
 
 

 

  

Abstract—This paper presents a discrete artificial bee colony 
algorithm to solve the assignment and parallel machine 
scheduling problem in DYO paint company. The aim of this 
paper is to develop some algorithms to be employed in the DYO 
paint company by using their real-life data in the future. 
Currently, in the DYO paint company; there exist three types of 
filling machines groups.  These are automatic, semiautomatic 
and manual machine groups, where there are several numbers 
of identical machines. The problem is to first assign the filling 
production orders (jobs) to machine groups. Then, filling 
production orders assigned to each machine group should be 
scheduled on identical parallel machines to minimize the sum of 
makespan and the total weighted tardiness. We also develop a 
traditional genetic algorithm to solve the same problem. The 
computational results show that the DABC algorithm 
outperforms the GA on set of benchmark problems we have 
generated. 

I. INTRODUCTION 
HE DYO paint company produces several number of 
industrial paints for Turkish market. The DYO paint 
company is the first domestic brand of Turkish paint 

industry. In the DYO Paint Company, there are different 
types of paints, different types of packages and three types of 
filling machines groups, namely, automatic, semiautomatic 
and manual, where there are several number of identical 
machines. Currently, they face two main problems in the 
factory. The first one is how to assign the jobs to machine 
groups, and the second one is how to schedule these assigned 
jobs on the identical parallel machines. These two main 
problems are carried out by human expertise based on 
experience without employing any intelligent algorithm. Due 
to the poor assignment and scheduling of jobs in the paint 
filling unit, the machine utilization is very low and customer 
orders are mostly not satisfied on time.    

Parallel machine scheduling has a wide range of literature. 
Since the parallel machines are identical in the DYO paint 
company, the literature related to identical parallel machines 
is given below. 

In parallel machine scheduling problem, ݊  jobs are 
scheduled through ݉  machines in parallel and different 

 
 

performance measures such as total flow time, maximum 
completion time (makespan) and total tardiness are 
considered.   

For the single machine systems, it is stated that minimizing 
the total tardiness is NP-hard problem in [1], therefore, the 
parallel machine problem with total tardiness criterion is 
strongly NP-hard, too [2]. This paper considers the 
scheduling problem involving identical parallel machines 
where the objective is the minimization of makespan and total 
weighted tardiness of all jobs. By using the notation in [3-4], ܲ// ∑ ܶ  denotes that ܲ  is the identical parallel machine 
problem, and ∑ ܶ  is the total tardiness. Regarding the 
makespan and total flowtime criteria,  ܲ//ܥ௫ and ܲ// ∑ w୨ܥ  are both NP-hard, too [5-6].  
 The first study about parallel machine was at the end of the 
50s in [7]. Then, some priority rules are developed to assign 
jobs to the identical parallel machines in [8]. Some exact 
algorithms can be found in [9-12].  However, due to the 
NP-Hard nature of these problems, many researchers have 
concentrated on heuristic methods. Most heuristic methods 
are based on List Scheduling, in which the jobs are sorted 
using a rule and based on this rule, they are assigned to the 
machines according to their earliest time to finish their 
operations. These kinds of heuristic methods are studied in 
[13]-[16]. In addition, a decomposition heuristic and hybrid 
simulated annealing heuristic are proposed in [17]. Also, for 
the scheduling problem in parallel machines which has 
objective to minimize the total tardiness, a genetic algorithm 
was used in [18]. For minimizing the completion time of the 
parallel machine flowshop scheduling problem, a tabu search 
was used in [19]. The tabu search and simulated annealing 
algorithms were compared in [20]. Recently, a hybrid 
heuristic algorithm was proposed in [21]. In order to 
minimize total tardiness of parallel machine problems, that 
include non-cumulative setup times, a tabu search was used in 
[22]. 

The remaining paper is organized as follows. Section 2 
introduces the problem definition whereas Section 3 
introduces the discrete artificial bee algorithm. The details of 
the genetic algorithm proposed for the problem is provided in 
Section 4. Section 5 discusses the computational results over 
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benchmark problems in total of both objectives – makespan 
and total flowtime. Finally, Section 6 summarizes the 
concluding remarks. 

