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Abstract—In this paper, an improved multi-objective 
differential evolution algorithm is proposed to solve 
constraints in multi-objective optimization. Research has 
shown that the information of infeasible solutions is also 
important and can help the algorithm improve the 
convergence and diversity of solutions. A novel constraint 
handling method is introduced to ensure that a certain 
number of good infeasible solutions will be kept in the 
procedure of evolution to guide the search of the individuals. 
The proposed method is compared with two other constrained 
multi-objective differential evolution algorithms and the 
results show that the proposed method is competitive.  

Keywords—differential evolution; fast sorting; constraint 
handling; multi-objective problems 

I. INTRODUCTION 

In recent years, more and more researchers pay their 
attention to multi-objective problems, for the reason that 
multi-objective optimization problems exist in many fields 
of science and engineering. Much work has been done to 
solve multi-objective optimization problems [1]-[5]. In real 
applications, how to handle constraints remains an 
important issue. There have been some methods to handle 
constraints in single-objective problems. In early years, 
penalty functions [6], decoders [7], special operators [8], 
separation of objective functions and constraints [9] are 
main approaches to solve single-objective problems. In 
recent years, some new techniques have been proposed to 
solve constrained problems such as feasibility rules [10], 
stochastic ranking [11] and ε-constrained method [12]. 
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 Most of techniques for constraint handling in solving 
multi-objective problems are inspired by feasibility rules 
proposed in [9]. In the literature [3], Deb introduced the 
concept of constrained-domination. Some excellent 
methods have been used successfully in multi-objective 
problems with constraints. Coello and Christiansen [13] 
applied death penalty in their approach to eliminate 
infeasible solutions. Since the information of infeasible 
solutions can also improve the performance of algorithms, 
Deb [14] used static penalty and dynamic penalty which are 
also used in single-objective problems to handle constraints 
in multi-objective optimization. Adaptive penalty function 
and a distance measure were developed by Woldesenbet et 
al. [15] to improve the performance of their algorithm.  

 In this paper, an effective technique, which 
considering the effect of infeasible solutions, is proposed to 
handle constraints. This technique is combined with a 
multi-objective differential evolution algorithm based on 
fast-sorting method proposed by Qu and Suganthan [16], 
[17] to solve constrained optimization problems. 

 The structure of this paper is organized as follows. 
Section II presents the concept of constrained 
multi-objective optimization problem. In section III, the 
multi-objective differential evolution based on fast-sorting 
method proposed by Qu and Suganthan is described. The 
proposed technique of handling constraints is introduced in 
detail in section IV. Experiments and results are discussed 
in section V. Section VI draws the conclusion and and 
discusses future research. 
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II. CONSTRAINED MULTI-OBJECTIVE 

OPTIMIZATION PROBLEM 

For most cases, a constrained multi-objective 
optimization problem can be described as follows: 
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where, 1 2( ) [ ( ), ( ),....., ( )]mf x f x f x f x=  is the set of m 
objective functions to be minimized simultaneously, 

1 2( ) ( , ,......, ) 0k k nh x h x x x= =  are equality constraints, the 
inequality constraints are 1 2( ) ( , ,......, ) 0j j ng x g x x x= ≤ . 
The equality constraints can be converted to inequality 
constraints by introducing a tolerance constant δ, then the 
form of equality constraints is indicated as | ( ) | 0kh x δ− ≤ .  

There are some methods to handle constraints. One of 
these methods is penalty function [6]. However, the 
difficulty of penalty function is the requirement of 
specifying a number of parameters. Another popular 
method is feasibility rules proposed by Deb [3]. The rules 
are defined as follows:  

Definition 1: A solution i is said to 
constrained-dominate a solution j, if any of the following 
conditions is true. 

• Solution i is feasible and solution j is not; 

• Solutions i and j are both infeasible, but solution i 
has a smaller overall constraint violation; 

• Solutions i and j are feasible and solution i 
dominates solution j. 

From the definition of the rules, it is obvious that, 
according to Deb’s rules, feasible solutions have greater 
priority in the process of evolution than infeasible solutions. 
By researching the test functions for constrained problems 
[18], we found that, in some cases, information of infeasible 
solutions is also important in evolution process. To improve 
the performance of algorithm, a novel constraint handling 
technique which makes use of the information of both 
feasible and infeasible solutions for handling constraints is 
proposed and applied in the multi-objective differential 
evolution. The proposed method will be discussed in detail 
in section IV. 

