
Differential Evolution with a Species-based Repair
Strategy for Constrained Optimization

Chenyang Bu1, 2 , Wenjian Luo1, 2, ∗ and Tao Zhu1, 2

1School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
2Anhui Province Key Laboratory of Software Engineering in Computing and Communication, University of Science and

Technology of China, Hefei 230027, Anhui, China
bucy1991@mail.ustc.edu.cn, wjluo@ustc.edu.cn, zhuta@mail.ustc.edu.cn

Abstract—Evolutionary Algorithms (EAs) with gradient-based
repair, which utilize the gradient information of the constraints
set, have been proved to be effective. It is known that it would
be time-consuming if all infeasible individuals are repaired.
Therefore, so far the infeasible individuals to be repaired are
randomly selected from the population and the strategy of
choosing individuals to be repaired has not been studied yet. In
this paper, the Species-based Repair Strategy (SRS) is proposed to
select representative infeasible individuals instead of the random
selection for gradient-based repair. The proposed SRS strategy
has been applied to εDEag which repairs the random selected
individuals using the gradient-based repair. The new algorithm is
named SRS-εDEag. Experimental results show that SRS-εDEag
outperforms εDEag in most benchmarks. Meanwhile, the number
of repaired individuals is reduced markedly.

I. INTRODUCTION

Constrained real-parameter optimization problems are fre-
quently encountered in scientific studies and practical engi-
neering. Traditional methods and EAs are different types of
methods, respectively behaving well for different types of
problems. Traditional methods are often efficient in problems
which are unimodal, strongly convex, etc [1]. EAs, however,
have advantages in solving complex problems which are multi-
modal, discontinuous, non-differentiable and others that could
not be well solved by traditional methods [1].

Recent works [2]–[5] show that EAs in combination with
traditional methods perform better. In [2], a basic Genetic
Algorithm (GA) with a gradient-based repair method which
utilizes the gradient information of the constraints set obtains
competitive results by finding feasible regions quickly. Also a
similar method called the gradient-based mutation is applied in
εDEg [3] and εDEag [4] which achieve excellent performance.
In this paper, the referred repair strategy is the gradient-based
mutation [4].

Although the gradient-based repair method [2]–[4] de-
creases meaningless search in infeasible spaces, it is time-
consuming if all infeasible individuals are repaired. Thus
only a part of infeasible individuals are repaired for saving
computing time under normal conditions. However, in existing
works [2]–[4], the infeasible individuals to be repaired are
randomly selected and the problem of how to select individuals
to be repaired has not been studied yet. Therefore, in this paper,
the SRS strategy is proposed to select representative infeasible
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individuals for gradient-based repair. Firstly, the population is
divided into species using the clustering method proposed in
[6]. Then for every species, the infeasible individuals with best
objective values are repaired according to the proportion of
the feasible solutions in this species. The characteristics of the
proposed strategy are given as follows.

1) By only repairing a small number of the individuals
in every species, the situations that the neighbouring
individuals are repaired simultaneously are reduced.
If the individuals to be repaired are neighbouring, the
post-repair ones may close to each other too, which
may be redundant and limit the diversity of the post-
repair individuals.

2) For every species, the number of the individuals to be
repaired is decided in accordance with the proportion
of the feasible solutions in this species. When there
are enough feasible individuals in one species, no
individuals is repaired in this species.

3) The infeasible individuals with best objective values
in every species are regarded as the promising ones.

The proposed strategy has been applied to εDEag [4],
which randomly selects the individuals for gradient-based
repair. The new algorithm is named SRS-εDEag. The exper-
imental results show that for most test functions SRS-εDEag
performs better than εDEag. Meanwhile, the SRS-εDEag re-
duces the number of repaired individuals significantly.

The rest of this paper is organized as follows. Section
II is the backgrounds. The proposed method is presented in
section III. Section IV details the experiments and discusses
the results. The last section concludes this paper and introduces
the future work.

II. BACKGROUNDS

A. Constrained Optimization

Constrained optimization is formalized as follows.