II. PROBLEM DEFINITION 
The problem will be handled by considering two stages: 
Assignment of the jobs to the machine groups and then 
scheduling of the partial jobs in each machine group having 
identical parallel machines.  
    The generalized assignment problem (GAP) is to find a 
minimum cost assignment of jobs to agents such that each job 
is assigned to exactly one agent, subject to capacity constraint 
of agents [23-25]. The mathematical model of GAP can be 
described as follows. Let ܫ ൌ ሼ1,2, … , ݉ሽ be a set of agents, 
and let ܬ ൌ ሼ1,2, … , ݊ሽ be a set of jobs. Define ܿ  as the cost 
of assigning job ݆ to agent ݅ (or assigning agent ݅ to job ݆); ݎ  
as the resource required by agent ݅ to perform job ݆, and ܾ as 
the resource availability (capacity) of agent ݅. In addition, ݔ  
is a 0 െ 1 variable that is 1 if agent ݅ performs job ݆ and 0 
otherwise. The standard integer mathematical formulation of 
the GAP is as follows: 
 ݉݅݊ ܼ ൌ ∑ ∑ ܿݔאאூ .ݏ (1)                                                           ∑  :ݐ ூאݔ ൌ ݆  1 א ∑ (2)                                                              ܬ ݔݎ  ܾא ݅   א ݔ (3)                                                        ܫ א ሼ0,1ሽ   ݅ א ݆   ܫ א  (4)                                                  ܬ

 
  Constraint (2) ensures that each ensures that each job is 
assigned to exactly one agent and constraint (3) ensures that 
the total resource requirement of the jobs assigned to an agent 
does not exceed the capacity of the agent. The GAP may have 
no solution, and even the problem of finding a feasible 
assignment is NP-complete [26].  
 The assignment problem in DYO is similar to the GAP. 
Jobs and agents can be considered as production orders and 
parallel machine groups, respectively. Processing times of the 
jobs can be considered as the total resource requirement and 
capacity of each machine group can be considered as the 
capacity of agents. However, it is very difficult to determine 
the cost of assigning jobs to machine groups in our problem 
on hand. By inspiring from the above GAP formulation, we 
develop a heuristic solution representation and the problem 
formulation by defining an agent ݔ  (machine groups) as 
follows:  
 

• ݆ ൌ number of jobs, ݆ ൌ ሼ1,2, . . , ݊ሽ    
• ݅ ൌ  number of parallel machine groups, ݅ ൌ1,2, . . , ݃ 
• ݊ ൌ  number of jobs assigned to each machine 

group ݅.  
• For this reason,  ݊ ൌ ∑ ݊ୀଵ .         
ߨ • ൌ partial set of jobs assigned to each machine 

group ݅.   
ߨ • ൌjob ݆ assigned to machine group ݅.     

 • ൌ processing time of job ݆ on machine group ݅. 
• ݀ ൌ due date of  job ݆ on machine group ݅. 
ݓ • ൌ weight of job ݆ on machine group ݅. 

  
Since DYO schedules 80 jobs every day and finish them to 

completion in one shift, the ready times are considered to be 
zero. 

Once the assignments are made and partial job sets ߨԢݏ are 
determined by the proposed algorithms, the completion time 
of jobs  ܥగೕ  and the tardiness గܶೕ  can be computed as 
follows: ܥ௫ ൌ ݔܽ݉ ቄܥగೕቅ.              (5) 

గܶೕ ൌ ݔܽ݉ ቄ0, గೕܥ െ ݀గೕቅ.              (6) ܹܶܶ ൌ ∑ ∑ గೕݓ గܶೕୀଵୀଵ ௫௫ܥ (7)                                               . ൌ ݅   ሻ൯ߨ௫ሺܥ൫ݔܽ݉ ൌ 1, . . , ݃                              (8) 

Since the objective function is bi-objective, we give a 
weight α to the first part of the objective function whereas 1 െ ݊݅݉  :is given to the second part as follows ߙ ݂ሺߨሻ ൌ ௫௫ሻܥሺߙ  ሺ1 െ  ሻܹܶܶ                              (9)ߙ

The first part tries to maximize the machine utilization and 
the second part tries to minimize the total weighted tardiness. 
To solve the problem described above, we propose a DABC 
and a GA and their details are given in subsequent sections. 

III. DISCRETE ARTIFICIAL BEE COLONY ALGORITHM 

A. Traditional ABC Algorithm 
In the ABC model, the colony consists of three groups of 

bees: employed bees, onlookers and scouts [27]. The number 
of solutions in the population is equal to the number of food 
sources and represented by D-dimensional real-valued vector. 
The ABC algorithm is stated to be an iterative process [27-32]. 
The ABC algorithm can be summarized as follows: 

Initial food sources of the basic ABC algorithm are 
randomly created according to the range of the boundaries as 
follows: ݔ ൌ ݔ  ൫ݔ௫ െ ൯ݔ ൈ ܲܰ (10)                       ݎ  represents the number of food sources, namely, ݅ ൌ 1, . . . , ݆ ,represents the number of decision variables ܦ ;ܲܰ ൌ 1, . . , ܦ ; and r represents a uniform random number 
between 0 and 1. In the initial population a counter value 0 is 
used for each food source, i.e. ܿݐ݊ݑ ൌ 0 .  