III. MULTI-OBJECTIVE DIFFERENTIAL 

EVOLUTION 

In recently years, evolutionary algorithms (EAs) have 

been successfully used to solve optimization problems. 
Among them, differential evolution algorithm (DE) is an 
excellent approach for optimization problems. DE was first 
proposed by Storn and Price [19] in 1995, and has been 
used to solve single objective and multi-objective problems 
[20], and the performance has been proved to be very 
effective. Some researchers embedded constraints handling 
techniques into DE for constrained optimization. Vargas et 
al. applied adaptive penalty method in DE for constrained 
multi-objective optimization. Qu et al. [21] proposed a 
diversity enhanced constrained multi-objective differential 
evolution (DE-CMODE). DE-CMODE overcomes the 
pre-mature convergence problem which exists in 
constrained multi-objective differential evolution 
(CMODE). The procedure of typical multi-objective 
differential evolution (MODE) is given in Fig. 1.  

 In this paper, an improved multi-objective differential 
evolution proposed by Qu and Suganthan [16], [17] is used. 
The main difference between the improved MODE and 
basic MODE is that a new non-domination sorting method 
called fast-sorting is used in the improved MODE. It has 
been proved that the fast-sorting method is effectively in 
solving multi-objective problems [16], [17]. In addition, the 
complexity of the method is lower than the commonly used 
non-domination sorting method. 

Fast-sorting consists of two parts. One is summation of 
normalized objective values (SNOV) and the other one is 
diversified selection (DS). There are some details need to be 
noticed in the procedure of DS: 

1) Current population will be divided into 2 sets, 
preferential and backup set; 

2) Solutions in the preferential set will be selected 
first for evolving; 

3) If there are not enough solutions in preferential set, 
solutions in backup set will be selected based on 
SNOV; 

4) If the number of solutions in preferential set is 
larger than needed, the required solutions will be 
selected randomly from the preferential set. 

The procedures of SNOV and DS are given in Fig. 2 and 
Fig. 3 respectively. 

IV. NOVEL CONSTRAINTS HANDLING METHOD 

As mentioned in section II, the weakness of the method 
proposed by Deb in NSGA-II is that the method pefers 
feasible solutions to infeasible solutions and does not make 
full use of the information of infeasible solutions. To 
overcome this problem and enhance the diversity, the 
proposed method divides the set R which is combined by 
parents and offspring in every generation into two subsets. 
R1 is the first subset which is composed of all feasible 
solutions. All infeasible solutions consist of the second 
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subset R2. R1 is sorted by fast-sorting method as used in 
Fig. 2 and Fig. 3. Then R’1 is obtained. For R2, the 
fast-sorting rule is modified. The original fast-sorting sorts 
the solutions based on objective functions. Different from 
the original one, the modified fast-sorting method is based 
on constraints. In this method, objective functions are 
replaced by constraints. The goal of this method is to 
minimize the constraints. Then R’2 is obtained. At last R’1 
and R’2 make up a new set R’ which is used as the parents 
for next generation. The advantage of the proposed method  

1. Randomly generate a number of initial trial solutions and initialize 

the external archive; 

2. Create Np number of offspring solutions from the parents; 
3. Combining the parents and offspring into a solutions pool; 
4. Identify the non-dominated solutions and assign the front number to 

each of the solutions; 

5. Sort the total solution in the ascending order with respect to the front 

number; 

6. Select the first Np solutions and update the external archive; 
7. Stop if the criterion is satisfied, otherwise go to 2. 
Fig. 1.  Procedure of the basic MODE 

 

Step 1: For m = 1 to M    // M is the number of objectives 

Normalize the objective value of each member by (2) 

min

max min

( )'( ) m
m

f x ff x
f f

−=
−

     (2) 

Where maxf and minf are the maximum and minimum objective values 

of the mth objective. '( )mf x  is the normalized mth objective value. 

End For 

Step 2:  For i = 1 to NP      //NP is the size of population 

Sum all normalized objective values of the member to obtain a 

single value. 

End For 

Fig. 2.  Procedure of SNOV 

 

step 1:  For m = 1 to M    //M is the number of objectives 

a) Divide the range of the objective space into 100 bins equally 

b) Scan P percentage of the 100 bins (i.e. from bin 1 to P, P may be 

chosen as 80 or 90, and 90 is used in our experiment) 

c) For each scanned bin (if this is empty, otherwise just continue to 

next bin), the solution with the smallest summation of normalized 

objective values will be chosen to enter preferential set. 

