
 
 

 

  

Abstract—In this study, we model the Economic Lot 
Scheduling problem with returns (ELSPR) under the basic 
period (BP) policy with power-of-two (PoT) multipliers, and 
solve it with a discrete artificial bee colony (DABC) algorithm.  
Tang and Teunter [1] is the first to consider the well-known 
economic lot scheduling problem (ELSP) with return flows and 
remanufacturing opportunities. Teunter et al. [2] and Zanoni et 
al. [3] recently extended this first study by proposing heuristics 
for the common cycle policy and for a modified basic period 
policy, respectively. As Zanoni et al. [3], we restrict the study to 
consider independently managed serviceable inventory to test 
the performance of the proposed algorithm. Our study, to the 
best of our knowledge, is the first to solve ELSPR using a 
meta-heuristic. ABC is a swarm-intelligence-based 
meta-heuristic inspired by the intelligent foraging behaviors of 
honeybee swarms. In this study, we implement the ABC 
algorithm with some modifications to handle the discrete 
decision variables. In the algorithm, we employ two different 
constraint handling methods in order to have both feasible and 
infeasible solutions within the population. Our DABC is also 
enriched with a variable neighborhood search (VNS) algorithm 
to further improve the solutions. We test the performance of our 
algorithm on the two problem instances used in Zanoni et al. [3]. 
The numerical study depicts that the proposed algorithm 
performs well under the BP-PoT policy and it has the potential 
of improving the best known solutions when we relax BP, PoT 
and independently managed serviceable inventory restrictions 
in the future. 

I. INTRODUCTION 
N the basic ELSP setting, which is firstly described by 
Rogers [4], a single machine processes items without 
allowing any shortages where all the processing and 

demand rates are known constants. Aim is to find the 
production lot sizes and the order of production that 
minimizes the sum of average inventory holding and 
production setup costs. Feasible solutions of this problem 
satisfy single machine (one-by-one processing), no-stockout 
and capacity constraints, which guarantees that the required 
processing and setup times do not exceed the available 
processing capacity of the machine. It is shown by Hsu [5] 
that even the feasibility test for ELSP is NP-Complete. In 

 
 

order to generate solutions to this difficult problem, 
researchers have been working on it under some basic 
assumptions and different modeling approaches that narrows 
down the feasible region of the original problem. Vast 
majority of the related literature assumes at least one of the 
equal-lot-size and zero-switch restrictions, and models the 
problem using one of the common cycle, basic period, and 
extended basic period policies/approaches.       
For any given item, zero-switch and equal-lot-size 
assumptions dictate to trigger a new production cycle if and if 
the corresponding inventory level hits zero, and to produce in 
equal lot sizes at each production cycle of that item, 
respectively. Based on these two assumptions, Hanssmann 
[6] proposed common cycle (CC) policy that assumes equal 
cycle lengths for all the items, and later Bomberger [7] 
extended CC policy to basic period (BP) policy by allowing 
different cycle times for different items that are integer 
multiples of a basic period. However, for both CC and BP 
policies the basic period or the common cycle should be long 
enough to accommodate the required setup and production 
times of all the items. To relax this restriction, Elmaghraby 
[8] formulated ELSP using extended basic period (EBP) 
policy that allows starting production of different items 
within different periods. 
Bulut and Tasgetiren [9], Chatfield [10], Sun et al. [11, 12] 
and Khouja [13] are some of the recent seminal studies that 
model ELSP using the above approaches and propose 
meta-heuristic optimizers. There are also studies in the 
literature that consider time-varying lot sizes (e.g. Raza and 
Akgunduz [14], Dobson [15], Zipkin [16]). For a comparison 
of different modeling approaches and for a detailed review of 
the literature we direct the reader to the recent work of Bulut 
and Tasgetiren [9].    
Tang and Teunter [1] is the first to consider ELSP with return 
flows (ELSPR) by preserving the deterministic nature of the 
problem. That is, likewise the parameters of the traditional 
ELSP, the new problem parameters, the return proportions of 
the items and the remanufacturing rates, are also known 
constants. The main conceptual difference between the 
traditional ELSP and ELSPR is the distinction between 
recoverable and serviceable inventories. Serviceable 
inventory is common for both ELSP and ELSPR; it is the 