In the employed bee phase, the neighboring food source is 
generated as follows: ݒ ൌ ݔ  ݔ൫ െ  ൯                        (11)ݔ

Where j א ሼ1, . . , Dሽ  and k א ሼ1, . . , NPሽ.  ୧୨ is a uniform 
random number which is generated in the range ሾെ1,1ሿ. If v୧୨ 
does not fit the boundaries, it is restricted to initial range with 
equation 10. Then its fitness value is obtained as follows: 
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ݏݏ݁݊ݐ݂݅ ൌ ൜ 1 ሺ1  ݂ሻ⁄ ݂݅ ݂  01  ሺݏܾܽ ݂ሻ ݂݅ ݂ ൏ 0                    (12) 

If the new food source ݒ is better than ݔ, it is replaced by ݒ in a greedy manner. The counter ܿݐ݊ݑ is kept as 0, else it 
is increased by 1. For all the employed bees in the population, 
the same process goes over again.  

In the onlooker bee phase, the roulette wheel selection is 
used and for the each food source a probability is generated as 
follows:   ൌ ௧௦௦∑ ௧௦௦ಿುసభ                                                  (13) 

A uniform random number r is generated in the range [0,1]. 
if ݎ  is smaller than the probability  , a neighboring food 
source is generated with equation 11.  If the new food source ݒ is better than ݔ, it is replaced by ݒ in a greedy manner. 
The counter ܿݐ݊ݑ is kept as 0, else it is increased by 1. For 
all the onlooker bees in the population, same process goes 
over again.  

In the scout bee phase, the sources abandoned are 
determined according to the counter of each solution. 
Determination is done through the comparison between the 
value of the counter ܿݐ݊ݑ  and the control parameter 
 means that ”ݐ݈݅݉݅“  than theݐ݊ݑܿ Having greater .”ݐ݈݅݉݅“
the food source ݔ  is abandoned. In order to provide 
diversification for the ABC algorithm, abandoned ݔ  is 
forgotten and the new one is generated instead by using 
equation 10. 

Because, the original ABC algorithm is designed for the 
real-parameter optimization problems, some modifications 
are needed for discrete/combinatorial problems. These 
modifications are explained below: 

B. Discrete ABC 
In the discrete version, we still follow the basic framework 

of the original one as follows: 
1. Initialize the population. 
2. Employed bee phase to exploit the food sources. 
3. Onlooker bee phase to search for new food sources. 
4. Scout bee phase to search for new food sources. 
5. Keep the best food source found so far. 
6. If a termination criterion has not been satisfied, go to 

step 2; otherwise stop the procedure and report the 
best food source found so far.  

C. Solution Representation 
We employ a unique solution representation inspired from 

the GAP. For 15 production orders and 3 machines groups, 
the solution representation is given in Fig. 1: 

 

 
Fig. 1. Solution Representation 

In Fig. 1, ߨଵ ൌ 1 represents the jobs ݆  assigned to manual 
machine group, ߨଶ ൌ 2  represents the jobs ݆  assigned to 

semi-automatic machine group, and ߨଷ ൌ 3 represents the 
jobs ݆ assigned to automatic machine group.  

D. Initial Population 
In the DABC algorithm, the initial population is 

established randomly by assigning ߨ  values in the range 
[1,3]. For each food source in the population, one strategy 
amongst three is assigned to each food source randomly. 
These strategies generating new food sources will be 
explained later on. 

E. An Example 
In the following example in Fig. 2, there are 15 jobs and 3 

machine groups. Fig.2 indicates that the partial job set of 
machine groups will be determined as  ߨଵଵ ൌ ሼ4,5,7,10,12ሽ 
for manual machine group, ଶଶߨ ൌ ሼ2,3,11,14,15ሽ  for 
semi-automatic machine group, and ߨଷଷ ൌ ሼ1,6,8,9,13ሽ , 
respectively. 

 

 
Fig. 2. An Example of Solution representation 

We assume that there are two parallel machines in each 
machine groups. So these partial job sets will be scheduled on 
parallel machine by using a list-scheduling approach as 
illustrated in Fig. 3 to Fig. 5 as follows: 

 
Fig. 3. Manual Machines 

 
Fig. 4. Semi-automatic Machines

 
Fig. 5. Automatic Machines 
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F. Neighborhood Structures 
As the neighborhood structures, we employ shift and swap 
moves in the DABC algorithm. As shown in Fig. 6,  ଵܰሺߨሻ ൌݐ݂݄݅ݏሺߨሻ means that machine group assignment of job 4 is 
shifted from 1 to 3 and of job 12 from 1 to 3, too. Since the 
assignments are changed in the solution ߨ , the new partial 
solutions will be obtained as ߨଵଵ ൌ ሼ5,7,10ሽ ଶଶߨ , ൌሼ2,3,11,14,15ሽ,  ߨଷଷ ൌ ሼ1,4,6,8,9,12,13ሽ, respectively. 