Minimize f(X), X ∈ S

S = {(x1, x2, . . . , xn)|li ≤ xi ≤ ui, 1 ≤ i ≤ n}.

Subject to :

gi(X) ≤ 0, i = 1, . . . ,M,

hj(X) = 0, j = M + 1, . . . , N.
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In most of the cases, the equality constraints are trans-
formed into the form of inequalities [7]. That is,

|hj(X)− ε| ≤ 0, j = M + 1, . . . , N,

where ε = 0.0001.

The value of f(X) is called the objective value. If X do
not satisfy the constraints, it is an infeasible individual. For an
infeasible individual X , the constraint violation φ(X) is used
to indicate how much the constraints are violated, where [3]

φ(X) = ΣMi=1max{0, gi(X)}+ ΣNj=M+1|hj(X)|. (1)

If X meets the requirements of all constraints, X is feasible
and φ(X) = 0.

B. Gradient-based Repair

The basic idea of the gradient-based repair [2]–[4] is to
direct the infeasible individuals toward the feasible region
utilizing the gradient information of the constraints set. The
theoretical basis of the gradient-based repair is Taylor’s for-
mula:

f(X0 + ∆X) ≈ f(X0) + f ′(X0)∆X

⇒f(X0 + ∆X)− f(X0) ≈ f ′(X0)∆X.

Let V (X) denotes the vector of constraint functions.

V (X) = (g1(X), . . . , gM (X), hM+1(X), . . . , hN (X))T .

The vector of constraint violations ∆V (X) is given as
follows.

∆V (X) =

(∆g1(X), . . . ,∆gM (X), hM+1(X), . . . , hN (X))T ,

where ∆gi(X) = max{0, gi(X)}.

The gradient matrix ∇xV derived from V (X) could be
acquired accurately by:

∇xV =

(∇xg1(X), . . . ,∇xgM (X),∇xhM+1(X), . . . ,∇xhN (X))T ,

where

∇xgi(X) = (
∂gi(X)

∂x1
, . . . ,

∂gi(X)

∂xn
), ∀i = 1, . . . ,M

∇xhj(X) = (
∂hj(X)

∂x1
, . . . ,

∂hj(X)

∂xn
),∀j = M + 1, . . . , N.

It can also be estimated by the forward difference formulae.

∇xV =
1

η
(V (X + e1)− V (X), . . . , V (X + en)− V (X)),

(2)

where η is a small value (η > 0) and ei is a vector of which
the i-th element is η and other elements are 0.

A feasible individual Xnew, whose constraint violation is
zero, is expected to be acquired by repairing the infeasible
individual Xold. Therefore, the vector of constraint violations
∆V (X), the gradient matrix ∇xV and changes of solution

vector ∆X should satisfy the following equation according to
Taylor’s formula.

V (Xold + ∆X)− V (Xold) ≈ ∇xV ∗∆X

⇒−∆V (Xold) ≈ ∇xV ∗∆X

Thus
∆X ≈ −∇xV −1 ∗∆V (Xold). (3)

The inverse ∇xV −1 can be approximated by the Moore-
Penrose inverse or pseudoinverse (∇xV +) [2], [4], [8] as ∇xV
is usually not invertible.

Consequently,

Xnew = Xold + ∆X.

The adjustment (∆X) will be repeated until Xnew is
feasible or reaching the maximum repeated times (Rg). Even
if Xnew is not feasible finally, it is expected to be closer to
the feasible region than Xold. In original papers [2]–[4], the
repair operation is executed with a probability.

The repair strategy proposed in [2] is called the gradient-
based repair, and in [3], [4], it is named the gradient-based
mutation. Interested readers are encouraged to refer [2]–[4]
for details.

In this paper, the gradient-based mutation [4] is adopted,
and it is also called the gradient-based repair.

