

Abstract—In this study, we model the Economic Lot
Scheduling problem with returns (ELSPR) under the basic
period (BP) policy with power-of-two (PoT) multipliers, and
solve it with a discrete artificial bee colony (DABC) algorithm.
Tang and Teunter [1] is the first to consider the well-known
economic lot scheduling problem (ELSP) with return flows and
remanufacturing opportunities. Teunter et al. [2] and Zanoni et
al. [3] recently extended this first study by proposing heuristics
for the common cycle policy and for a modified basic period
policy, respectively. As Zanoni et al. [3], we restrict the study to
consider independently managed serviceable inventory to test
the performance of the proposed algorithm. Our study, to the
best of our knowledge, is the first to solve ELSPR using a
meta-heuristic. ABC is a swarm-intelligence-based
meta-heuristic inspired by the intelligent foraging behaviors of
honeybee swarms. In this study, we implement the ABC
algorithm with some modifications to handle the discrete
decision variables. In the algorithm, we employ two different
constraint handling methods in order to have both feasible and
infeasible solutions within the population. Our DABC is also
enriched with a variable neighborhood search (VNS) algorithm
to further improve the solutions. We test the performance of our
algorithm on the two problem instances used in Zanoni et al. [3].
The numerical study depicts that the proposed algorithm
performs well under the BP-PoT policy and it has the potential
of improving the best known solutions when we relax BP, PoT
and independently managed serviceable inventory restrictions
in the future.

I. INTRODUCTION
N the basic ELSP setting, which is firstly described by
Rogers [4], a single machine processes items without
allowing any shortages where all the processing and

demand rates are known constants. Aim is to find the
production lot sizes and the order of production that
minimizes the sum of average inventory holding and
production setup costs. Feasible solutions of this problem
satisfy single machine (one-by-one processing), no-stockout
and capacity constraints, which guarantees that the required
processing and setup times do not exceed the available
processing capacity of the machine. It is shown by Hsu [5]
that even the feasibility test for ELSP is NP-Complete. In

order to generate solutions to this difficult problem,
researchers have been working on it under some basic
assumptions and different modeling approaches that narrows
down the feasible region of the original problem. Vast
majority of the related literature assumes at least one of the
equal-lot-size and zero-switch restrictions, and models the
problem using one of the common cycle, basic period, and
extended basic period policies/approaches.
For any given item, zero-switch and equal-lot-size
assumptions dictate to trigger a new production cycle if and if
the corresponding inventory level hits zero, and to produce in
equal lot sizes at each production cycle of that item,
respectively. Based on these two assumptions, Hanssmann
[6] proposed common cycle (CC) policy that assumes equal
cycle lengths for all the items, and later Bomberger [7]
extended CC policy to basic period (BP) policy by allowing
different cycle times for different items that are integer
multiples of a basic period. However, for both CC and BP
policies the basic period or the common cycle should be long
enough to accommodate the required setup and production
times of all the items. To relax this restriction, Elmaghraby
[8] formulated ELSP using extended basic period (EBP)
policy that allows starting production of different items
within different periods.
Bulut and Tasgetiren [9], Chatfield [10], Sun et al. [11, 12]
and Khouja [13] are some of the recent seminal studies that
model ELSP using the above approaches and propose
meta-heuristic optimizers. There are also studies in the
literature that consider time-varying lot sizes (e.g. Raza and
Akgunduz [14], Dobson [15], Zipkin [16]). For a comparison
of different modeling approaches and for a detailed review of
the literature we direct the reader to the recent work of Bulut
and Tasgetiren [9].
Tang and Teunter [1] is the first to consider ELSP with return
flows (ELSPR) by preserving the deterministic nature of the
problem. That is, likewise the parameters of the traditional
ELSP, the new problem parameters, the return proportions of
the items and the remanufacturing rates, are also known
constants. The main conceptual difference between the
traditional ELSP and ELSPR is the distinction between
recoverable and serviceable inventories. Serviceable
inventory is common for both ELSP and ELSPR; it is the

A Discrete Artificial Bee Colony Algorithm
for the Economic Lot Scheduling Problem

with Returns

 Onder Bulut, M. Fatih Tasgetiren
 Dept of Engineering, Dept of Engineering
 Yasar University, Yasar University,
 İzmir, Turkey, İzmir, Turkey
 onder.bulut@yasar.edu.tr fatih.tasgetiren@yasar.edu.tr