A Discrete Artificial Bee Colony Algorithm 
for the Economic Lot Scheduling Problem 

with Returns 

                             Onder Bulut,                                                      M. Fatih Tasgetiren 
                         Dept of Engineering,                                                      Dept of Engineering 
                           Yasar University,                                                            Yasar University, 
                              İzmir, Turkey,                                                                 İzmir, Turkey 
                     onder.bulut@yasar.edu.tr                                            fatih.tasgetiren@yasar.edu.tr    
    

I

551

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



 
 

 

stock of all the manufactured or remanufactured items. 
However, in ELSPR, returns are first stocked in recoverable 
inventory and are then sent to the serviceable inventory as 
they are remanufactured.   
As both manufacturing and remanufacturing operations 
replenish the serviceable inventory, the cycle lengths of these 
operations should be jointly decided for each of the items. 
This joint management can only be possible if the starting 
times of all manufacturing and remanufacturing cycles are 
considered in the modeling phase. It is necessary because the 
relative timing of manufacturing and remanufacturing 
operations affects the amount of serviceable inventory. 
However, considering the starting points of the cycles 
increases the complexity of the models and eliminates the 
main common advantage of standard Common Cycle, Basic 
Period, and Extended Basic Period policies derived for the 
traditional ELSP. All these approaches enable to model (and 
solve) the traditional ELSP without explicitly considering the 
starting points of the cycles.  
   Tag and Teunter [1] and Teunter et al. [2] modeled the 
ELSPR under the Common Cycle policy by considering 
jointly managed serviceable inventory.  For the mixed-integer 
linear program formulation of the problem, Tag and Teunter 
[1] proposed an exact algorithm that finds out the length of 
the common cycle and the processing sequence (the starting 
times of manufacturing and remanufacturing cycles). 
However, the proposed algorithm is rather complex and time 
consuming.  In order to overcome these disadvantages, 
Teunter et al. [2] developed a heuristic solution algorithm for 
the same setting.  
Zanoni et al. [3] relaxed the common cycle restriction and 
introduced a heuristic algorithm that solves the problem 
under Basic Period policy with Power-of-Two (PoT) 
frequencies. On the other hand, in order to reduce the model 
complexity, they restricted the study to consider 
independently managed serviceable inventory. This means 
that, they doubled the number of independent items by just 
splitting the demand of any item into “manufacturing 
demand” and “remanufacturing demand” using the return 
proportion for that item. When compared to the joint 
management of inventory, such an approximation of the 
objective function increases the holding cost since it ignores 
coordination opportunities. Teunter et al. [17] also considered 
ELSPR but they assumed dedicated lines for manufacturing 
and remanufacturing.         
In this study, as Zanoni et al. [3], we assume independently 
managed serviceable inventory and BP-PoT policy.  
However, there is a difference between ours and theirs: 
Although Zanoni et al. [3] formulated the problem under BP 
policy, if a generated solution violates BP-feasibility they 
modified the solution by compressing the idle time at the end 
of the whole cycle that is an integer multiple of a basic period. 
Therefore, they actually solve the problem under a 
Modified-BP policy. On the other hand, we totally stick to the 
(pure) BP policy since our main aim in this study is to apply a 
meta-heuristic to ELSPR and present the potential of our 
algorithm for future studies/extensions.        
We solve ELSPR for the above described setting with a 
Discrete Artificial Bee Colony (DABC) algorithm. Our 

DABC is derived from the well-known Artificial Bee Colony 
Algorithm (ABC), which is a swarm intelligence based 
optimizer and originally designed for continuous variables by 
Karaboga [18-22]. Recently, Bulut and Tasgetiren [9] 
illustrated that DABC-type algorithms perform well for the 
traditional ELSP. Our study is the first to consider a DABC 
algorithm to solve ELSPR. Computational results show that 
the proposed DABC algorithm is capable of finding the 
best-known solution for one of the two instances that Zanoni 
et al. [3] report their Modified-BP-PoT results. We believe 
that such a performance of our algorithm for independently 
managed serviceable inventory under the BP-PoT policy, 
which is more restrictive than the Modified-BP, manifests its 
potential for the future studies.   
Subsequent sections of the paper are organized as follows: 
Section II and Section III are devoted to the problem 
formulation and the proposed DABC algorithm, respectively. 
Section IV presents the computational results and Section V 
provides concluding remarks and future research directions.  