C. Differential Evolution

Differential Evolution (DE) [9]–[11] is a widely used
evolutionary algorithm, which has four steps: initialization,
mutation, crossover and selection. Firstly, a number of indi-
viduals generated uniformly from the whole search space form
the initial population. For each individual in the population
(i.e. the target vector), a new individual (i.e. the trial vector)
is generated through both mutation and crossover. The i-th
target vector in the t-th generation of the population is denoted
as Xi,t, and the corresponding trial vector is represented by
Ui,t. In the selection step, Xi,t will be replaced by Ui,t if
Ui,t is better than Xi,t. The main two steps (i.e. mutation and
crossover) are described briefly as follows.

1) Mutation: The mutant of Xi,t obtained by the muta-
tion operation is represented by Vi,t. In a basic DE,

Vi,t = Xr1,t + F ∗ (Xr2,t −Xr3,t).

Note that r1 6= r2 6= r3 6= i. F is a scaling factor.
2) Crossover: Ui,t is generated from Vi,t and Xi,t:

Uj,i,t =

{
Vj,i,t if j ∈ J,
Xj,i,t otherwise.

J is the set of cross bits and Uj,i,t represents the j-th
component of the trial vector Ui,t.

D. εDEag

The εDEag [4] is a DE with the ε-level comparison [12],
the gradient-based mutation and an archive [13].
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1) The ε-level comparison: The ε-level comparison is
proposed in [12], which is defined to compare a pair of
individuals with relaxed constraints. If the constraint violation
values (calculated by Equation (1)) of the two individuals are
equal or both less than a real number ε (ε ≥ 0), the individual
with the better objective value wins, otherwise the one with
the smaller constraint violation wins.

The parameter ε is controlled as follows [4].

ε(0) = φ(Xθ), (4)

ε(t) =

{
ε(0)(1− t/Tc)cp 0 < t < Tc

0, t ≥ Tc.
(5)

The Xθ represents the top θ-th individual. Parameter t is the
iteration of the population and Tc is the control generation.
The cp controls the reducing speed of ε.

The parameter cp is controlled as follows [4].

cp =

{
max{cpmin, −5−logε(0)log0.05 } t ≤ Tλ
0.3cp+ 0.7cpmin, Tλ < t < Tc,

(6)

where Tλ = 0.95Tc and cpmin = 3.

2) Archive: The archive of εDEag is used to maintain
the diversity of the population. Initially M individuals are
randomly generated from the whole search space and top N of
them form the population (M � N ). Then the archive consists
of the remaining (M −N) individuals. The individuals in the
archive could take part in the mutation operation.

3) Details of DE: In mutation step, Xr1,t and Xr2,t are
selected randomly from the population P , while Xr3,t is
selected from P with probability 0.05 and P

⋃
A otherwise,

where A is the archive. The exponential crossover [10] is
adopted. To improve the stability, a new child can be produced
when the child is not better than its parent .

The parameter F is controlled as follows [4]. If the iteration
t satisfies Tλ < t < Tc, then

F =

{
1 + |randG(0, 0.05)|, if u(0, 1) < 0.05

0.3F0 + 0.7, otherwise.
(7)

And if 0 < t ≤ Tλ or t ≥ Tc, then

F =

{
1 + |randG(0, 0.05)|, if u(0, 1) < 0.05

F0, otherwise.
(8)

randG(µ, σ) represents a random number generator which
obeys Gaussian distribution (µ is the mean value and σ is
the standard deviation). And u(0, 1) is a number uniformly
generated from [0,1]. F is truncated to 1.1.

E. Dividing Population into Species

The clustering method based on speciation proposed in [6]
divides the population into species according to the Euclidean
distance. The pseudo-code is shown in Algorithm 1.