I

551

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

stock of all the manufactured or remanufactured items.
However, in ELSPR, returns are first stocked in recoverable
inventory and are then sent to the serviceable inventory as
they are remanufactured.
As both manufacturing and remanufacturing operations
replenish the serviceable inventory, the cycle lengths of these
operations should be jointly decided for each of the items.
This joint management can only be possible if the starting
times of all manufacturing and remanufacturing cycles are
considered in the modeling phase. It is necessary because the
relative timing of manufacturing and remanufacturing
operations affects the amount of serviceable inventory.
However, considering the starting points of the cycles
increases the complexity of the models and eliminates the
main common advantage of standard Common Cycle, Basic
Period, and Extended Basic Period policies derived for the
traditional ELSP. All these approaches enable to model (and
solve) the traditional ELSP without explicitly considering the
starting points of the cycles.
 Tag and Teunter [1] and Teunter et al. [2] modeled the
ELSPR under the Common Cycle policy by considering
jointly managed serviceable inventory. For the mixed-integer
linear program formulation of the problem, Tag and Teunter
[1] proposed an exact algorithm that finds out the length of
the common cycle and the processing sequence (the starting
times of manufacturing and remanufacturing cycles).
However, the proposed algorithm is rather complex and time
consuming. In order to overcome these disadvantages,
Teunter et al. [2] developed a heuristic solution algorithm for
the same setting.
Zanoni et al. [3] relaxed the common cycle restriction and
introduced a heuristic algorithm that solves the problem
under Basic Period policy with Power-of-Two (PoT)
frequencies. On the other hand, in order to reduce the model
complexity, they restricted the study to consider
independently managed serviceable inventory. This means
that, they doubled the number of independent items by just
splitting the demand of any item into “manufacturing
demand” and “remanufacturing demand” using the return
proportion for that item. When compared to the joint
management of inventory, such an approximation of the
objective function increases the holding cost since it ignores
coordination opportunities. Teunter et al. [17] also considered
ELSPR but they assumed dedicated lines for manufacturing
and remanufacturing.
In this study, as Zanoni et al. [3], we assume independently
managed serviceable inventory and BP-PoT policy.
However, there is a difference between ours and theirs:
Although Zanoni et al. [3] formulated the problem under BP
policy, if a generated solution violates BP-feasibility they
modified the solution by compressing the idle time at the end
of the whole cycle that is an integer multiple of a basic period.
Therefore, they actually solve the problem under a
Modified-BP policy. On the other hand, we totally stick to the
(pure) BP policy since our main aim in this study is to apply a
meta-heuristic to ELSPR and present the potential of our
algorithm for future studies/extensions.
We solve ELSPR for the above described setting with a
Discrete Artificial Bee Colony (DABC) algorithm. Our

DABC is derived from the well-known Artificial Bee Colony
Algorithm (ABC), which is a swarm intelligence based
optimizer and originally designed for continuous variables by
Karaboga [18-22]. Recently, Bulut and Tasgetiren [9]
illustrated that DABC-type algorithms perform well for the
traditional ELSP. Our study is the first to consider a DABC
algorithm to solve ELSPR. Computational results show that
the proposed DABC algorithm is capable of finding the
best-known solution for one of the two instances that Zanoni
et al. [3] report their Modified-BP-PoT results. We believe
that such a performance of our algorithm for independently
managed serviceable inventory under the BP-PoT policy,
which is more restrictive than the Modified-BP, manifests its
potential for the future studies.
Subsequent sections of the paper are organized as follows:
Section II and Section III are devoted to the problem
formulation and the proposed DABC algorithm, respectively.
Section IV presents the computational results and Section V
provides concluding remarks and future research directions.

II. PROBLEM FORMULATION
Economic Lot Scheduling Problem with Returns (ELSPR)

under BP-PoT policy and independently managed serviceable
inventory can be outlined as follows:

 Demands for the items are experienced at known and
constant rates.

 Certain proportions of the manufactured and delivered
items are returned back to the facility and
remanufactured.

 Manufacturing and remanufacturing operations are held
on a single resource (a machine or a production line).
That is, two or more items cannot be processed
(manufactured or remanufactured) at the same time.

 Manufacturing and remanufacturing rates are known
constants.

 Return proportions are used to split the demands into
manufacturing and remanufacturing demands in order to
independently control the effects of manufacturing and
remanufacturing operations on the serviceable inventory.

 For any given item and a processing type (manufacturing
or remanufacturing), all processing cycles are in equal
length.

 Manufacturing or remanufacturing cycle times of an item
are power-of-two (PoT) multiples of the basic period.

