

Multi-objective Differential Evolution Algorithm
Based on Fast Sorting and a Novel Constraints

Handling Technique

J. J. Liang1, B. Zheng1, F. Y. Xu1
1School of Electrical Engineering

Zhengzhou University
Zhengzhou, China

liangjing@zzu.edu.cn

B. Y. Qu2 and H. Song1
2School of Electric and Information Engineering

Zhongyuan University of Technology
Zhengzhou, China

qby1984@hotmail.com

Abstract—In this paper, an improved multi-objective
differential evolution algorithm is proposed to solve
constraints in multi-objective optimization. Research has
shown that the information of infeasible solutions is also
important and can help the algorithm improve the
convergence and diversity of solutions. A novel constraint
handling method is introduced to ensure that a certain
number of good infeasible solutions will be kept in the
procedure of evolution to guide the search of the individuals.
The proposed method is compared with two other constrained
multi-objective differential evolution algorithms and the
results show that the proposed method is competitive.

Keywords—differential evolution; fast sorting; constraint
handling; multi-objective problems

I. INTRODUCTION

In recent years, more and more researchers pay their
attention to multi-objective problems, for the reason that
multi-objective optimization problems exist in many fields
of science and engineering. Much work has been done to
solve multi-objective optimization problems [1]-[5]. In real
applications, how to handle constraints remains an
important issue. There have been some methods to handle
constraints in single-objective problems. In early years,
penalty functions [6], decoders [7], special operators [8],
separation of objective functions and constraints [9] are
main approaches to solve single-objective problems. In
recent years, some new techniques have been proposed to
solve constrained problems such as feasibility rules [10],
stochastic ranking [11] and ε-constrained method [12].

This work was supported in part by National Natural Science

Foundation of China (61305080, U1304602), Postdoctoral Science
Foundation of China (Grants 20100480859), Specialized Research Fund
for the Doctoral Program of Higher Education (20114101110005),
Scientific and Technological Project of Henan Province (132102210521,
122300410264), and Key Foundation of Henan Educational Committee
(14A410001).

 Most of techniques for constraint handling in solving
multi-objective problems are inspired by feasibility rules
proposed in [9]. In the literature [3], Deb introduced the
concept of constrained-domination. Some excellent
methods have been used successfully in multi-objective
problems with constraints. Coello and Christiansen [13]
applied death penalty in their approach to eliminate
infeasible solutions. Since the information of infeasible
solutions can also improve the performance of algorithms,
Deb [14] used static penalty and dynamic penalty which are
also used in single-objective problems to handle constraints
in multi-objective optimization. Adaptive penalty function
and a distance measure were developed by Woldesenbet et
al. [15] to improve the performance of their algorithm.

 In this paper, an effective technique, which
considering the effect of infeasible solutions, is proposed to
handle constraints. This technique is combined with a
multi-objective differential evolution algorithm based on
fast-sorting method proposed by Qu and Suganthan [16],
[17] to solve constrained optimization problems.

 The structure of this paper is organized as follows.
Section II presents the concept of constrained
multi-objective optimization problem. In section III, the
multi-objective differential evolution based on fast-sorting
method proposed by Qu and Suganthan is described. The
proposed technique of handling constraints is introduced in
detail in section IV. Experiments and results are discussed
in section V. Section VI draws the conclusion and and
discusses future research.

445

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

II. CONSTRAINED MULTI-OBJECTIVE

OPTIMIZATION PROBLEM

For most cases, a constrained multi-objective
optimization problem can be described as follows:

1 2

1 2

1 2

 () [(), (),....., ()]
1, 2,......,

 () (, ,......,) 0,
1, 2,......,

 () (, ,......,) 0,

 1, 2,......,

m

k k n

j j n

minimize f x f x f x f x
m m

subject to h x h x x x
k K
g x g x x x

j J

=
=

= =
=

= ≤

=
min max , 1, 2,......,i i ix x x i n≤ ≤ =

 (1)

where, 1 2() [(), (),....., ()]mf x f x f x f x= is the set of m
objective functions to be minimized simultaneously,

1 2() (, ,......,) 0k k nh x h x x x= = are equality constraints, the
inequality constraints are 1 2() (, ,......,) 0j j ng x g x x x= ≤ .
The equality constraints can be converted to inequality
constraints by introducing a tolerance constant δ, then the
form of equality constraints is indicated as | () | 0kh x δ− ≤ .