 

 
Fig. 6. Shift move 

 In the swap move, machine assignments of two randomly 
selected jobs will be exchanged. As shown in Fig. 7,  ଶܰሺߨሻ ൌ  ሻ means that machine group assignment ofߨሺܽݓݏ
job 4 and job 13 were exchanged. Again, because the 
assignments are changed in the solution ߨ , the new partial 
solutions will be obtained as  ߨଵଵ ൌ ሼ5,7,10,13ሽ ଶଶߨ , ൌሼ2,3,11,14,15ሽ,  ߨଷଷ ൌ ሼ1,4,6,8,9,12ሽ, respectively. 
 

 
Fig. 7. Swap move 

G. Employed Bee Phase 
In the employed bee phase, new food sources are obtained 

through some strategies around the neighborhood of the 
current position. We employ three types of neighborhood 
structures. These structures are based on shift and swap 
operators. Using these strategies denoted as ܵ൫ߨ൯ , new 
food sources in the neighborhood are obtained for the 
employed bees as follows: 

 ଵܵ: Perform one shift, one swap move to solution ߨ .  ܵଶ: Perform two shifts, two swap moves to solution ߨ .  ܵଷ: Perform three shift, three swap moves to solution ߨ . 

After obtaining a neighboring food source by employing 
strategy ܵ൫ߨ൯ assigned to the food source ݅ , we apply a 
variable neighborhood search algorithm (VNS) [33] to the 
new food source to further enhance the solution quality. For 
the selection, a new source will always be accepted if it is 
better than the current food source.  

The number of employed bees is taken as the population 
size ܰܲ. The VNS local search procedure will be explained in 
detail later on.  

H. Onlooker Bee Phase 
In the onlooker bee phase, a food source ߨ  is determined 

by the tournament selection of size 2. In the tournament 
selection, two food sources are randomly chosen from the 
population, and the better one is chosen according to their 

fitness values ( ߨ ൌ      ܶܵ௦௧  ௧௪൫ߨ א ܰܲ൯ ). Then, 
similar to the employed bee phase, corresponding strategy ܵ൫ߨ൯ is applied to the food source selected. After applying 
the corresponding strategy, the VNS algorithm is applied to 
the food sources. 

The number of onlooker bees is taken as the population 
size ܰܲ. The VNS local search procedure will be explained in 
detail later on. 

I. Scout Bee Phase 
In the scout bee phase, a tournament selection with the size 

of 2 is again used to discard the worse of two randomly 
selected food sources that have been picked out from the 
population. Then, the scout obtains a food source by the 
strategy assigned to it. 

J. Variable Neighborhood Search 
The following VNS local search described in [34] is 

employed in both the employed bee and onlooker bee phases. 
The aim is to further improve the objective function on the 
partial job sets. Sequentially, the VNS local search is applied 
to each partial job set. As the neighborhood structures, single 
insert and swap move is applied to the permutation in the each 
partial job set. The VNS local search is given in Fig. 8. 

݈݃݊݅ݑ݄݀݁ܿܵݐݏ݅ܮܸܵܰ  ቀߨ א ൫ߨ൯ቁ 
    ݀௫ ൌ 2 
כߨ     ൌ ߨ                          ݀ ൌ  ሼ݀ 1

ଵߨ   ൌ ௗܰሺכߨሻ                            % ଵܰሺכߨሻ ൌ  ሻכߨሺݐݎ݁ݏ݊ܫ

   ݂݅ ݂ሺߨଵሻ ൏ ݂ሺכߨሻ ݄݊݁ݐ          % ଶܰሺכߨሻ ൌ    ሻכߨሺܽݓܵ
כߨ   ൌ  ଵߨ

       ݀ ൌ 1  
 ݁ݏ݈݁ 

   ݀ ൌ ݀  1 
        ሽ݈݄݁݅ݓ ሺ݀  ݀௫ሻ      ܴ݁݊ݎݑݐ ݂ሺכߨሻ 

Fig. 8. Referenced Local Search 

The complete computational procedure of the DABC 
algorithm is given in Fig. 9. 
 ܥܤܣܦ ݁ݎݑ݀݁ܿݎܲ 