In this setting, the aim is to find the length of the basic period
and the PoT multipliers that minimize the sum of the average
setup and the holding costs. The following notation is used for
the mathematical formulation of the problem:

Parameters ܦ ൌ ௜௠ܣ ݏ݉݁ݐ݅ ݂݋ ݎܾ݁݉ݑܰ ൌ ௜௥ܣ ݅ ݉݁ݐ݅ ݎ݋݂ ݐ݋݈ ݃݊݅ݎݑݐ݂ܿܽݑ݊ܽ݉ ݎ݁݌ ݐݏ݋ܿ ݌ݑݐ݁ܵ ൌ ௜௠ݏ ݅ ݉݁ݐ݅ ݎ݋݂ ݐ݋݈ ݃݊݅ݎݑݐ݂ܿܽݑ݊ܽ݉݁ݎ ݎ݁݌ ݐݏ݋ܿ ݌ݑݐ݁ܵ ൌ ݅ ݉݁ݐ݅ ݎ݋݂ ݐ݋݈ ݃݊݅ݎݑݐ݂ܿܽݑ݊ܽ݉ ݎ݁݌ ݁݉݅ݐ ݌ݑݐ݁ܵ
552

௜௥ݏ ൌ ௜݀ ݅ ݉݁ݐ݅ ݎ݋݂ ݐ݋݈ ݃݊݅ݎݑݐ݂ܿܽݑ݊ܽ݉݁ݎ ݎ݁݌ ݁݉݅ݐ ݌ݑݐ݁ܵ ൌ ௜ߚ ݅ ݉݁ݐ݅ ݎ݋݂ ݁ݐܽݎ ݀݊ܽ݉݁ܦ ൌ ௜௠݌ ݅ ݉݁ݐ݅ ݂݋ ݊݋݅ݐݎ݋݌݋ݎ݌ ݊ݎݑݐܴ݁ ൌ ௜௥݌ ݁݉݅ݐ ݐ݅݊ݑ ݎ݁݌ ݀݁ݎݑݐ݂ܿܽݑ݊ܽ݉ ݅ ݉݁ݐ݅ ݂݋ ݏݐ݅݊ݑ ൌ ௜௦݄ ݁݉݅ݐ ݐ݅݊ݑ ݎ݁݌ ݀݁ݎݑݐ݂ܿܽݑ݊ܽ݉݁ݎ ݅ ݉݁ݐ݅ ݂݋ ݏݐ݅݊ݑ ൌ ௜௥ൌ݄ ݅ ݂݋ ݕݎ݋ݐ݊݁ݒ݊݅ ݈ܾ݁ܽܿ݅ݒݎ݁ݏ ݎ݋݂ ݁ݐܽݎ ݐݏ݋ܿ ݈݃݊݅݀݋݄ ௜௠ߩ ݅ ݅ ݂݋ ݕݎ݋ݐ݊݁ݒ݊݅ ݈ܾ݁ܽݎ݁ݒ݋ܿ݁ݎ ݎ݋݂ ݁ݐܽݎ ݐݏ݋ܿ ݈݃݊݅݀݋݄ ൌ ሺଵିఉ೔ሻௗ೔௣೔೘ ௜௥ߩ , ൌ ఉ೔ௗ೔௣೔ೝ ሺݏݎ݋ݐ݂ܿܽ ݊݋݅ݐܽݖ݈݅݅ݐݑሻ ܪ௜௦ ൌ ሺ1 2⁄ ሻ݄௜௦ሾ݊௜௠ܹሺ1 െ ௜ሻ݀௜ሺ1ߚ െ ௜௠ሻߩ ൅ ݊௜௥ܹߚ௜݀௜ሺ1 െ ௜௥ܪ ௜௥ሻሿߩ ൌ ሺ1 2⁄ ሻ݄௜௥݊௜௥ܹߚ௜݀௜ሺ1 െ ௜௥ሻߩ

Decision variables ܹ ൌ ௜௠݊ ݀݋݅ݎ݁݌ ܿ݅ݏܾܽ ܽ ݂݋ ݄ݐ݃݊݁ܮ ൌ ௜௥݊ ݅ ݉݁ݐ݅ ݂݋ ݏݐ݋݈ ݃݊݅ݎݑݐ݂ܿܽݑ݊ܽ݉ ݎ݋݂ ݎ݈݁݅݌݅ݐ݈ݑܯ ൌ ݅ ݉݁ݐ݅ ݂݋ ݏݐ݋݈ ݃݊݅ݎݑݐ݂ܿܽݑ݊ܽ݉݁ݎ ݎ݋݂ ݎ݈݁݅݌݅ݐ݈ݑܯ