II. PROBLEM FORMULATION 
Economic Lot Scheduling Problem with Returns (ELSPR) 

under BP-PoT policy and independently managed serviceable 
inventory can be outlined as follows:  

 Demands for the items are experienced at known and 
constant rates. 

 Certain proportions of the manufactured and delivered 
items are returned back to the facility and 
remanufactured. 

 Manufacturing and remanufacturing operations are held 
on a single resource (a machine or a production line). 
That is, two or more items cannot be processed 
(manufactured or remanufactured) at the same time.  

 Manufacturing and remanufacturing rates are known 
constants. 

 Return proportions are used to split the demands into 
manufacturing and remanufacturing demands in order to 
independently control the effects of manufacturing and 
remanufacturing operations on the serviceable inventory. 

 For any given item and a processing type (manufacturing 
or remanufacturing), all processing cycles are in equal 
length.  

 Manufacturing or remanufacturing cycle times of an item 
are power-of-two (PoT) multiples of the basic period.   

In this setting, the aim is to find the length of the basic period 
and the PoT multipliers that minimize the sum of the average 
setup and the holding costs. The following notation is used for 
the mathematical formulation of the problem: 

Parameters ܦ ൌ ௜௠ܣ ݏ݉݁ݐ݅ ݂݋ ݎܾ݁݉ݑܰ ൌ ௜௥ܣ ݅ ݉݁ݐ݅ ݎ݋݂ ݐ݋݈ ݃݊݅ݎݑݐ݂ܿܽݑ݊ܽ݉ ݎ݁݌ ݐݏ݋ܿ ݌ݑݐ݁ܵ ൌ ௜௠ݏ ݅ ݉݁ݐ݅ ݎ݋݂ ݐ݋݈ ݃݊݅ݎݑݐ݂ܿܽݑ݊ܽ݉݁ݎ ݎ݁݌ ݐݏ݋ܿ ݌ݑݐ݁ܵ ൌ  ݅ ݉݁ݐ݅ ݎ݋݂ ݐ݋݈ ݃݊݅ݎݑݐ݂ܿܽݑ݊ܽ݉ ݎ݁݌ ݁݉݅ݐ ݌ݑݐ݁ܵ
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௜௥ݏ ൌ ௜݀ ݅ ݉݁ݐ݅ ݎ݋݂ ݐ݋݈ ݃݊݅ݎݑݐ݂ܿܽݑ݊ܽ݉݁ݎ ݎ݁݌ ݁݉݅ݐ ݌ݑݐ݁ܵ ൌ ௜ߚ ݅ ݉݁ݐ݅ ݎ݋݂ ݁ݐܽݎ ݀݊ܽ݉݁ܦ ൌ ௜௠݌ ݅ ݉݁ݐ݅ ݂݋ ݊݋݅ݐݎ݋݌݋ݎ݌ ݊ݎݑݐܴ݁ ൌ ௜௥݌ ݁݉݅ݐ ݐ݅݊ݑ ݎ݁݌ ݀݁ݎݑݐ݂ܿܽݑ݊ܽ݉ ݅ ݉݁ݐ݅ ݂݋ ݏݐ݅݊ݑ  ൌ ௜௦݄ ݁݉݅ݐ ݐ݅݊ݑ ݎ݁݌ ݀݁ݎݑݐ݂ܿܽݑ݊ܽ݉݁ݎ ݅ ݉݁ݐ݅ ݂݋ ݏݐ݅݊ݑ ൌ ௜௥ൌ݄ ݅  ݂݋ ݕݎ݋ݐ݊݁ݒ݊݅ ݈ܾ݁ܽܿ݅ݒݎ݁ݏ ݎ݋݂ ݁ݐܽݎ ݐݏ݋ܿ ݈݃݊݅݀݋݄ ௜௠ߩ ݅ ݅ ݂݋ ݕݎ݋ݐ݊݁ݒ݊݅ ݈ܾ݁ܽݎ݁ݒ݋ܿ݁ݎ ݎ݋݂ ݁ݐܽݎ ݐݏ݋ܿ ݈݃݊݅݀݋݄ ൌ ሺଵିఉ೔ሻௗ೔௣೔೘ ௜௥ߩ  ,  ൌ ఉ೔ௗ೔௣೔ೝ  ሺݏݎ݋ݐ݂ܿܽ ݊݋݅ݐܽݖ݈݅݅ݐݑሻ  ܪ௜௦ ൌ ሺ1 2⁄ ሻ݄௜௦ሾ݊௜௠ܹሺ1 െ ௜ሻ݀௜ሺ1ߚ െ ௜௠ሻߩ ൅ ݊௜௥ܹߚ௜݀௜ሺ1 െ ௜௥ܪ ௜௥ሻሿߩ ൌ ሺ1 2⁄ ሻ݄௜௥݊௜௥ܹߚ௜݀௜ሺ1 െ  ௜௥ሻߩ