There are some methods to handle constraints. One of
these methods is penalty function [6]. However, the
difficulty of penalty function is the requirement of
specifying a number of parameters. Another popular
method is feasibility rules proposed by Deb [3]. The rules
are defined as follows:

Definition 1: A solution i is said to
constrained-dominate a solution j, if any of the following
conditions is true.

• Solution i is feasible and solution j is not;

• Solutions i and j are both infeasible, but solution i
has a smaller overall constraint violation;

• Solutions i and j are feasible and solution i
dominates solution j.

From the definition of the rules, it is obvious that,
according to Deb’s rules, feasible solutions have greater
priority in the process of evolution than infeasible solutions.
By researching the test functions for constrained problems
[18], we found that, in some cases, information of infeasible
solutions is also important in evolution process. To improve
the performance of algorithm, a novel constraint handling
technique which makes use of the information of both
feasible and infeasible solutions for handling constraints is
proposed and applied in the multi-objective differential
evolution. The proposed method will be discussed in detail
in section IV.

III. MULTI-OBJECTIVE DIFFERENTIAL

EVOLUTION

In recently years, evolutionary algorithms (EAs) have

been successfully used to solve optimization problems.
Among them, differential evolution algorithm (DE) is an
excellent approach for optimization problems. DE was first
proposed by Storn and Price [19] in 1995, and has been
used to solve single objective and multi-objective problems
[20], and the performance has been proved to be very
effective. Some researchers embedded constraints handling
techniques into DE for constrained optimization. Vargas et
al. applied adaptive penalty method in DE for constrained
multi-objective optimization. Qu et al. [21] proposed a
diversity enhanced constrained multi-objective differential
evolution (DE-CMODE). DE-CMODE overcomes the
pre-mature convergence problem which exists in
constrained multi-objective differential evolution
(CMODE). The procedure of typical multi-objective
differential evolution (MODE) is given in Fig. 1.

 In this paper, an improved multi-objective differential
evolution proposed by Qu and Suganthan [16], [17] is used.
The main difference between the improved MODE and
basic MODE is that a new non-domination sorting method
called fast-sorting is used in the improved MODE. It has
been proved that the fast-sorting method is effectively in
solving multi-objective problems [16], [17]. In addition, the
complexity of the method is lower than the commonly used
non-domination sorting method.

Fast-sorting consists of two parts. One is summation of
normalized objective values (SNOV) and the other one is
diversified selection (DS). There are some details need to be
noticed in the procedure of DS:

1) Current population will be divided into 2 sets,
preferential and backup set;

2) Solutions in the preferential set will be selected
first for evolving;

3) If there are not enough solutions in preferential set,
solutions in backup set will be selected based on
SNOV;

4) If the number of solutions in preferential set is
larger than needed, the required solutions will be
selected randomly from the preferential set.

The procedures of SNOV and DS are given in Fig. 2 and
Fig. 3 respectively.

IV. NOVEL CONSTRAINTS HANDLING METHOD

As mentioned in section II, the weakness of the method
proposed by Deb in NSGA-II is that the method pefers
feasible solutions to infeasible solutions and does not make
full use of the information of infeasible solutions. To
overcome this problem and enhance the diversity, the
proposed method divides the set R which is combined by
parents and offspring in every generation into two subsets.
R1 is the first subset which is composed of all feasible
solutions. All infeasible solutions consist of the second

446

subset R2. R1 is sorted by fast-sorting method as used in
Fig. 2 and Fig. 3. Then R’1 is obtained. For R2, the
fast-sorting rule is modified. The original fast-sorting sorts
the solutions based on objective functions. Different from
the original one, the modified fast-sorting method is based
on constraints. In this method, objective functions are
replaced by constraints. The goal of this method is to
minimize the constraints. Then R’2 is obtained. At last R’1
and R’2 make up a new set R’ which is used as the parents
for next generation. The advantage of the proposed method

1. Randomly generate a number of initial trial solutions and initialize

the external archive;

2. Create Np number of offspring solutions from the parents;
3. Combining the parents and offspring into a solutions pool;
4. Identify the non-dominated solutions and assign the front number to

each of the solutions;

5. Sort the total solution in the ascending order with respect to the front

number;

6. Select the first Np solutions and update the external archive;
7. Stop if the criterion is satisfied, otherwise go to 2.
Fig. 1. Procedure of the basic MODE

Step 1: For m = 1 to M // M is the number of objectives

Normalize the objective value of each member by (2)

min

max min

()'() m
m

f x ff x
f f

−=
−

 (2)

Where maxf and minf are the maximum and minimum objective values

of the mth objective. '()mf x is the normalized mth objective value.