First, BP yields a cyclic schedule which repeats itself in every ݉ܽݔ ሺ݊௜௠, ݊௜௥ሻ periods, which is the length of a complete
cycle, because the multipliers are PoT. Second, Under BP
policy, if one processes the items using a specific ordering
rule (e.g. in the order of increasing multiplier values), then
sequence feasibility is satisfied. Thus, it is enough to solve the
following non-linear model to characterize the optimal BP
policy. min ∑ ൬ ஺೔೘௡೔೘ௐ ൅ ௜௦൰஽௜ୀଵܪ + ∑ ൬ ஺೔ೝ௡೔ೝௐ ൅ ௜௥൰஽௜ୀଵܪ .ݏ (1) ݐ

 ∑ ሺݏ௜௠ ൅ ௜௥ݏ ൅ ݊௜௠ߩ௜௠ܹ ൅ ݊௜௥ߩ௜௥ܹሻ ൑ ܹ஽௜ୀଵ (2)

where the (capacity) constraint ensures that all the
manufacturing and remanufacturing operations and the
corresponding setups can be done within a basic period.

III. DISCRETE ARTIFICIAL BEE COLONY ALGORITHM
Inspired by the intelligent foraging behaviors of honeybee

swarms, the artificial bee colony (ABC) algorithm was
proposed by Karaboga [18-22] who implemented a new
swarm intelligence based optimizer. In this algorithm,
foraging artificial bees are classified into three groups,
namely, employed bees, onlookers, and scouts. Employed
bees are responsible for food collection from the food source
that the bee swarm is exploiting. Onlookers wait in the hive
and decide on whether a food source is acceptable or not.
They make the decision by observing the dancing employed
bees’ performances. A scout randomly searches for new food
sources based on internal motivation or some possible
external clues. In the ABC algorithm, each solution to the
problem under consideration is called a food source and
represented by a d-dimensional real-valued vector where the
fitness of the solution corresponds to the nectar amount of the

associated food resource. As with other intelligent
swarm-based approaches, ABC algorithm is an iterative
process. The algorithm starts with a population of randomly
generated solutions (or food sources) then the following steps
are repeated until a termination criterion is met [18-22]:
1. Initialize the foraging process.
2. Send the employed bees to exploit the discovered food

sources.
3. Using the onlooker bees, choose the food sources and

determine their nectar amounts.
4. Send scouts to search for new food sources.
5. Remember the best food source found so far.
6. If a termination criterion has not been satisfied, go to step

2; otherwise stop the procedure and report the best food
source found so far.

 The above ABC algorithm, originally designed for the
continuous nature of optimization problems, cannot directly
be used for discrete/combinatorial cases. In this study, we
implement some modifications to the above ABC algorithm
to handle discrete decision variables. The details of the
modifications are as discussed below.

A. Solution Representation
In our solution representation, the food source is defined as a
set of multipliers ݊ ൌ ሺ݊ଵ௠, ݊ଶ௠, . . , ݊஽௠, ݊ଵ௥, ݊ଶ௥, . . , ݊஽௥ ሻwhich is
given in Figure 1.

 1 2 …. Dߨ
݊ଵ௠ ݊ଶ௠ …. ݊஽௠ ݊ଵ௥ ݊ଶ௥ …. ݊஽௥

Fig. 1. Solution representation

The length of the basic period, ܹ is not explicitly included in
the solution representation. Instead, parallel with Zanoni et al.
[3], for a given n vector, it is analytically determined as ܹכ ൌ ሼݔܽ݉ ௠ܹ௔௫, ௠ܹ௜௡ሽ (3)

where ௠ܹ௔௫ is the unconstrained solution of (1) and ௠ܹ௜௡
directly comes from the constraint (2), and calculated by

௠ܹ௔௫ ൌ ଶ ∑ ቆಲ೔೘೙೔೘ାಲ೔ೝ೙೔ೝቇವ೔సభ௛೔ೞൣ௡೔೘ሺଵିఉ೔ሻௗ೔൫ଵିఘ೔೘൯ା௡೔ೝఉ೔ௗ೔൫ଵିఘ೔ೝ൯൧ା௛೔ೝ௡೔ೝఉ೔ௗ೔൫ଵିఘ೔ೝ൯