Decision variables ܹ ൌ ௜௠݊ ݀݋݅ݎ݁݌ ܿ݅ݏܾܽ ܽ ݂݋ ݄ݐ݃݊݁ܮ ൌ ௜௥݊ ݅ ݉݁ݐ݅ ݂݋ ݏݐ݋݈ ݃݊݅ݎݑݐ݂ܿܽݑ݊ܽ݉ ݎ݋݂ ݎ݈݁݅݌݅ݐ݈ݑܯ ൌ  ݅ ݉݁ݐ݅ ݂݋ ݏݐ݋݈ ݃݊݅ݎݑݐ݂ܿܽݑ݊ܽ݉݁ݎ ݎ݋݂ ݎ݈݁݅݌݅ݐ݈ݑܯ
 
First, BP yields a cyclic schedule which repeats itself in every ݉ܽݔ ሺ݊௜௠, ݊௜௥ሻ  periods, which is the length of a complete 
cycle, because the multipliers are PoT. Second, Under BP 
policy, if one processes the items using a specific ordering 
rule (e.g. in the order of increasing multiplier values), then 
sequence feasibility is satisfied. Thus, it is enough to solve the 
following non-linear model to characterize the optimal BP 
policy.      min ∑ ൬ ஺೔೘௡೔೘ௐ ൅ ௜௦൰஽௜ୀଵܪ  + ∑ ൬ ஺೔ೝ௡೔ೝௐ ൅ ௜௥൰஽௜ୀଵܪ .ݏ (1)                    ݐ

 ∑ ሺݏ௜௠ ൅ ௜௥ݏ ൅ ݊௜௠ߩ௜௠ܹ ൅ ݊௜௥ߩ௜௥ܹሻ ൑ ܹ஽௜ୀଵ                     (2) 

where the (capacity) constraint ensures that all the 
manufacturing and remanufacturing operations and the 
corresponding setups can be done within a basic period. 

III. DISCRETE ARTIFICIAL BEE COLONY ALGORITHM 
Inspired by the intelligent foraging behaviors of honeybee 

swarms, the artificial bee colony (ABC) algorithm was 
proposed by Karaboga [18-22] who implemented a new 
swarm intelligence based optimizer. In this algorithm, 
foraging artificial bees are classified into three groups, 
namely, employed bees, onlookers, and scouts. Employed 
bees are responsible for food collection from the food source 
that the bee swarm is exploiting. Onlookers wait in the hive 
and decide on whether a food source is acceptable or not. 
They make the decision by observing the dancing employed 
bees’ performances. A scout randomly searches for new food 
sources based on internal motivation or some possible 
external clues. In the ABC algorithm, each solution to the 
problem under consideration is called a food source and 
represented by a d-dimensional real-valued vector where the 
fitness of the solution corresponds to the nectar amount of the 