Algorithm 1 Dividing population into species
1: Lsorted denotes the sorted population in descending order ac-

cording to the objective values;
2: N denotes the population size of the population;
3: rs denotes the radius;
4: numspe← 0; // The number of the species at present.
5: SpeciesSet ← φ; // The SpeciesSet includes all species

founded so far.
6: numProcessed ← 0; // The number of processed individuals

at present.
7: while numPocessed < N do
8: P ← Lsorted[numProcessed];
9: found← 0;

10: for i = 1 to numspe do
11: si denotes the seed of the i-th species in the SpeciesSet;
12: if the Euclidean distance between si and P less than rs

then
13: found← 1;
14: Add P to the i-th species in the SpeciesSet;
15: break;
16: end if
17: end for
18: if found = 0 then
19: numspe← numspe+ 1; // A new species is found.
20: Add P to the new species in SpeciesSet and P is the seed

of this species.
21: end if
22: numProcessed← numProcessed+ 1;
23: end while

III. THE PROPOSED METHOD

The proposed SRS strategy aims to select representative
infeasible individuals for gradient-based repair, which attempts
to select diverse infeasible individuals that have good objective
values.

The population is divided into species firstly using a
clustering algorithm. Then for every species, the infeasible
individuals with best objective values are repaired using the
gradient-based repair. And the number of individuals to be
repaired is decided by the proportion of the feasible solutions
of this species.

The clustering algorithm based on speciation proposed in
[6] (i.e. Algorithm 1) is adopted. The reason of choosing
this clustering algorithm is that the time complexity is low
[6]. The proposed SRS strategy is only performed every n
generation, where n is the number of dimensions. Thus the
extra calculation for the SRS strategy is relatively small. The
adopted gradient-based repair is the gradient-based mutation
presented in [4].

The pseudo-code of SRS-εDEag which applies the SRS
strategy to εDEag is described in Algorithm 2 and Algorithm 3.
The stop condition is that the Maximum Function Evaluations
(MAX.FES) are reached.

The SRS strategy is described in Algorithm 3. The param-
eter ExpFeaRate is set to control the expected proportion of
the feasible solutions in the population and

ExpFeaRate = InitFeaRate+ Pf

where InitFeaRate is the estimated proportion of the feasible
solutions in the initial population and Pf is a incremental
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Algorithm 2 SRS-εDEag
1: A denotes the set of the M individuals randomly selected from

the search space;
2: NFea is the number of the feasible individuals in A;
3: InitFeaRate←NFea/M ;
4: ExpFeaRate← InitFeaRate+ Pf ;
5: if ExpFeaRate > 1.0 then
6: ExpFeaRate← 1.0;
7: end if
8: P denotes the best N individuals of A according to the ε-level

comparison; // P is the population.
9: A← A− P ; // A is the archive.

10: Initialize ε according to Equation (4);
11: gen← 1; // gen is the iteration of the population.
12: while the stop condition is not satisfied do
13: Set F using Equation (7), (8) and F is truncated to 1.1;
14: for i = 1 to N do
15: for k = 1 to 2 do
16: Randomly choose Xr1 and Xr2 from P ;
17: if a random number generated from [0,1] is smaller than

0.05 then
18: Randomly select Xr3 from P ;
19: else
20: Randomly choose Xr3 from P ∪ A;
21: end if
22: Xmutation ← Xr1 + F ∗ (Xr2 −Xr3);
23: The trial vector Xchild is generated by performing expo-

nential crossover on Xmutation and Xi;
24: if Xchild is better than Xi according to the ε-level

comparison then
25: Xi ← Xchild;
26: break;
27: else
28: replace a random individual in A with Xchild;
29: end if
30: end for
31: end for
32: Set the radius rs according to Equation (11);
33: if gen%n = 0 then
34: Conduct the SRS strategy ( see Algorithm 3 );
35: end if
36: Control the ε-level using Equation (5), (6);
37: gen← gen+ 1;
38: end while

parameter. If a species has enough feasible individuals, whose
proportion of the feasible solutions is over ExpFeaRate,
no individuals in this species will be repaired. The value of
bnumall ∗ ExpFeaRate + 0.5c is the expected number of
the feasible individuals in the current species, where bxc is
the largest integer which less than x (i.e. bx + 0.5c is the
Rounding value of x) and numall is the individual number of
this species. The parameter numRepair is the number of the
infeasible individuals needed to be repaired in a species, which
is the difference between the expected number of feasible
individuals (bnumall ∗ExpFeaRate+ 0.5c) and the number
of existing feasible individuals (numfea) in this species.
As εDEag has an archive, there are some extra replacement
strategies in Algorithm 3 given as follows, where the repaired
individual New is acquired by repairing the infeasible indi-
vidual Xj (i.e. Sinfea[j] in Algorithm 3).