௠ܹ௜௡ ൌ ∑ ሺݏ௜௠ ൅ ௜௥ሻ஽௜ୀଵ1ݏ െ ∑ ሺ݊௜௠ߩ௜௠ ൅ ݊௜௥ߩ௜௥ሻ஽௜ୀଵ

B. Feasibility
Any food source represents a feasible solution if the

constraint, i.e., the inequality (2), is satisfied. If this is the
case, the optimal basic period is given by Eq. (3). On the other
hand, if Ineq. (2) does not hold, the current solution, i.e., the
current food source, is not feasible. For an infeasible solution,
violation is measured by

ሻߨሺݒ ൌ ∑ ሺݏ௜௠ ൅ ௜௥ݏ ൅ ݊௜௠ߩ௜௠ܹ ൅ ݊௜௥ߩ௜௥ܹሻ െ ܹ஽௜ୀଵ (4)

In case of infeasibility, we still employ ܹכ to compute the
objective function value. However, some sophisticated

553

constraint handling methods are used to handle the
infeasibility as explained in the next section.

C. Constraint Handling Methods
In a swarm process, swarm operators may yield infeasible

solutions. In this case, care must be taken with them violating
the constraints. There exist different approaches to handle the
constraints Coello [23]. In this paper, two popular approaches
are employed to handle the constraints:

a. Superiority of Feasible Solutions
Deb [24] was the first to propose the superiority of feasible
solutions (SF) for constrained optimization based on
lexicographic ordering where constraint violation and
objective function value are distinguished. The aim is to
optimize both constraint violation and objective function
by a lexicographic order where constraint violation
precedes objective function value. In SF, when two
solutions ax and bx are evaluated, ax is deemed to be
superior to bx under the following conditions for a
minimization problem:

 ax is feasible and bx is not.
 ax and bx are both feasible and ax has a smaller

objective function value than bx .
 ax and bx are both infeasible, but ax has a smaller

overall constraint violation)(xυ

as computed by
using Eq. (4).

b. ε -Constraint (EC)
Takahama and Sakai [25-28] developed the

ε-constrained method again based on lexicographic
ordering with relaxation of the constraints. In the ε
-constraint handling method, the relaxation of the
constraints is controlled by using the ε parameter. The
proper control of the ε parameter is essential to obtain
high quality solutions for problems with equality
constraints [25-28]. The ε level is updated until the
generation counter t reaches the control generation Ct .
After the generation counter exceeds Ct , the ε level is set
to zero to obtain solutions with no constraint violation. The
idea behind EC method is that solutions with the total
violation less that ()tε are treated as feasible solutions
when comparing two solutions. The ε -constraint handling
method can be summarized as follows:

() ()θπε v=0 (5)

C

cp

C

C tt

tt

t
t

t <<
⎪
⎩

⎪
⎨

⎧

≥

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= 0 ,

 ,0

1)0(
)(

ε
ε . (6)

where θπ is the top θ -th individual and NP×= 20.0θ . The
recommended parameter ranges are

()maxmax 8.0,1.0 TTTC ××= and ()10,2=cp .
It is important to note that we employed these two

constraint handling methods in the proposed GA as follows:

Before making the comparison of two individuals, each
individual is treated to either feasible or infeasible according
to the ε level. Then, SF is used when making comparison.

D. Initial Population
The initial population of NP individuals is constructed
randomly. For each food source, ݊௜௠ and ݊௜௥ are randomly
generated from { }max,..,4,2,1 n where the maximum multiplier
was assumed to be max 16n = . To simplify, PoT multipliers are
generated by max()%2rand n .

E. Employed Bee Phase
According to the basic ABC algorithm, the employed bees
generate food sources in the neighborhood of their current
positions. The DABC algorithm employs a very simple
neighboring food source by “Multiply By 2” , “Divide By 2”
and “ 21 NandNofUnion ”. These three strategies
are as follows:

() 21 ByDivideN =π
() 22 ByMultiplyN =π
() 213 NandNofUnionN =π

Note that these neighboring strategies obey the PoT rule. In
other words, dividing by 2 or multiply by 2 does not generate
non-PoT values. However, in the case of dividing 1 by 2, the
dimension value of the food source is assigned to 2. If the
resulting dimension value is greater than max2n , it is randomly
assigned to max()%2rand n . For a 5-item problem, Figure 2-4
illustrates the neighborhoods used in the DABC algorithm.