associated food resource. As with other intelligent 
swarm-based approaches, ABC algorithm is an iterative 
process. The algorithm starts with a population of randomly 
generated solutions (or food sources) then the following steps 
are repeated until a termination criterion is met [18-22]: 
1. Initialize the foraging process. 
2. Send the employed bees to exploit the discovered food 

sources. 
3. Using the onlooker bees, choose the food sources and 

determine their nectar amounts. 
4. Send scouts to search for new food sources. 
5. Remember the best food source found so far. 
6. If a termination criterion has not been satisfied, go to step 

2; otherwise stop the procedure and report the best food 
source found so far. 

 The above ABC algorithm, originally designed for the 
continuous nature of optimization problems, cannot directly 
be used for discrete/combinatorial cases. In this study, we 
implement some modifications to the above ABC algorithm 
to handle discrete decision variables. The details of the 
modifications are as discussed below. 

A. Solution Representation 
In our solution representation, the food source is defined as a 
set of multipliers ݊ ൌ ሺ݊ଵ௠, ݊ଶ௠, . . , ݊஽௠, ݊ଵ௥, ݊ଶ௥, . . , ݊஽௥ ሻwhich is 
given in Figure 1.  

 1 2 …. Dߨ 
݊ଵ௠ ݊ଶ௠ …. ݊஽௠ ݊ଵ௥ ݊ଶ௥ …. ݊஽௥  

Fig. 1. Solution representation 

The length of the basic period, ܹ is not explicitly included in 
the solution representation. Instead, parallel with Zanoni et al. 
[3], for a given n vector, it is analytically determined as  ܹכ ൌ ሼݔܽ݉ ௠ܹ௔௫, ௠ܹ௜௡ሽ                                          (3) 

where ௠ܹ௔௫  is the unconstrained solution of (1) and ௠ܹ௜௡ 
directly comes from the constraint (2), and calculated by  

௠ܹ௔௫ ൌ ଶ ∑ ቆಲ೔೘೙೔೘ାಲ೔ೝ೙೔ೝቇವ೔సభ௛೔ೞൣ௡೔೘ሺଵିఉ೔ሻௗ೔൫ଵିఘ೔೘൯ା௡೔ೝఉ೔ௗ೔൫ଵିఘ೔ೝ൯൧ା௛೔ೝ௡೔ೝఉ೔ௗ೔൫ଵିఘ೔ೝ൯  

௠ܹ௜௡ ൌ ∑ ሺݏ௜௠ ൅ ௜௥ሻ஽௜ୀଵ1ݏ െ ∑ ሺ݊௜௠ߩ௜௠ ൅ ݊௜௥ߩ௜௥ሻ஽௜ୀଵ  

B. Feasibility 
Any food source represents a feasible solution if the 

constraint, i.e., the inequality (2), is satisfied. If this is the 
case, the optimal basic period is given by Eq. (3). On the other 
hand, if Ineq. (2) does not hold, the current solution, i.e., the 
current food source, is not feasible. For an infeasible solution, 
violation is measured by 

ሻߨሺݒ  ൌ ∑ ሺݏ௜௠ ൅ ௜௥ݏ ൅ ݊௜௠ߩ௜௠ܹ ൅ ݊௜௥ߩ௜௥ܹሻ െ ܹ஽௜ୀଵ           (4) 
 

In case of infeasibility, we still employ ܹכ to compute the 
objective function value. However, some sophisticated 
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constraint handling methods are used to handle the 
infeasibility as explained in the next section. 