End For

Step 2: For i = 1 to NP //NP is the size of population

Sum all normalized objective values of the member to obtain a

single value.

End For

Fig. 2. Procedure of SNOV

step 1: For m = 1 to M //M is the number of objectives

a) Divide the range of the objective space into 100 bins equally

b) Scan P percentage of the 100 bins (i.e. from bin 1 to P, P may be

chosen as 80 or 90, and 90 is used in our experiment)

c) For each scanned bin (if this is empty, otherwise just continue to

next bin), the solution with the smallest summation of normalized

objective values will be chosen to enter preferential set.

End For

Step 2: Accumulate the solutions excluded from the preferential set and

store them in backup

Fig. 3. Procedure of DS

is that the information of infeasible solutions is kept for
next generation. The diversity of solutions is improved.
Since R2 which consists of all infeasible solutions is sorted
based on constraints, bad infeasible solutions (far away
from the feasible space) are also removed, and the good
infeasible solutions are kept. The flow chart of the
algorithm in this paper is given in Fig. 4.

V. EXPERIMENT AND RESULTS

A. Experiments and Rsults

Three algorithms are tested in the experiments,
including CMODE, DE-CMODE and the improved DE
proposed in this paper. The population size of each
algorithm used in this paper is set as 100. The parameters of
DE used in this paper are set as follows:

F=0.3; CR=0.3; FES=200000;

B. Test Functions

Eight commonly used functions [18] are employed as
benchmarks in this paper.

1) TNK:

Minimize: ()
()

1 1

2 2

f x x

f x x

=

=

Constraints:

()()
() ()

2 2
1 1 2 1 2

2 2
2 1 2

() 1 0.1cos 16arctan / 0

() 0.5 0.5 0.5

C x x x x x

C x x x

= + − − ≥

= − + − ≤

Where, 1 20 ,0x xπ π≤ ≤ ≤ ≤
2) SRN:

Minimize:

() () ()
() ()

2 2
1 1 2

2
2 1 2

2 2 1

9 1

f x x x

f x x x

= + − + −

= − −

Constraints:

()
()

2 2
1 1 2

2 1 2

225

3 10 0

C x x x

C x x x

= + ≤

= − + ≤

Where, 1 220 20, 20 20x x− ≤ ≤ − ≤ ≤

3) OSY:
Minimize:

() () () ()

() ()
()

2 2 2
1 1 2 3

2 2
4 5

2 2 2 2 2 2
2 1 2 3 4 5 6

25 2 2 1

4 1

f x x x x

x x

f x x x x x x x

⎡= − − + − + − +⎣
⎤− + − ⎦

= + + + + +

447

Constraints:

()
()
()
() ()
()
() ()

1 1 2

2 1 2

3 2 1

2
4 3 4

5 1 2

2
6 5 6

2 0

6 0

2 0

4 3 0

2 3 0

3 4 0

C x x x

C x x x

C x x x

C x x x

C x x x

C x x x

= + − ≥

= − − ≥

= − + ≥

= − − − ≥

= − + ≥

= − + − ≥

Where, 1 2 6

3 5 4

0, , 10
1 , 5,0 6
x x x

x x x
≥ ≤

≤ ≤ ≤ ≤

Fig. 4. Flow Chart of Algorithm

4) CTP1:

Minimize:

()

() () ()
()

1 1

1
2 exp

f x x

f x
f x g x

g x

=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠

Constraints:

() ()()2 1exp 0

1, ,
j jf x a b f x

j J

− − ≥

= …

Where,

() ()()
1 2 3 4

4
2

2

1 2 2 2

0 1, 5 , , 5

31 10cos 4

2, 0.858, 0.541, b 0.728 0.295

i i
i

x x x x and

g x x x

J a a and b

π
=

≤ ≤ − ≤ ≤

= + −

= = = = =

∑

5) CTP2-5:

Minimize:

()

() () ()

1 1

1
2 1

f x x

f
f x g x

g x

=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠

Constraints:

 () ()() () ()

() ()() () ()()()
2 1

2 1

cos sin

sin sin cos
dc

f x e f x

a b f x e f x

θ θ

π θ θ

− − ≥

− +

Where,

() ()()
1 2 3 4

4
2

2

0 1, 5 , , 5

31 10cos 4i i
i

x x x x and

g x x xπ
=

≤ ≤ − ≤ ≤

= + −∑

The parameters of CTP2-5 are given in Table I.

TABLE I PARAMETERS of CTP2-CTP5

 θ a b c d e

CTP2 -0.2 π 0.2 10 1 6 1

CTP3 -0.2 π 0.1 10 1 0.5 1

CTP4 -0.2 π 0.75 10 2 0.5 1

CTP5 0.05π− 40 5 1 6 0

C. Performance Measure

In order to compare the performance of the algorithms,
two indicators, IR2 and HI , are picked as performance
metric. They are summarized in [22].

R indicator (IR2) is used to effectively measure the
difference in the mean distance of the attainment surfaces
from the reference point. IR2 defined as:

2

*(,) *(,)
R

u A u R
I λ λ λ∈Λ −

=
Λ

∑

Where R is a reference set, u* is the maximum value of
the utility function u with weight λ on an approximation set
A. In our experiment, the augmented Tchebycheff function
is chosen as the utility function.

Hypervolume difference to a reference set (HI) values
represent the diversity of the algorithm. IH indicates the
hypervolume of the objective space which is dominated by
set A. Considering R a reference set. HI is defined as HI
= IH(R)–IH(A). Obviously, a smaller HI means a better

448

diversity of the approximation set.

.TABLE II R-INDICATOR FOR 30 RUNS

 proposed CMODE DE-CMODE

TNK best -9.75e-06 1.02e-04 1.01e-04

worst 8.26e-05 5.53e-04 6.21e-04

mean 3.24e-05 2,86e-04 3.17e-04

std 2.56e-05 1.25e-04 1.55e-04

OSY best -4.57e-05 4.51e-05 3.26e-06

worst 0.10e-03 3.85e-02 4.91e-04

mean 1.17e-04 1.18e-02 2.21e-04

std 2.83e-04 1.35e-02 1.37e-04

SRN best -5.14e-06 3.33e-05 2.39e-05

worst 9.40e-05 8.16e-04 5.96e-04

mean 3.43e-05 2.31e-04 1.85e-04

std 2.06e-05 1.97e-04 1.47e-04

CTP1 best -5.86e-10 2.76e-08 4,32e-08

worst 3.71e-07 3.77e-04 1.63e-05

mean 6.80e-08 1.21e-04 3.13e-06

std 1.24e-07 1.79e-04 4.27e-06

CTP2 best 7.07e-08 9.97e-07 4.33e-07

worst 6.74e-06 2.30e-05 1.07e-05

mean 1.41e-06 9.09e-06 6.08e-06

std 1.43e-06 7.05e-06 4.61e-06

CTP3 best -3.50e-06 1.66e-05 2.48e-05

worst 1.25e-04 2.36e-04 2.29e-04

mean 6.20e-05 1.31e-04 1.30e-04

std 3.15e-05 5.68e-05 5.09e-05

CTP4 best 1.07e-04 7.69e-05 7.69e-05

worst 9.82e-04 1.31e-02 2.30e-03

mean 4.98e-04 3.00e-03 1.10e-03

std 2.53e-04 4.10e-03 6.04e-04

CTP5 best 0 1.31e-08 1.90e-08

worst 1.55e-07 6.40e-03 4.48e-07

mean 1.15e-08 7.24e-04 1.32e-07

std 2.97e-08 1.80e-03 1.30e-07

D. Results and Comparison

For each algorithm, the 8 test functions are run 30 times,
and the average of 2RI and HI are shown in Table II
and Table III. The best of the results are denoted in bold.