 1 2 3 4 5

π
1 4 2 8 2

1 2 4 4 8

()π1N
1 2 2 8 2

1 1 4 4 8

Fig. 2. Divide by 2

 1 2 3 4 5

π
1 4 2 8 2

1 2 4 4 8

()π2N
1 8 2 8 2

1 4 4 4 8

Fig. 3. Multiply by 2

 1 2 3 4 5

π
1 4 2 8 2

1 2 4 4 8

()π3N
1 8 2 8 1

1 4 4 4 4

Fig. 4. Union

554

Each method for the generation of neighboring food
sources may have different performances during the
evolution process. Therefore, each food source in the
population is assigned to one of the three strategies to
generate a neighboring food source. After generating a
neighboring food source by one of three strategies, a local
search based on variable neighborhood search (VNS) [29] is
applied to further improve the solution quality (nectar
amount). As for the selection, a new good source is always
accepted if it is better than the current food source (according
to SF and ε-constraint level), which is similar to the basic
ABC algorithm carrying out a greedy selection procedure.
The number of the employed bees is set to the population size
NP .

F. Onlooker Bee Phase
In the basic ABC algorithm, an onlooker bee selects a food

source kπ depending on its winning probability value, which
is similar to wheel selection in GAs [18-22]. However, the
tournament selection is widely used in GA applications due to
its simplicity and ability to escape from local optima. For this
reason, we propose a tournament selection with a size of 2 in
the DABC algorithm. In the tournament selection, an
onlooker bee selects a food source kπ in such a way that two
food sources are randomly picked up from the population and
compared to each other, allowing the better one to be chosen.
In addition, an onlooker bee utilizes the same strategy that is
used by the employed bee to produce a new neighboring
solution. Then, a well-devised VNS local search is employed
to further improve the nectar amount of the onlooker bee. If
the new food source obtained is better than the current one,
the new food source will replace the current one and become a
new member in the population (according to SF and ε
-constraint level). The number of onlooker bees considered is
NP .

G. Scout Bee Phase
In the basic ABC algorithm, a scout bee produces a food

source randomly in the predefined search space. This will
decrease the search efficacy because the best food source in
the population often carries better information than others
during the evolution process, and the search space around it
could be the most promising region. Therefore, in the DABC
algorithm, a tournament selection with the size of 2 is again
used to discard the worse of two randomly selected food
sources that have been picked out from the population. Then,
the scout generates a food source randomly as explained
before. This food source will be replaced by the food source
determined by tournament selection, thus proposing a kind of
immigration to the DABC algorithm. There are NP×1.0
scout bees in this phase.

H. Variable Neighborhood Search
In order to intensify the search on the local minima and

improve the solution quality of DABC, a common approach
is to hybridize it with some local search methods. For this
reason, the local search algorithm is, simply VNS), fused into
the DABC algorithm. Note that VNS is applied to each food
source generated either by the employed bee or onlooker bee.

VNS is a meta-heuristic proposed in [29] systematically
exploiting the idea of neighborhood change. We employed
the following VNS local search in Figure 5. The VNS local
search has three neighborhood structures as used in Employed
Bee and Onlooker Bee phases. In other words, the following
neighborhood structures are employed:

() 21 ByDivideN =π
() 22 ByMultiplyN =π
() 213 NandNofUnionN =π

The third neighborhood is a combination of 1N and 2N .
In other words, once a dimension value of the food source is
randomly changed by 1N , another dimension is also
randomly changed by 2N . The size of the each neighborhood
is the number of dimensions/items. In other words, for
example, 2ByDivide is applied 10 times and the best out
of 10 is retained.

()πVNSocedurePr
3:max =k

1:=k

{do

()ππ kN=1

 () () thenffif
levelandSFwith −

<
ε
ππ 1

 1ππ =

1:=k

 else
 1: += kk
 ()max} kkwhile ≤

πreturn

reendprocedu

Fig. 5. The VNS Algorithm.

IV. COMPUTATIONAL RESULTS
The proposed DABC algorithm was coded in C++ and run on
an Intel P4 3.00 GHz PC with 500MB memory. The
population size was fixed at 100 and the algorithm was run for
1000 generations with the following constraint handling
parameters: NP×= 2.0θ , MaxGentC *4.0= and 2=cp .

Teunter et al. [2] provided 120 benchmark problem
instances. We first test the performance of our algorithm on
the Instance#61 and Instance#101for which Zanoni et al. [3]
reported their Modified-BP-PoT results. Five runs carried out
for both of the instances and the computation time for a run is
roughly less than 5 s per 1000 generations. In Table II, for
both of the instances, we present the best out our five
replications and compare them to the results of Zanoni et al.
[3] and Teunter et al. [2].