C. Constraint Handling Methods 
In a swarm process, swarm operators may yield infeasible 

solutions. In this case, care must be taken with them violating 
the constraints. There exist different approaches to handle the 
constraints Coello [23]. In this paper, two popular approaches 
are employed to handle the constraints:  

a. Superiority of Feasible Solutions 
Deb [24] was the first to propose the superiority of feasible 
solutions (SF) for constrained optimization based on 
lexicographic ordering where constraint violation and 
objective function value are distinguished. The aim is to 
optimize both constraint violation and objective function 
by a lexicographic order where constraint violation 
precedes objective function value. In SF, when two 
solutions ax  and bx  are evaluated, ax  is deemed to be 
superior to bx  under the following conditions for a 
minimization problem: 

 ax  is feasible and bx  is not. 
 ax  and bx  are both feasible and ax  has a smaller  

objective function value than bx . 
 ax  and bx are both infeasible, but ax  has a smaller 

overall constraint violation )(xυ

 

as computed by 
using Eq. (4). 

b. ε -Constraint (EC) 
Takahama and Sakai [25-28] developed the 

ε-constrained method again based on lexicographic 
ordering with relaxation of the constraints. In the ε
-constraint handling method, the relaxation of the 
constraints is controlled by using the ε  parameter. The 
proper control of the ε  parameter is essential to obtain 
high quality solutions for problems with equality 
constraints [25-28]. The ε  level is updated until the 
generation counter t  reaches the control generation Ct . 
After the generation counter exceeds Ct , the ε  level is set 
to zero to obtain solutions with no constraint violation. The 
idea behind EC method is that solutions with the total 
violation less that ( )tε  are treated as feasible solutions 
when comparing two solutions. The ε -constraint handling 
method can be summarized as follows:   

( ) ( )θπε v=0                        (5) 
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cp
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C tt

tt

t
t

t <<
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≥
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⎠

⎞
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⎝

⎛
−

= 0    ,

       ,0

1)0(
)(

ε
ε .                 (6) 

where θπ  is the top θ -th individual and NP×= 20.0θ . The 
recommended parameter ranges are 

( )maxmax 8.0,1.0 TTTC ××=  and ( )10,2=cp .  
It is important to note that we employed these two 

constraint handling methods in the proposed GA as follows: 

Before making the comparison of two individuals, each 
individual is treated to either feasible or infeasible according 
to the ε  level. Then, SF is used when making comparison. 

D. Initial Population 
The initial population of NP individuals is constructed 
randomly. For each food source, ݊௜௠ and ݊௜௥ are randomly 
generated from { }max,..,4,2,1 n  where the maximum multiplier 
was assumed to be max 16n = . To simplify, PoT multipliers are 
generated by max()%2rand n . 

E. Employed Bee Phase 
According to the basic ABC algorithm, the employed bees 
generate food sources in the neighborhood of their current 
positions. The DABC algorithm employs a very simple 
neighboring food source by “Multiply By 2” , “Divide By 2” 
and “ 21 NandNofUnion ”. These three strategies 
are as follows: 

( ) 21 ByDivideN =π  
( ) 22 ByMultiplyN =π  
( ) 213 NandNofUnionN =π  

Note that these neighboring strategies obey the PoT rule. In 
other words, dividing by 2 or multiply by 2 does not generate 
non-PoT values. However, in the case of dividing 1 by 2, the 
dimension value of the food source is assigned to 2. If the 
resulting dimension value is greater than max2n , it is randomly 
assigned to max()%2rand n . For a 5-item problem, Figure 2-4 
illustrates the neighborhoods used in the DABC algorithm. 

 
 1 2 3 4 5  

π  
1 4 2 8 2 

1 2 4 4 8 

( )π1N  
1 2 2 8 2 

1 1 4 4 8 

Fig. 2. Divide by 2 

 1 2 3 4 5  

π  
1 4 2 8 2 

1 2 4 4 8 

( )π2N  
1 8 2 8 2 

1 4 4 4 8 

Fig. 3. Multiply by 2 

 1 2 3 4 5  

π  
1 4 2 8 2 

1 2 4 4 8 

( )π3N  
1 8 2 8 1 

1 4 4 4 4 

Fig. 4. Union 
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Each method for the generation of neighboring food 
sources may have different performances during the 
evolution process.  Therefore, each food source in the 
population is assigned to one of the three strategies to 
generate a neighboring food source.  After generating a 
neighboring food source by one of three strategies, a local 
search based on variable neighborhood search (VNS) [29] is 
applied to further improve the solution quality (nectar 
amount). As for the selection, a new good source is always 
accepted if it is better than the current food source (according 
to SF and ε-constraint level), which is similar to the basic 
ABC algorithm carrying out a greedy selection procedure. 
The number of the employed bees is set to the population size
NP . 