Step 1. ܵ݁ݏݎ݁ݐ݁݉ܽݎܽ ݐ ܰܲ ൌ 10 ܽ݊݀ ܵ௫ ൌ 3 

Step 2. ݕ݈݉݀݊ܽݎ ݊݅ݐ݈ܽݑ ݈ܽ݅ݐ݅݊݅ ݄ݏ݈ܾ݅ܽݐݏܧ 

Step 3. ݕ݈݉݀݊ܽݎ ݁ܿݎݑݏ ݂݀ ݄ܿܽ݁ ݐ ݕ݃݁ݐܽݎݐݏ ܽ ݊݃݅ݏݏܣ  
൯ߨ൫ܵ ݕܾ     ൌ  ௦௧ߨ ݂݀݊݅ ݀݊ܽ ݊݅ݐ݈ܽݑ ݁ݐܽݑ݈ܽݒܧ .ሺሻ%ܵ௫  Step 4݀݊ܽݎ

Step 5. ܴ݁ߨ ܾ݁݁ ݀݁ݕ݈݉݁ ݄ܿܽ݁ ݎ݂ ݃݊݅ݓ݈݈݂ ݄݁ݐ ݐܽ݁ሺ݁ݏ݄ܽܲ ݁݁ܤ ݀݁ݕ݈݉ܧሻ 

a. ߨ ݕ݃݁ݐݎܽݐݏ ݕܾ ݁ܿݎݑݏ ݂݀ ݓ݁݊ ܽ ݁ݐܽݎ݁݊݁ܩ௪ ൌ      ܵ൫ߨ൯ 
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b. ߨ ݏ݊݅ݐݑ݈ݏ ݈ܽ݅ݐݎܽ ݁݊݅݉ݎ݁ݐ݁ܦ ,  c. ݎܨ ݄݁ܽܿ ݅, ௪ߨ ݕ݈ܽ ൌ ߨ൫݈݃݊݅ݑ݄݀݁ܿܵݐݏ݅ܮ ܸܵܰ ൯ d. ݁ݑ݈ܽݒ ݊݅ݐܿ݊ݑ݂ ݁ݒ݅ݐ݆ܾܿ݁ ݁ݐݑ݉ܥ, ݂ሺߨ௪ሻ e. ݂݅ ݂ሺߨ௪ሻ ൏ ݂൫ߨ൯, ߨ    ൌ ௪ሻߨ௪ f. ݂݅ ݂ሺߨ ൏ ݂ሺߨ௦௧ሻ ߨ    ݄݊݁ݐ௦௧ ൌ ߨ ݊݅ݐ݈ܿ݁݁ݏ ݐ݊݁݉ܽ݊ݎݑݐ ݕܾ ݁ܿݎݑݏ ݂݀  ܽ ݐ݈ܿ݁݁ܵ .ሻ a݁ݏ݄ܽܲ ݁݁ܤ ݎ݁݇ ሺܱ݈݊ݔ ܾ݁݁ ݎ݈݁݇݊ ݄ܿܽ݁ ݎ݂ ݃݊݅ݓ݈݈݂ ݄݁ݐ ݐܴܽ݁݁ .௪ Step 6ߨ ൌ      ܶܵ௦௧  ௧௪൫ߨ א ܰܲ൯  b. ݕ݃݁ݐݎܽݐݏ ݕܾ ݁ܿݎݑݏ ݂݀ ݓ݁݊ ܽ ݁ݐܽݎ݁݊݁ܩ ܵ  ߨ௪ ൌ      ܵ൫ߨ൯ c. ߨ ݏ݊݅ݐݑ݈ݏ ݈ܽ݅ݐݎܽ ݁݊݅݉ݎ݁ݐ݁ܦ  d. ݎܨ ݄݁ܽܿ ݇, ௪ߨ ݕ݈ܽ ൌ ߨ൫݈݃݊݅ݑ݄݀݁ܿܵݐݏ݅ܮ ܸܵܰ ൯ e. ݁ݑ݈ܽݒ ݊݅ݐܿ݊ݑ݂ ݁ݒ݅ݐ݆ܾܿ݁ ݁ݐݑ݉ܥ, ݂ሺߨ௪ሻ f. ݂݅ ݂ሺߨ௪ሻ ൏ ݂൫ߨ൯, ߨ ൌ ௪ሻߨ௪ g. ݂݅ ݂ሺߨ ൏ ݂ሺߨ௦௧ሻ,    ߨ௦௧ ൌ ߨ ݊݅ݐ݈ܿ݁݁ݏ ݐ݊݁݉ܽ݊ݎݑݐ ݕܾ ݁ܿݎݑݏ ݂݀  ܽ ݐ݈ܿ݁݁ܵ .ሻ a݁ݏ݄ܽܲ ݁݁ܤ ݐݑ ሺܵܿߨ ܾ݁݁ ݐݑܿݏ ݄ܿܽ݁ ݎ݂ ݃݊݅ݓ݈݈݂ ݄݁ݐ ݐܴܽ݁݁ .௪ Step 7ߨ ൌ       ܶܵ௪௦௧  ௧௪൫ߨ א ܰܲ൯ b. ߨ  ݇ ݕ݃݁ݐݎܽݐݏ ݕܾ ݁ܿݎݑݏ ݂݀ ݓ݁݊ ܽ ݁ݐܽݎ݁݊݁ܩ௪ ൌ      ܵ൫ߨ൯ c. ߨ௪ ൌ ߨ .௪ሻ dߨሺ݈݃݊݅ݑ݄݀݁ܿܵݐݏ݅ܮ ܸܵܰ ݕ݈ܣ ൌ ௪ሻߨ௪ e. ݂݅ ݂ሺߨ ൏ ݂ሺߨ௦௧ሻ,    ߨ௦௧ ൌ ,ݐ݁݉ ݐ݊ ݏ݅ ݊݅ݎ݁ݐ݅ݎܿ ݃݊݅ݐݏ ݄݁ݐ ݂ܫ .௪ fߨ ,5 ݁ݐܵ ݐ ݐ݃      ௦௧ߨ ݊ݎݑݐ݁ݎ ݀݊ܽ ݐݏ ݁ݏ݈݁
Fig. 9. Outline of the ABC algorithm 