1) If New is better than Xj , Xj will be replaced with
New.

2) Otherwise if the number to be repaired numRepair

Algorithm 3 The SRS strategy of SRS-εDEag
1: Divide the population P into species using Algorithm 1;
2: for every species do
3: numall denotes the individual number in this species;
4: numfea denotes the number of the feasible individuals in the

current species;
5: numRepair ← bnumall ∗ExpFeaRate+0.5c−numfea;
6: if numRepair ≥ 1 then
7: Sinfea denotes the set of the infeasible individuals in this

species;
8: numinfea denotes the number of individuals in Sinfea;
9: Sort Sinfea according to the objective values in descending

order;
10: for j = 0 to (numRepair − 1) do
11: New ← Sinfea[j];
12: Repairing New using the Gradient-based Repair;
13: if New is better than Sinfea[j] according to the ε-level

comparison then
14: Replace a random individual in A with Sinfea[j];
15: Sinfea[j]← New;
16: else
17: if numinfea > numRepair then
18: m is a random integer generated uniformly from

numRepair to (numinfea-1);
19: Replace a random individual in A with Sinfea[m];
20: Sinfea[m]← New;
21: else
22: Replace a random individual in A with New;
23: end if
24: end if
25: end for
26: end if
27: end for

is smaller than the number of the infeasible individu-
als numinfea in current species, New will replace a
random infeasible individual that will not be repaired
in this species (i.e. Sinfea[m] in Algorithm 3).

3) The replaced individuals in the population always
replace the individuals in the archive randomly.

The setup of the parameter rs (the radius of the species)
appeared in Algorithm 1 is associated with the expected
number of the species (i.e. ExpSpeNum) and the volume
of the search space (i.e. V ). Then the scope that each species
should cover is

V ′ =
V

ExpSpeNum
. (9)

And the relationship between rs and V ′ could be given as
follows according to the volume formula of an n-ball [14].

V ′ =


πn/2∗rns
(n/2)! if n is even,
πn/2∗rns√
π∗ n!!

2(n+1)/2

if n is odd.
(10)

where n is the number of dimensions and n!! is the double
factorial of the n. Therefore,

rs =

[ (n/2)!∗V
ExpSpeNum∗π

n
2

]
1
n , if n is even,

[ n!!∗V
ExpSpeNum∗2

n+1
2 ∗π

n−1
2

]
1
n , if n is odd.

(11)

As rs is only need to be calculated once in a run, the
calculation for rs is small.
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IV. EXPERIMENTS

A. Benchmarks and Experimental Setup

The benchmarks proposed in CEC2010 [7] are tested,
which have 18 problems, denoted as C01-C18. The bench-
marks have two cases with the dimensions (n) of 10 and 30,
which named 10D and 30D problems.

The proposed algorithm SRS-εDEag is compared with the
εDEag proposed in [4]. The results of the εDEag are from the
original paper [4].

For each function, 50 runs are performed in this paper. The
Maximum Function Evaluations (MAX.FES) are 2 × 105 for
10D problems and 6×105 for 30D problems, respectively. The
evaluations of the objective function and the evaluations of the
constraints violation are treated separately [4]. The stop condi-
tion is that either of the evaluations for the objective function
and the evaluations for the constraints violation reaches the
MAX.FES, which is the same setup as εDEag. Note that the
gradient matrix ∇xV is estimated by equation (2), so (n+ 1)
function evaluations are costed for obtaining the ∇xV [4].

We take advantage of the original source codes of εDEag
[4] given by Takahama and Sakai, and our codes may be
obtained upon request.

