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC)
algorithm’, Journal of Global Optimization pp. 39 459-471.

[29] D. Karaboga, B. Basturk,. (2008) ‘On the performance of artificial bee
colony (ABC) algorithm’, Applied Soft Computing 8 pp. 687-697.

[30] D. Karaboga, (2009) ‘A new design method based on artificial bee
colony algorithm for digital IIR filters’, Journal of The Franklin
Institute 346 pp. 328-348.

[31] D. Karaboga, B. Akay, (2009) ‘A comparative study of artificial bee
colony algorithm’, Applied Mathematics and Computation

[32] K. Karabulut, M. F. Tasgetiren, (2012), ‘A discrete artificial bee colony
algorithm for the travelling salesman problem with time windows’,
IEEE Congress on Evolutionary Computation , pp. 1-7.

[33] N. Mladenovic, P. Hansen, Variable neighborhood search, Computers
and Operations Research 24 (1997) 1097-1100.

[34] M.F. Tasgetiren, Y-C Liang, M. Sevkli, Gencyilmaz G., A particle
swarm optimization algorithm for makespan and total flowtime
minimization in the permutation flowshop sequencing problem,
European Journal of Operational Research 177 (2007) 1930-1947.

[35] R. Ruiz, and C. Maroto, (2005) A comprehensive review and
evaluation of flowshop heuristics. Eur. J. Oper. Res., 165(2), 479–494.

[36] Q.K. Pan, M.F.Tasgetiren, Y.C. Liang, (2008) A Discrete Particle
Swarm Optimization Algorithm for the No-Wait Flowshop Scheduling
Problem with Makespan and Total Flowtime Criteria, Computers and
Operations Research 35(9), 2807-2839.

660