As seen from Table II, even though Zanoni et al. [3] solved
the problem under a Modified-BP policy, which has a larger
feasible region than the BP-Policy that we employ, and
Teunter et al. [2] coordinated the manufacturing and
remanufacturing operations (that means they do not have the

555

independently managed serviceable inventory assumption)
within CC policy, our algorithm was able to find the best
known solution for Instance #61. This result reveals the
potential of our algorithm for future extensions of ELSPR.
Table II also illustrates the fact that considering the joint
management of serviceable inventory, i.e., considering the
starting times of all manufacturing and remanufacturing
cycles as decision variables, significantly improves the
solution for Instance #101. This is an expected result because
utilization factor for Instance #101, which is 0.95, is much
greater than the utilization factor of Instance #61, which is
0.75. It is well known that ELSP-type problems get harder as
the utilization factor increases.

TABLE II.

RESULTS FOR INSTANCES 61 AND 101
Instance Teunter et al. [2] Zanoni et al. [3] DABC

61 28.32 19.21 19.21
101 51.22 30.77 56.40

 The solution vectors of our DABC algorithm for instances
61 and 101 are presented in Table III where ݊௠ ൌሺ݊ଵ௠, ݊ଶ௠, . . , ݊஽௠ሻ is the vector of PoT multipliers for the
“manufacturing demands”, and ݊௥ ൌ ሺ݊ଵ௥, ݊ଶ௥, . . , ݊஽௥ ሻ is the
vector of PoT multipliers for the “remanufacturing demands”.

TABLE III.
DABC SOLUTIONS FOR INSTANCES 61 AND 101

Instance ܹ ݊௠ ݊௥
61 98.02 (1,1,1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1,1,1)
101 74.24 (4,1,1,1,1,8,16,2,8,2) (1,1,1,1,1,8,8,1,2,1)

TABLE IV.

RESULTS FOR INSTANCES 51 - 60
Instance Teunter et al. [2] DABC

51 59.53 37.85
52 17.71 17.29
53 25.83 24.95
54 25.81 24.02
55 19.84 17.03
56 27.57 26.84
57 23.13 26.95
58 25.65 23.16
59 27.51 28.67
60 22.43 20.18

We also run our algorithm for the ten instances in the range
Instance#51 - Instance#60 and present the results in Table IV.
Since the results of Zanoni et al. [3] are only available for the
instances 61 and 101, in Table IV, we only compare our
results to the results of Teunter et al. [2]. Our algorithm was
able to improve the results for eight of the ten instances.
Parallel to the discussion on Table II, it can be also concluded
form Table IV that joint management of serviceable
inventory provides better results for the higher utilization
problems.

V. CONCLUSIONS
In this study we present a discrete artificial bee colony

(DABC) algorithm to solve the economic lot scheduling
problem with returns (ELSPR) under basic period (BP) policy

with power-of-two (PoT) multipliers. We also assume
independently managed serviceable inventory as Zanoni et al.
[3]. Computational results show that the proposed DABC
algorithm is capable of finding the best-known solution for
one of the two instances that Zanoni et al. [3] reported their
Modified-BP-PoT results. It is also shown that our algorithm
based on the Basic Period approach succeeds to improve the
Common Cycle results especially for the low utilization
problems. We believe that such a performance of our
algorithm for independently managed serviceable inventory
under the BP-PoT policy, which is more restrictive than the
Modified-BP, manifests its potential for the future studies.

As a future research direction, we plan to relax all the BP,
PoT and independently managed serviceable inventory
restrictions and enhance our algorithm accordingly.

REFERENCES
[1] O. Tang and R. H. Teunter, “Economic lot scheduling problem with

returns”, Production and Operations Management, vol. 15, pp.
488-497, 2006.

[2] R. H. Teunter, O. Tang and K. Kaparis, “Heuristics for economic lot
scheduling problem with returns”, International Journal of Production
Economics, vol. 118, pp. 323-330, 2009.

[3] S. Zanoni, A. Segerstedt, O. Tang, and L. Mazzoldi, “Multi-product
economic lot scheduling problem with manufacturing and
remanufacturing using a basic period policy”, Computers and Industrial
Engineering, vol. 62, pp. 1025-1033, 2012.

[4] J. Rogers, “A computational approach to the economic lot scheduling
problem”, Management Science , Vol. 4, pp.264-291, 1958.

[5] W. Hsu, “On the general feasibility test of scheduling lot sizes for
several products on one machine,” Management Science, vol. 29, pp.
93-105, 1983.

[6] F. Hanssmann, Operation Research in Production and Inventory,
Wiley, New York, 1962.