B. Parameter Settings

In order to compare with εDEag, the settings of the
parameters in this paper are similar to those of εDEag. All
parameters are set as follows.

1) Parameters for DE: The population size (N) = 4n.
The archive size (M) = 100n, where n is the number of
dimensions. Therefore, n is 10 for 10D problems and 30 for
30D problems. The initial scaling factor F0 = 0.5 and the
crossover rate CR0 = 0.9.

2) Parameters for the ε-level comparison: Tc = 1000, θ =
0.9.

3) Parameters for the SRS strategy: Pf = 0.1. The maxi-
mum repeated times of each repair (Rg) = 3.

4) Setup of the radius rs: The search spaces of these
benchmarks are hypercubes. So for every test function the
volume of the search space can be calculated by

V = (upper − lower)n,

where upper and lower are respectively the upper bound and
the lower bound of the problem. As n are even for all the
problems, according to Equation (11), the radius rs in this
paper can be calculated as follows.

rs = π−
1
2 ∗ [

(n/2)!

ExpSpeNum
]
1
n ∗ (upper − lower). (12)

In this paper, the parameter ExpSpeNum is set to 20 for 10D
problems and 10 for 30D problems.

C. Experimental Results and Discussion

The comparisons between εDEag and the proposed SRS-
εDEag are presented in Tables I-VI. The performance mea-
surements are similar to those in [7]. For each function, best,
median, worst, mean objective values and standard deviation
(std) for 25 runs are reported. The number in the parentheses
after the best, median, worst results means the number of the
violated constraints. Index c is the number of the violated con-
straints of the median solutions: the three sequential numbers
represent the number of violations which are more than 1.0,
0.01 and 0.0001, respectively. Index v̄ is the mean violations of
all constraints at the median solution. A feasible run means the
best individual of that run is feasible. Feasible Rate indicates
the rate of feasible runs over total runs. Eval/Grad Rate
respectively shows the ratio of the number of actual function
evaluations for objective functions, and the ratio of the num-
ber of function evaluations for the gradient matrix over the
maximum number of function evaluations.

Tables I-VI show that, for most test functions, better
results are achieved by SRS-εDEag, especially for the 30D
problems. The tables also show that the function evaluations
of the gradient-based repair are dramatically reduced for all
problems. For example, the original Grad Rate of C06 for
the 30D case is 22.66% while the new value is just 0.0911%.

The reasons of SRS-εDEag performs better in most func-
tions are analyzed as follows.

Firstly, the number of repaired individuals is decreased
significantly. As lot of computational effort is required for re-
pairing an infeasible individual, the number of the individuals
to be repaired should be limited and the main goal of the
repair is to provide good genetic material [2]. By dividing
the population into species and for every species only small
number of the individuals are repaired, SRS-εDEag reduces the
redundant repair significantly. This is proved by the significant
reduction of the Grad Rate for all the problems while the
performance for most functions does not degrade.

Secondly, the diversity of the post-repair individuals is
encouraged by selecting diverse individuals to be repaired
through clustering, which can reduce the probability of falling
into a local feasible region and have an advantage in problems
with multiple disconnected feasible regions.

Thirdly, the strategy of selecting infeasible individuals with
the best objective values in every species to be repaired may
also facilitate acquiring better results.

However, there may be limitations owing to just selecting
the infeasible individuals with best objective values to be
repaired. The setup of the parameter rs also has an effect on
the results. Additionally, the adopted clustering method may
have its own limitations.