F. Onlooker Bee Phase 
In the basic ABC algorithm, an onlooker bee selects a food 

source kπ  depending on its winning probability value, which 
is similar to wheel selection in GAs [18-22]. However, the 
tournament selection is widely used in GA applications due to 
its simplicity and ability to escape from local optima. For this 
reason, we propose a tournament selection with a size of 2 in 
the DABC algorithm. In the tournament selection, an 
onlooker bee selects a food source kπ  in such a way that two 
food sources are randomly picked up from the population and 
compared to each other, allowing the better one to be chosen. 
In addition, an onlooker bee utilizes the same strategy that is 
used by the employed bee to produce a new neighboring 
solution. Then, a well-devised VNS local search is employed 
to further improve the nectar amount of the onlooker bee. If 
the new food source obtained is better than the current one, 
the new food source will replace the current one and become a 
new member in the population (according to SF and ε
-constraint level). The number of onlooker bees considered is
NP .  

G. Scout Bee Phase 
In the basic ABC algorithm, a scout bee produces a food 

source randomly in the predefined search space. This will 
decrease the search efficacy because the best food source in 
the population often carries better information than others 
during the evolution process, and the search space around it 
could be the most promising region. Therefore, in the DABC 
algorithm, a tournament selection with the size of 2 is again 
used to discard the worse of two randomly selected food 
sources that have been picked out from the population. Then, 
the scout generates a food source randomly as explained 
before. This food source will be replaced by the food source 
determined by tournament selection, thus proposing a kind of 
immigration to the DABC algorithm. There are NP×1.0
scout bees in this phase. 

H. Variable Neighborhood Search 
In order to intensify the search on the local minima and 

improve the solution quality of DABC, a common approach 
is to hybridize it with some local search methods. For this 
reason, the local search algorithm is, simply VNS), fused into 
the DABC algorithm. Note that VNS is applied to each food 
source generated either by the employed bee or onlooker bee. 

VNS is a meta-heuristic proposed in [29] systematically 
exploiting the idea of neighborhood change. We employed 
the following VNS local search in Figure 5. The VNS local 
search has three neighborhood structures as used in Employed 
Bee and Onlooker Bee phases. In other words, the following 
neighborhood structures are employed:   

( ) 21 ByDivideN =π  
( ) 22 ByMultiplyN =π  
( ) 213 NandNofUnionN =π  

The third neighborhood is a combination of 1N  and 2N . 
In other words, once a dimension value of the food source is 
randomly changed by 1N , another dimension is also 
randomly changed by 2N . The size of the each neighborhood 
is the number of dimensions/items. In other words, for 
example, 2ByDivide is applied 10 times and the best out 
of 10 is retained. 

( )πVNSocedurePr  
3:max =k  

1:=k  

{do  

( )ππ kN=1   

 ( ) ( ) thenffif
levelandSFwith −

<
ε
ππ 1    

    1ππ =  

1:=k  

 else  
  1: += kk  
 ( )max} kkwhile ≤    

πreturn  

reendprocedu  

Fig. 5. The VNS Algorithm. 

IV. COMPUTATIONAL RESULTS 
The proposed DABC algorithm was coded in C++ and run on 
an Intel P4 3.00 GHz PC with 500MB memory. The 
population size was fixed at 100 and the algorithm was run for 
1000 generations with the following constraint handling 
parameters: NP×= 2.0θ , MaxGentC *4.0=  and 2=cp . 

Teunter et al. [2] provided 120 benchmark problem 
instances. We first test the performance of our algorithm on 
the Instance#61 and Instance#101for which Zanoni et al. [3] 
reported their Modified-BP-PoT results. Five runs carried out 
for both of the instances and the computation time for a run is 
roughly less than 5 s per 1000 generations. In Table II, for 
both of the instances, we present the best out our five 
replications and compare them to the results of Zanoni et al. 
[3] and  Teunter et al. [2].  