[7] E.E. Bomberger, “A dynamic programming approach to a lot size
scheduling problem,” Management Science, vol. 12, pp. 778-784,
1966.

[8] S.E. Elmaghraby, “The economic lot scheduling problem (ELSP):
review and extensions,” Management Science, vol. 24, pp. 587-598,
1978.

[9] O. Bulut and F. Tasgetiren, “An artificial bee colony algorithm for the
economic lot scheduling problem”, International Journal of Production
Research, DOI: 10.1080/00207543.2013.845315, 2013.

[10] D. Chatfield, “The economic lot scheduling problem: a pure genetic
search approach,” Computers and Operations Research, vol. 34, pp.
2865-2881, 1987.

[11] H. Sun, H.Huang and W. Jaruphongsa, “The economic lot scheduling
problem under extended basic period and power-of-two policy”,
Optimization Letters, vol. 4, pp. 157-172, 2010.

[12] H. Sun, H-C. Huang, W. Jaruphongsa, “A genetic algorithm for the
economic lot scheduling problem under the extended basic period and
power-of-two policy”, CIRP Journal of Manufacturing Science and
Technology, 2(2009) 29-34.

[13] M. Khouja , Z. Michalewicz and M. Wilmot, “The use of genetic
algorithms to solve the economic lot size scheduling problem”,
European Journal of Operational Research, vol. 110, pp. 509-524,
1998.

[14] Raza, A. S., and Akgunduz, A. “A comparative study of heuristic
algorithms on economic lot scheduling problem”, Computers and
Industrial Engineering, vol. 55(1), pp. 94–109, 2008.

[15] G. Dobson, “The ELSP: achieving feasibility using time-varying lot
sizes,” Operations Research, vol. 35, pp. 764–71, 1987.

[16] P. Zipkin, “Computing optimal lot sizes in the ELSP,” Operations
Research, vol. 39, pp. 56–63, 1991.

[17] R. H. Teunter, K. Kaparis and O. Tang, “Multi-product economic lot
scheduling problem with separate production lines for manufacturing

556

and remanufacturin ”, European Journal of Operational Research, vol.
191, pp. 1241-1253, 2008.

[18] D. Karaboga, An idea based on honey bee swarm for numerical
optimization, Technical Report TR06, Computer Engineering
Department, Erciyes University, Turkey, 2005.

[19] D. Karaboga, B. Basturk, A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC) algorithm,
Journal of Global Optimization 39 (2007) 459-471.

[20] D. Karaboga, B. Basturk, On the performance of artificial bee colony
(ABC) algorithm, Applied Soft Computing 8, pp. 687-697, 2008.

[21] D. Karaboga, A new design method based on artificial bee colony
algorithm for digital IIR filters, Journal of The Franklin Institute, vol.
346, pp. 328-348, 2009.

[22] D. Karaboga, B. Akay, A comparative study of artificial bee colony
algorithm, Applied Mathematics and Computation,
doi:10.1016/j.amc.2009.03.90, 2009.

[23] C.A. Coello, Theoretical and Numerical Constraint-Handling
Techniques Used with Evolutionary Algorithms: A Survey of the State
of the Art, Comput. Methods Appl. Mech. Engrg. vol. 191, pp.
1245-1287, 2002.

[24] K. Deb, "An efficient constraint handling method for genetic
algorithms," Computer Methods in Applied Mechanics and
Engineering, vol. 186, pp. 311-338, 2000.

[25] T. Takahama and S. Sakai, “Tuning fuzzy control rules by the α
constrained method which solves constrained nonlinear optimization
problems,” Electronics and Communications in Japan, Part3:
Fundamental Electronic Science, vol. 83, no. 9, pp. 1–12, Sept. 2000.

[26] T. Takahama and S. Sakai, “Constrained optimization by ε constrained
particle swarm optimizer with ε-level control,” in Proc. of the 4th IEEE
International Workshop on Soft Computing as Transdisciplinary
Science and Technology (WSTST’05), May 2005, pp. 1019–1029.

[27] T. Takahama and S. Sakai, “Efficient Constrained Optimization by the
ε Constrained Adaptive Differential Evolution”, WCCI 2010 IEEE
World Congress on Computational Intelligence July, 18-23, 2010,
Barcelona, Spain.

[28] T. Takahama and S. Sakai, "Constrained Optimization by the
Constrained Differential Evolution with Gradient-Based Mutation and
Feasible Elites," in IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, 2006,
pp. 1-8.

[29] N. Mladenovic, P. Hansen, Variable neighborhood search, Computers
and Operations Research 24 (1997) 1097-1100.

557