V. CONCLUSIONS AND FUTURE WORK

The gradient-based repair which utilizes the gradient infor-
mation of the constraints set has been proved to be effective.
In previous work, the repair operation is performed randomly
and the problem of how to select individuals to be repaired has
not been studied. In this paper, the SRS strategy is proposed
to select the representative infeasible individuals instead of the
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TABLE I. FUNCTION VALUES OF PROBLEMS C1-C3 WITH MAX.FES OF 2 × 105 FOR THE 10D CASE AND 6 × 105 FOR THE 30D CASE

Measures C01 C02 C03
εDEag SRS-εDEag εDEag SRS-εDEag εDEag SRS-εDEag

10D

Best -7.473104e-01(0) -7.473104e-01(0) -2.277702e+00(0) -2.277711e+00(0) 0.000000e+00(0) 0.000000e+00(0)
Median -7.473104e-01(0) -7.473104e-01(0) -2.269502e+00(0) -2.277711e+00(0) 0.000000e+00(0) 0.000000e+00(0)
Worst -7.405572e-01(0) -7.292159e-01(0) -2.174499e+00(0) -2.239347e+00(0) 0.000000e+00(0) 0.000000e+00(0)

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v̄ 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Mean -7.470402e-01 -7.466783e-01 -2.258870e+00 -2.270310e+00 0.000000e+00 0.000000e+00
std 1.323339e-03 2.823639e-03 2.389779e-02 1.283211e-02 0.000000e+00 0.000000e+00

Feasible Rate(%) 100.0 100.0 100.0 100.0 100.0 100.0
Eval/Grad Rate(%) 50.43/2.52 52.07/0.00 13.79/16.45 18.54/0.3484 97.66/2.08 98.99/0.0796

30D

Best -8.218255e-01(0) -8.217821e-01(0) -2.169248e+00(0) -2.212233e+00(0) 2.867347e+01(0) 2.867347e+01(0)
Median -8.206172e-01(0) -8.206789e-01(0) -2.152145e+00(0) -2.185708e+00(0) 2.867347e+01(0) 2.867347e+01(0)
Worst -8.195466e-01(0) -8.198002e-01(0) -2.117096e+00(0) -2.172221e+00(0) 3.278014e+01(0) 2.867347e+01(0)

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v̄ 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Mean -8.208687e-01 -8.208098e-01 -2.151424e+00 -2.186866e+00 2.883785e+01 2.867347e+01(0)
std 7.103893e-04 6.092129e-04 1.197582e-02 8.884082e-03 8.047159e-01 2.803525e-07

Feasible Rate(%) 100.0 100.0 100.0 100.0 100.0 100.0
Eval/Grad Rate(%) 53.70/2.26 55.10/0.0000 14.17/16.51 14.21/0.0801 51.40/5.95 62.59/0.0314

TABLE II. FUNCTION VALUES OF PROBLEMS C4-C6 WITH MAX.FES OF 2× 105 FOR THE 10D CASE AND 6× 105 FOR THE 30D CASE

Measures C04 C05 C06
εDEag SRS-εDEag εDEag SRS-εDEag εDEag SRS-εDEag

10D

Best -9.992345e-06(0) -1.000000e-05(0) -4.836106e+02(0) -4.836106e+02(0) -5.786581e+02(0) -5.786624e+02(0)
Median -9.977276e-06(0) -9.999942e-06(0) -4.836106e+02(0) -4.836106e+02(0) -5.786533e+02(0) -5.786624e+02(0)
Worst -9.282295e-06(0) -9.999374e-06(0) -4.836106e+02(0) -4.836106e+02(0) -5.786448e+02(0) -5.786583e+02(0)

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v̄ 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Mean -9.918452e-06 -9.999881e-06 -4.836106e+02 -4.836106e+02 -5.786528e+02 -5.786619e+02
std 1.546730e-07 1.601177e-10 3.890350e-13 6.252776e-13 3.627169e-03 9.068002e-04

Feasible Rate(%) 100.0 100.0 100.0 100.0 100.0 100.0
Eval/Grad Rate(%) 36.08/17.22 44.91/0.5243 59.37/10.46 64.92/0.4593 22.33/20.86 25.82/0.4344