As seen from Table II, even though Zanoni et al. [3] solved 
the problem under a Modified-BP policy, which has a larger 
feasible region than the BP-Policy that we employ, and 
Teunter et al. [2] coordinated the manufacturing and 
remanufacturing operations (that means they do not have the 
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independently managed serviceable inventory assumption) 
within CC policy, our algorithm was able to find the best 
known solution for Instance #61.  This result reveals the 
potential of our algorithm for future extensions of ELSPR. 
Table II also illustrates the fact that considering the joint 
management of serviceable inventory, i.e., considering the 
starting times of all manufacturing and remanufacturing 
cycles as decision variables, significantly improves the 
solution for Instance #101. This is an expected result because 
utilization factor for Instance #101, which is 0.95, is much 
greater than the utilization factor of Instance #61, which is 
0.75. It is well known that ELSP-type problems get harder as 
the utilization factor increases.  

 
TABLE II.  

RESULTS FOR INSTANCES 61 AND 101 
Instance Teunter et al. [2] Zanoni et al. [3] DABC 

61 28.32 19.21 19.21 
101 51.22 30.77 56.40 

 The solution vectors of our DABC algorithm for instances 
61 and 101 are presented in Table III where ݊௠ ൌሺ݊ଵ௠, ݊ଶ௠, . . , ݊஽௠ሻ  is the vector of PoT multipliers for the 
“manufacturing demands”, and ݊௥ ൌ ሺ݊ଵ௥, ݊ଶ௥, . . , ݊஽௥ ሻ  is the 
vector of PoT multipliers for the “remanufacturing demands”. 

TABLE III.  
DABC SOLUTIONS FOR INSTANCES 61 AND 101 

Instance ܹ ݊௠ ݊௥ 
61 98.02 (1,1,1,1,1,1,1,1,1,1) (1,1,1,1,1,1,1,1,1,1) 
101 74.24 (4,1,1,1,1,8,16,2,8,2) (1,1,1,1,1,8,8,1,2,1) 

 
TABLE IV.  

RESULTS FOR INSTANCES 51 - 60 
Instance Teunter et al. [2] DABC 

51 59.53 37.85 
52 17.71 17.29 
53 25.83 24.95 
54 25.81 24.02 
55 19.84 17.03 
56 27.57 26.84 
57 23.13 26.95 
58 25.65 23.16 
59 27.51 28.67 
60 22.43 20.18 

We also run our algorithm for the ten instances in the range 
Instance#51 - Instance#60 and present the results in Table IV. 
Since the results of Zanoni et al. [3] are only available for the 
instances 61 and 101, in Table IV, we only compare our 
results to the results of Teunter et al. [2]. Our algorithm was 
able to improve the results for eight of the ten instances. 
Parallel to the discussion on Table II, it can be also concluded 
form Table IV that joint management of serviceable 
inventory provides better results for the higher utilization 
problems. 

V. CONCLUSIONS 
In this study we present a discrete artificial bee colony 

(DABC) algorithm to solve the economic lot scheduling 
problem with returns (ELSPR) under basic period (BP) policy 

with power-of-two (PoT) multipliers. We also assume 
independently managed serviceable inventory as Zanoni et al. 
[3]. Computational results show that the proposed DABC 
algorithm is capable of finding the best-known solution for 
one of the two instances that Zanoni et al. [3] reported their 
Modified-BP-PoT results. It is also shown that our algorithm 
based on the Basic Period approach succeeds to improve the 
Common Cycle results especially for the low utilization 
problems. We believe that such a performance of our 
algorithm for independently managed serviceable inventory 
under the BP-PoT policy, which is more restrictive than the 
Modified-BP, manifests its potential for the future studies.   

As a future research direction, we plan to relax all the BP, 
PoT and independently managed serviceable inventory 
restrictions and enhance our algorithm accordingly.  
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