End For 

Step 2:  Accumulate the solutions excluded from the preferential set and 

store them in backup 

Fig. 3.  Procedure of DS 

is that the information of infeasible solutions is kept for 
next generation. The diversity of solutions is improved. 
Since R2 which consists of all infeasible solutions is sorted 
based on constraints, bad infeasible solutions (far away 
from the feasible space) are also removed, and the good 
infeasible solutions are kept. The flow chart of the 
algorithm in this paper is given in Fig. 4. 

V. EXPERIMENT AND RESULTS 

A. Experiments and Rsults 

Three algorithms are tested in the experiments, 
including CMODE, DE-CMODE and the improved DE 
proposed in this paper. The population size of each 
algorithm used in this paper is set as 100. The parameters of 
DE used in this paper are set as follows: 

F=0.3; CR=0.3; FES=200000; 

B. Test Functions 

Eight commonly used functions [18] are employed as 
benchmarks in this paper. 

1) TNK:  
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2) SRN: 

Minimize:
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3) OSY: 
Minimize:
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Fig. 4. Flow Chart of Algorithm 

4) CTP1:  

Minimize:
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5) CTP2-5: 

Minimize:
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The parameters of CTP2-5 are given in Table I. 

TABLE I  PARAMETERS of CTP2-CTP5 

 θ  a b c d e 

CTP2 -0.2 π  0.2 10 1 6 1 

CTP3 -0.2 π  0.1 10 1 0.5 1 

CTP4 -0.2 π  0.75 10 2 0.5 1 

CTP5 0.05π−  40 5 1 6 0 

 

C. Performance Measure 

In order to compare the performance of the algorithms, 
two indicators, IR2 and HI , are picked as performance 
metric. They are summarized in [22]. 

R indicator (IR2) is used to effectively measure the 
difference in the mean distance of the attainment surfaces 
from the reference point. IR2 defined as: 

2

*( , ) *( , )
R

u A u R
I λ λ λ∈Λ −

=
Λ

∑
   

 

Where R is a reference set, u* is the maximum value of 
the utility function u with weight λ on an approximation set 
A. In our experiment, the augmented Tchebycheff function 
is chosen as the utility function. 

Hypervolume difference to a reference set ( HI ) values 
represent the diversity of the algorithm. IH indicates the 
hypervolume of the objective space which is dominated by  
set A. Considering R a reference set. HI  is defined as HI
= IH(R)–IH(A). Obviously, a smaller HI  means a better 
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diversity of the approximation set. 

.TABLE II   R-INDICATOR FOR 30 RUNS 

 proposed CMODE DE-CMODE 

TNK best -9.75e-06 1.02e-04 1.01e-04 

worst 8.26e-05 5.53e-04 6.21e-04 

mean 3.24e-05 2,86e-04 3.17e-04 

std 2.56e-05 1.25e-04 1.55e-04 

OSY best -4.57e-05 4.51e-05 3.26e-06 

worst 0.10e-03 3.85e-02 4.91e-04 

mean 1.17e-04 1.18e-02 2.21e-04 

std 2.83e-04 1.35e-02 1.37e-04 

SRN best -5.14e-06 3.33e-05 2.39e-05 

worst 9.40e-05 8.16e-04 5.96e-04 

mean 3.43e-05 2.31e-04 1.85e-04 

std 2.06e-05 1.97e-04 1.47e-04 

CTP1 best -5.86e-10 2.76e-08 4,32e-08 

worst 3.71e-07 3.77e-04 1.63e-05 

mean 6.80e-08 1.21e-04 3.13e-06 

std 1.24e-07 1.79e-04 4.27e-06 

CTP2 best 7.07e-08 9.97e-07 4.33e-07 

worst 6.74e-06 2.30e-05 1.07e-05 

mean 1.41e-06 9.09e-06 6.08e-06 

std 1.43e-06 7.05e-06 4.61e-06 

CTP3 best -3.50e-06 1.66e-05 2.48e-05 

worst 1.25e-04 2.36e-04 2.29e-04 

mean 6.20e-05 1.31e-04 1.30e-04 

std 3.15e-05 5.68e-05 5.09e-05 

CTP4 best 1.07e-04 7.69e-05 7.69e-05 

worst 9.82e-04 1.31e-02 2.30e-03 

mean 4.98e-04 3.00e-03 1.10e-03 

std 2.53e-04 4.10e-03 6.04e-04 

CTP5 best 0 1.31e-08 1.90e-08 

worst 1.55e-07 6.40e-03 4.48e-07 

mean 1.15e-08 7.24e-04 1.32e-07 

std 2.97e-08 1.80e-03 1.30e-07 

 

D. Results and Comparison 

For each algorithm, the 8 test functions are run 30 times, 
and the average of 2RI  and HI  are shown in Table II 
and Table III. The best of the results are denoted in bold. 