IV. GENETIC ALGORITHM 
Genetic algorithms (GA) are a part of parallel search 

heuristics originated by the biological process of natural 
selection and evolution [35]. In GA optimization, solutions 
are coded into chromosomes in order to construct a 
population being evolved through generations. At each 
generation, we use crossover operator, which is a process of 
taking more than one parent solutions and producing a child 
solution from them. Then, mutation and perturbation occurs 
for some of the individuals. After that, they are gathered to 
select new individuals for next generation. This procedure is 
repeated until the stopping criterion is satisfied. 

In the proposed GA, we select one individual in random and 
the second one is with the tournament selection of size 2 to 
mate them. By using them, we generate an offspring with 
PTL crossover operator [36] where two cut points are 
determined and machine groups in cut points are either copied 

to the front or the end of the individual.  The PTL crossover is 
given in Fig. 10.  

 
Parent 1 3 2 2 1 1 3 1 3 3 1 2 1 3 2 2 

Parent 2 2 1 1 3 2 3 1 2 1 3 3 2 2 1 3 

    
Offspring1 1 3 1 3 3 1 2 1 1 3 3 2 2 1 3 

Offspring 2 2 1 1 3 3 2 2 1 3 1 3 1 3 3 1 

Fig. 10. PTL crossover operator 

As a mutation operator, offspring is mutated with two shift 
and two swap strategy with a mutation probability ܲ ൌ 1/݊. 
To consistent with the DABC algorithm, we take crossover 
probability as ܲ ൌ 1.  After generating offspring population, 
selection is carried out by using the tournament selection with 
size 2 between current population and offspring population. 
This procedure is repeated until the same stopping criterion is 
achieved. The following computational procedure explains 
the components of the proposed GA: 
 
Step 1. Set the population size ܰܲ, 
Step 2. Initialize the population randomly: 
Step 3. For ݅ ൌ 1,2, … , ܰܲ, repeat the following sub-steps: 

a. For the individual ߨ , select a mate ߨ from the 
population by the tournament selection with size 2.  

b. Produce a new offspring   by recombining them 
with PTL crossover. 

c. Mutate ߨ  with a mutation probability ܲ ൌ 1/݊. 
d. Evaluate the new offspring and apply VNS List 

Scheduling to  . 
Step 4. Make selection between current population by using 

tournament selection with size of 2 and update best so far 
solution ߨ௦௧. 

Step 5. If the termination criterion is reached, return the best                      
solution found so far ߨ௦௧; otherwise go to Step 3. 

V. COMPUTATIONAL RESULTS 
The DABC and GA algorithms were coded in Visual C++ 

and run on an Intel(R) Core(TM) i5-3360M 2.8 GHz with 
8GB memory. We generated our own benchmark problems as 
follows: For automatic machines group, the processing times 
are generated between 5 and 11, for semi-automatic machines 
groups, processing times are generated between 11 and 16, 
for manual machines groups, processing times are generated 
between 16 and 21. We devised 10 instances for 100 job 
problems, 200 job problems, 300 job problems, 400 job 
problems and 500 job problems.  