TNK and OSY are two commonly used test problems.
The constraints of the two problems are easier, compared

with other test problems. All of the three algorithms used in
this paper perform well on these two problems. However,

TABLE III H-INDICATOR FOR 30 RUNS

 proposed CMODE DE-CMODE

TNK best -6.55e-06 2.94e-04 2.95e-04

worst 1.26e-04 1.50e-03 1.70e-03

mean 5.52e-05 7.82e-04 8.65e-04

std 3.71e-05 3.28e-04 4.06e-04

OSY best 2.20e-04 1.90e-03 1.80e-03

worst 1.40e-03 6.31e-02 7.70e-03

mean 4.00e-04 1.90e-02 2.80e-03

std 2.67e-04 2.03e-02 1.10e-03

SRN best 9.90e-04 2.90e-03 2.80e-03

worst 1.20e-03 3.60e-03 3.50e-03

mean 1.10e-03 3.20e-03 3.10e-03

std 5.64e-05 2.04e-04 2.00e-04

CTP1 best 5.44e-06 5.89e-06 6.10e-06

worst 7.92e-06 9.64e-04 3.01e-05

mean 5.97e-06 3.13e-04 1.11e-05

std 5.84e-07 4.55e-04 6.39e-06

CTP2 best 1.19e-06 3.96e-06 4.39e-06

worst 1.16e-05 3.25e-05 2.05e-05

mean 3.88e-06 1.36e-05 1.13e-05

std 2.19e-06 8.27e-06 4.35e-06

CTP3 best 2.41e-05 4.85e-05 6.88e-05

worst 2.29e-04 3.74e-04 3.64e-04

mean 1.21e-04 2.20e-04 2.24e-04

std 4.70e-05 8.29e-05 7.57e-05

CTP4 best 2.09e-04 1.77e-04 1.88e-04

worst 1.60e-03 2.03e-02 3.40e-03

mean 8.14e-04 4.70e-03 1.80e-03

std 3.92e-04 6.60e-03 8.92e-04

CTP5 best 2.25e-06 1.03e-06 1.04e-06

worst 2.65e-06 1.02e-02 2.28e-06

mean 2.48e-06 1.10e-03 1.29e-06

std 9.80e-08 2.80e-03 2.75e-07

we can see that the proposed method is much better than the
other algorithms both in convergence and diversity of
solutions.

For SRN, solutions obtained by the proposed method
are much closer to the reference front than the others. As for
diversity of solutions, the three algorithms are almost the

449

same. The advantage of proposed method is not significant.

CTP1 – CTP5 are relatively difficult test problems. The
properties of these five problems can be tuned by adjusting
parameters. Compared with the other two algorithms, the
performance of the proposed method stands out on
convergence and diversity of solutions when tested on
CTP1 – CTP4. Although the proposed method performs
better in convergence to the true Pareto-optimal, it’s a little
worse than DE-CMODE considering the diversity of
solutions.

After all, some conclusions can be drawn. Compared
with the other algorithms, the results of the proposed
method are competitive considering the convergence to
Pareto-optimal. As for the diversity of solutions, the
proposed method performs better than the other algorithms
except for CTP5. Generally, the proposed method performs
well on all the 8 benchmark test functions. The main reason
is that the information of infeasible is kept well in each
generation, and contributes to the search procedure.

VI. CONCLUSION

In this paper, an improved differential evolution is
modified to solve the constrained multi-objective
optimization problems. The proposed method sorts the
feasible solutions and infeasible solutions separately, hence
feasible solutions and infeasible solutions all have chance to
survive in the next generation. In this way, the information
of both feasible and infeasible solutions is maintained in the
search procedure. The performance of the proposed method
is proved competitive on eight commonly used benchmark
functions through comparing with two other state-or-art
constrained MODEs. For future work, an adaptive function
will be applied to adjust the rate of infeasible solutions in
the population.

REFERENCES
[1] E. Mezura-Montes and C. A. C. “Cello, Constraint-handling in nature

inspired numerical optimization: Past, present and future,” Swarm
and Evolutionary Computation, vol. 1, 2011, pp. 173-194.

[2] A. Zhou, B. Y. Qu, H. Li, S. Z. Zhao, P. N. Suganthan, and Q. Zhang,
“Multiobjective evolutionary algorithms: A survey of the state of the
art,” Swarm and Evolutionary Computation, vol. 1, 2011, pp. 32-49.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-�,” IEEE Transactions on
Evolutionary Computation, vol. 6, 2002, pp. 182-197.