TNK and OSY are two commonly used test problems. 
The constraints of the two problems are easier, compared 

with other test problems. All of the three algorithms used in 
this paper perform well on these two problems. However,  

TABLE III   H-INDICATOR FOR 30 RUNS 

 proposed CMODE DE-CMODE 

TNK best -6.55e-06 2.94e-04 2.95e-04 

worst 1.26e-04 1.50e-03 1.70e-03 

mean 5.52e-05 7.82e-04 8.65e-04 

std 3.71e-05 3.28e-04 4.06e-04 

OSY best 2.20e-04 1.90e-03 1.80e-03 

worst 1.40e-03 6.31e-02 7.70e-03 

mean 4.00e-04 1.90e-02 2.80e-03 

std 2.67e-04 2.03e-02 1.10e-03 

SRN best 9.90e-04 2.90e-03 2.80e-03 

worst 1.20e-03 3.60e-03 3.50e-03 

mean 1.10e-03 3.20e-03 3.10e-03 

std 5.64e-05 2.04e-04 2.00e-04 

CTP1 best 5.44e-06 5.89e-06 6.10e-06 

worst 7.92e-06 9.64e-04 3.01e-05 

mean 5.97e-06 3.13e-04 1.11e-05 

std 5.84e-07 4.55e-04 6.39e-06 

CTP2 best 1.19e-06 3.96e-06 4.39e-06 

worst 1.16e-05 3.25e-05 2.05e-05 

mean 3.88e-06 1.36e-05 1.13e-05 

std 2.19e-06 8.27e-06 4.35e-06 

CTP3 best 2.41e-05 4.85e-05 6.88e-05 

worst 2.29e-04 3.74e-04 3.64e-04 

mean 1.21e-04 2.20e-04 2.24e-04 

std 4.70e-05 8.29e-05 7.57e-05 

CTP4 best 2.09e-04 1.77e-04 1.88e-04 

worst 1.60e-03 2.03e-02 3.40e-03 

mean 8.14e-04 4.70e-03 1.80e-03 

std 3.92e-04 6.60e-03 8.92e-04 

CTP5 best 2.25e-06 1.03e-06 1.04e-06 

worst 2.65e-06 1.02e-02 2.28e-06 

mean 2.48e-06 1.10e-03 1.29e-06 

std 9.80e-08 2.80e-03 2.75e-07 

 

we can see that the proposed method is much better than the 
other algorithms both in convergence and diversity of 
solutions.  

For SRN, solutions obtained by the proposed method 
are much closer to the reference front than the others. As for 
diversity of solutions, the three algorithms are almost the 
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same. The advantage of proposed method is not significant. 

CTP1 – CTP5 are relatively difficult test problems. The 
properties of these five problems can be tuned by adjusting 
parameters. Compared with the other two algorithms, the 
performance of the proposed method stands out on 
convergence and diversity of solutions when tested on 
CTP1 – CTP4. Although the proposed method performs 
better in convergence to the true Pareto-optimal, it’s a little 
worse than DE-CMODE considering the diversity of 
solutions. 

After all, some conclusions can be drawn. Compared 
with the other algorithms, the results of the proposed 
method are competitive considering the convergence to 
Pareto-optimal. As for the diversity of solutions, the 
proposed method performs better than the other algorithms 
except for CTP5. Generally, the proposed method performs 
well on all the 8 benchmark test functions. The main reason 
is that the information of infeasible is kept well in each 
generation, and contributes to the search procedure. 

VI. CONCLUSION 

In this paper, an improved differential evolution is 
modified to solve the constrained multi-objective 
optimization problems. The proposed method sorts the 
feasible solutions and infeasible solutions separately, hence 
feasible solutions and infeasible solutions all have chance to 
survive in the next generation. In this way, the information 
of both feasible and infeasible solutions is maintained in the 
search procedure. The performance of the proposed method 
is proved competitive on eight commonly used benchmark 
functions through comparing with two other state-or-art 
constrained MODEs. For future work, an adaptive function 
will be applied to adjust the rate of infeasible solutions in 
the population. 
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