For each instance of each problem size, we carried out 5 
replications and we provide the average (Avg), minimum 
(Min), maximum (Max) and the standard deviation of five 
runs of 10 instances for each problem category. We fixed the 
population size at 10 for the DABC and 20 for the GA to 
make them have the same number of function evaluations. 
Since we have two objectives with the weight ߙ, we run both 
algorithms with ߙ  ranging from 0 to 1, i.e, 
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ߙ ൌ ሼ0.0,0.1,0.2, . . . ,1.0ሽ. For the ߙ ൌ 0.0, the computational 
results are given from Table I to Table XXII, respectively: 

 
TABLE I 

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 0.0 

DABC 
Jobs Avg Min Max Std CPU 
100 618.60 583.10 709.70 53.58 58.58 
200 3910.30 3536.40 4618.20 439.53 200.50 
300 10519.50 9380.70 12188.10 1139.34 420.61 
400 20306.70 18302.30 23086.50 1906.69 719.32 
500 34060.50 30994.70 38144.20 2871.37 1185.57 

 
TABLE II 

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 0.0 

GA 
Jobs Avg Min Max Std CPU 
100 639.80 594.60 763.10 72.58 95.81 
200 4397.60 3951.00 5081.90 462.92 328.09 
300 11724.30 10771.60 13014.80 940.51 694.73 
400 22840.40 21503.40 24252.10 1136.55 1186.21 
500 37387.30 35755.00 39614.00 1538.86 1812.71 

 
As seen in the tables above, in DABC algorithm, the results 

of Avg, Min, Max values are superior to GA. For example, 
the deviation for the largest problem size was 
37387/34060=1.1 for Avg. value. It indicates that there is 
10% improvement over GA. However, for larger size of 
problems, GA generated lower STD values, hence it was 
more robust than DABC. 

 
TABLE III 

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 0.1 

DABC 
Jobs Avg Min Max Std CPU
100 955,7 916,10 1060,10 62,45 59,59
200 6718,4 6042,80 7904,50 760,95 207,83
300 18386,2 16519,10 21395,90 1959,25 433,94
400 35886,9 32441,90 40375,50 3166,65 730,14
500 59532,4 53967,30 67117,70 5190,48 1125,24

 
TABLE IV 

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 0.1 

GA 
Jobs Avg Min Max Std CPU
100 1059,9 939,90 1312,90 159,65 96,27
200 7500,9 6743,70 8527,50 765,14 330,33
300 20691,8 18899,40 23154,30 1725,54 683,64
400 40149,9 37961,10 43288,60 2158,85 1160,89
500 67293,3 64563,10 70654,00 2538,63 1779,56
 
When the DABC and GA algorithms was compared 

according to ߙ ൌ 0.1, results of the DABC algorithm yielded 
much better results in terms of Avg, Min, Max. For 500 jobs, 
the deviation was 67293/59532=1.13 meaning that it is a 13% 
improvement over GA. However, GA was more robust. 
 

 
 

 
 
 

TABLE V 

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 0.3 

DABC 
Jobs Avg Min Max Std CPU
100 794,4 746,50 908,70 66,72 68,60
200 5319,9 4797,30 6330,30 628,37 228,74
300 14354,9 12837,80 16580,50 1486,34 432,50
400 28428,6 25566,40 32250,20 2687,41 740,31
500 46493,5 42562,00 51923,90 3739,78 1132,64

 
TABLE VI 

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 0.3 

GA 
Jobs Avg Min Max Std CPU
100 844,4 762,70 1014,50 107,17 98,94
200 6120 5477,80 6951,50 606,31 345,72
300 16268,4 14969,30 17859,10 1174,93 720,17
400 31762,8 30081,40 33760,00 1524,95 1177,26
500 51632,1 48675,20 54943,50 2540,89 1806,78
 
According to ߙ ൌ 0.3 , while DABC algorithm having 

better results than GA algorithm in terms of Avg, Min, Max 
values, GA was robust than DABC. The deviation for the 
largest problem was 51632/46493=1.11 indicating 11% 
improvement over GA. 

 
TABLE VII 

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 0.5 

DABC 
Jobs Avg Min Max Std CPU
100 618,6 583,10 709,70 53,58 58,58
200 3910,3 3536,40 4618,20 439,53 200,50
300 10519,5 9380,70 12188,10 1139,34 420,61
400 20306,7 18302,30 23086,50 1906,69 719,32
500 34060,5 30994,70 38144,20 2871,37 1185,57

 
TABLE VIII 

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 0.5 

GA 
Jobs Avg Min Max Std CPU
100 639,8 594,60 763,10 72,58 95,81
200 4397,6 3951,00 5081,90 462,92 328,09
300 11724,3 10771,60 13014,80 940,51 694,73
400 22840,4 21503,40 24252,10 1136,55 1186,21
500 37387,3 35755,00 39614,00 1538,86 1812,71
 
According to the tables for ߙ ൌ 0.5, similar results are 

obtained. the DABC algorithm yielded approximately 10% 
improvement over GA again. But, GA was more robust than 
DABC because it generated lower STD values. 