[4] L. Tang and X. Wang, “A hybrid multiobjective evolutionary
algorithm for multiobjective optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 17, 2003, pp. 20–45.

[5] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple
objectives with particle swarm optimization,” IEEE Transactions on

Evolutionary Computation, vol. 8, 2004, pp. 256–279.
[6] A. E. Smith and D. W. Coit, “Penalty functions,” Handbook of

Evolutionary Computation, 1997, pp. C5: 1-6.
[7] S. Koziel and Z. Michalewicz, “A decoder-based evolutionary

algorithm for constrained parameter optimization problems,” in
Parallel Problem Solving from Nature – PPSN V. Springer Berlin
Heidelberg, 1998, pp. 231–240.

[8] Z. Michalewicz, “Genetic algorithms + data structures = evolution
programs,” springer, 1996.

[9] K. Deb, “An efficient constraint handling method for genetic
algorithms,” Computer methods in applied mechanics and
engineering, vol. 186, 2000, pp. 311–338.

[10] E. Mezura-Montes and C. A. Coello Coello, “A simple
multimembered evolution strategy to solve constrained optimization
problems,” IEEE Transactions on Evolutionary Computation, vol. 9,
2005, pp. 1–17.

[11] T. Runarsson and X. Yao, “Stochastic ranking for constrained
evolutionary optimization,” IEEE Transactions on Evolutionary
Computation, vol. 4, 2000, pp. 284–294.

[12] T. Takahama, S. Sakai, and N. Iwane, “Constrained optimization by
the constrained hybrid algorithm of particle swarm optimization and
genetic algorithm,” in AI 2005: Advances in Artificial Intelligence,
ser. Lecture Notes in Computer Science, S. Zhang and R. Jarvis, Eds.
Springer Berlin Heidelberg, 2005, vol. 3809, pp. 389-400.

[13] C. A. Coello Coello and A. D. Christiansen, “Moses: A multiobjective
optimization tool for engineering design,” Engineering Optimization,
vol. 31, 1999, pp. 337-368.

[14] K. Deb and D. Kalyanmoy, “Multi-Objective Optimization Using
Evolutionary Algorithms,” USA: John Wiley & Sons, 2001.

[15] Y. G. Woldesenbet, G. G. Yen, and B. G. Tessema, “Constraint
handling in multiobjective evolutionary optimization,” IEEE
Transactions on Evolutionary Computation, vol. 13, 2009, pp.
514–525.

[16] B. Y. Qu and P. N. Suganthan, “Multi- objective differential evolution
based on the summation of normalized objectives and diversified
selection,” Information sciences, vol. 180, 2010, pp 3170 – 3181.

[17] B. Y. Qu and P. N. Suganthan, “Multi - objective Differential
Evolution based on the Summation of Normalized Objectives and
Improved Selection Method,” IEEE Symposium on Differential
Evolution, 2011.

[18] K. Deb, A. Pratap, and T. Meyarivan, Constrained Test Problems for
Multi-objective Evolutionary Optimization,” Computer Science, vol.
1993, 2001, pp 284-298.

[19] R. Storn and K. V. Price, “Differential evolution-A simple and
efficient heuristic for global optimization over continuous spaces,”
Journal of Global Optimization, vol. 11, 1995, pp. 341-359.

[20] Y. Zhao, S. Xiong, and M. Li, “Constrained single- and
multiple-objective optimization with differential evolution,” Third
International Conference on Natural Computation, ICNC 2007,vol. 4,
2007, pp. 451-455. Third International Conference on Natural
Computation, ICNC 2007.

[21] B. Y. Qu and P. Suganthan, “Constrained multi-objective
optimization algorithm with diversity enhanced differential evolution,”
2010 IEEE Congress on Evolutionary Computation (CEC), 2010, pp.
1–5.

[22] J. Knowles, L. Thiele, and E. Zitzler, “A Tutorial on the Performance
Assessment of Stochastic Multiobjective Optimizers,” Computer
Engineering and Networks Laboratory, ETH Zurich, Switzerland, Feb
2005.

450