 
TABLE IX 

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 0.7 

DABC 
Jobs Avg Min Max Std CPU
100 450,8 421,30 523,30 42,51 67,54
200 2483,1 2245,30 2887,10 264,60 222,30
300 6541,3 5835,50 7670,90 735,04 466,08
400 12460,8 11255,70 14195,30 1186,71 723,92
500 20559,5 18745,40 23133,90 1751,52 1125,24
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TABLE X 

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 0.7 

GA 
Jobs Avg Min Max Std CPU
100 473,3 426,60 561,20 56,51 102,58
200 2769,5 2482,00 3188,90 291,11 340,53
300 7390,3 6892,70 8147,30 521,17 741,58
400 13999,5 13330,90 14884,40 642,58 1152,57
500 22875,4 21982,20 24100,50 888,76 1767,12
 
When the results in the tables IX and X are compared for 

the Avg, Min, Max values, again the DABC algorithm 
outperformed GA. However, GA algorithm is better than 
DABC algorithm in terms of STD values. 

 
TABLE XI 

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 0.9 

DABC 
Jobs Avg Min Max Std CPU
100 268,8 250,30 304,60 22,23 59,66
200 1070,1 965,50 1251,70 117,25 202,20
300 2540,6 2273,40 2938,20 267,37 421,99
400 4766,5 4321,30 5377,00 422,73 723,43
500 7584,7 6915,20 8466,90 620,10 1142,90

 
TABLE XII 

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 0.9 

GA 
Jobs Avg Min Max Std CPU
100 280,7 255,30 334,80 33,68 95,07
200 1199,5 1088,50 1354,20 110,01 308,85
300 2879,7 2701,90 3116,60 168,48 594,28
400 5322,1 5019,20 5612,40 233,62 1054,16
500 8452,9 8186,80 8831,20 265,56 1654,96
 
The results are given for ߙ ൌ 0.9 in the tables above. The 

DABC algorithm again produced better results than GA. 
However,  GA was more robust than DABC since it generated 
lower STD values. 

 
TABLE XII 

COMPUTATIONAL RESULTS OF DABC FOR ߙ ൌ 1.0 

DABC 
Jobs Avg Min Max Std CPU
100 179,9 165,90 202,60 15,42 40,75
200 377,6 344,30 422,50 32,44 120,28
300 583,1 537,50 644,00 42,84 263,48
400 798 740,60 864,70 49,05 436,75
500 1027,5 973,00 1085,60 45,03 579,37

 
TABLE XIV 

COMPUTATIONAL RESULTS OF GA FOR ߙ ൌ 1.0 

GA 
Jobs Avg Min Max Std CPU
100 193,7 181,00 213,00 13,30 67,63
200 413,3 395,70 436,60 17,67 192,59
300 639,1 622,60 663,60 17,25 370,26
400 869,3 857,90 885,90 11,92 621,52
500 1091,9 1083,90 1105,60 9,13 903,04
 
As seen in the tables above, DABC algorithm generated 

slightly better results in terms of Avg, Min, Max values. In 

other words, the improvement over GA was 1091/1027=1.06. 
However, GA was more robust than DABC.  

It is worth noting that for ߙ ൌ ߙ ݀݊ܽ 0.0 ൌ 1.0 , better 
results are achieved by the DABC algorithm. However, ߙ ൌ 0.0  indicates only the total weighted tardiness and ߙ ൌ 1.0  indicates only the makespan criterion. When 
analyzing these results, it can be seen that the DABC results 
was much more better when considering only the total 
weighted while DABC and GA performed almost similar 
when considering only makespan criterion. 

 
TABLE XIV 

COMPUTATIONAL RESULTS OF DABC AND GA FOR ߙ ൌ 0.9 

 

  
In the Table XIV, results are shown by taking the average 

of 5 replications of 100 jobs for each instance for  ߙ ൌ 0.9. 
According to the results, it can be seen that DABC algorithms 
yielded better results than GA for all statistics (Min, Max, 
Avg, Std). 

VI. CONCLUSION 
In this paper, we presented a DABC and GA to solve a 

problem from the real-life. We developed DBAC and GA 
algorithms to assign the filling production orders to machine 
groups, then schedule them on each identical parallel machine 
groups. We also presented a unique solution representation 
inspired from general assignment problem. In addition, we 
developed a VNS local search to further improve the solution 
quality. We also devised benchmark instances to test the 
performance of the algorithms proposed. The computational 
results show that the DABC algorithm outperforms the GA on 
set of benchmark problems we generated. 

As a future work, we will apply these algorithms to 
real-life data from DYO painting company in order to 
develop a decision support system for them. 
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