30D

Best 4.698111e-03(0) 2.511241e-03(0) -4.531307e+02(0) -4.710838e+02(0) -5.285750e+02(0) -5.292583e+02(0)
Median 6.947614e-03(0) 5.294157e-03(0) -4.500404e+02(0) -4.636899e+02(0) -5.280407e+02(0) -5.289143e+02(0)
Worst 1.777889e-02(0) 1.149340e-02(0) -4.421590e+02(0) -4.575179e+02(0) -5.264539e+02(0) -5.282776e+02(0)

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v̄ 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Mean 8.162973e-03 5.701988e-03 -4.495460e+02 -4.637938e+02 -5.279068e+02 -5.288217e+02
std 3.067785e-03 1.840437e-03 2.899105e+00 3.376524e+00 4.748378e-01 2.542424e-01

Feasible Rate(%) 100.0 100.0 100.0 100.0 100.0 100.0
Eval/Grad Rate(%) 20.75/21.91 20.74/0.1490 8.68/22.37 9.24/0.0863 14.25/22.66 14.94/0.0911

TABLE III. FUNCTION VALUES OF PROBLEMS C7-C9 WITH MAX.FES OF 2 × 105 FOR THE 10D CASE AND 6 × 105 FOR THE 30D
CASE

Measures C07 C08 C09
εDEag SRS-εDEag εDEag SRS-εDEag εDEag SRS-εDEag

10D

Best 0.000000e+00(0) 0.000000e+00(0) 0.000000e+00(0) 0.000000e+00(0) 0.000000e+00(0) 0.000000e+00(0)
Median 0.000000e+00(0) 0.000000e+00(0) 1.094154e+01(0) 1.094154e+01(0) 0.000000e+00(0) 0.000000e+00(0)
Worst 0.000000e+00(0) 0.000000e+00(0) 1.537535e+01(0) 1.094154e+01(0) 0.000000e+00(0) 1.420783e+02(0)

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v̄ 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Mean 0.000000e+00 0.000000e+00 6.727528e+00 8.390586e+00 0.000000e+00 2.929730e+00
std 0.000000e+00 0.000000e+00 5.560648e+00 4.489414e+00 0.000000e+00 1.988795e+01

Feasible Rate(%) 100.0 100.0 100.0 100.0 100.0 100.0
Eval/Grad Rate(%) 99.79/0.03 99.82/0.0009 71.86/1.88 64.85/0.1792 97.70/2.03 97.59/0.0688

30D

Best 1.147112e-15(0) 5.547705e-16(0) 2.518693e-14(0) 7.489190e-15(0) 2.770665e-16(0) 5.864695e-21(0)
Median 2.114429e-15(0) 2.114899e-15(0) 6.511508e-14(0) 4.210234e-14(0) 1.124608e-08(0) 1.051212e-18(0)
Worst 5.481915e-15(0) 8.463931e-15(0) 2.578112e-13(0) 1.414990e-13(0) 1.052759e+02(0) 8.096873e+01(0)

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v̄ 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Mean 2.603632e-15 2.695924e-15 7.831464e-14 4.903190e-14 1.072140e+01 2.431359e+00
std 1.233430e-15 1.612093e-15 4.855177e-14 3.092311e-14 2.821923e+01 1.199192e+01

Feasible Rate(%) 100.0 100.0 100.0 100.0 100.0 100.0
Eval/Grad Rate(%) 99.68/0.08 99.76/0.0002 93.40/0.70 94.09/0.0009 50.86/5.02 78.38/0.0259
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TABLE IV. FUNCTION VALUES OF PROBLEMS C10-C12 WITH MAX.FES OF 2 × 105 FOR THE 10D CASE AND 6 × 105 FOR THE 30D
CASE

Measures C10 C11 C12
εDEag SRS-εDEag εDEag SRS-εDEag εDEag SRS-εDEag

10D

Best 0.000000e+00(0) 0.000000e+00(0) -1.522713e-03(0) -1.522713e-03(0) -5.700899e+02(0) -5.700899e+02(0)
Median 0.000000e+00(0) 0.000000e+00(0) -1.522713e-03(0) -1.522713e-03(0) -4.231332e+02(0) -5.683828e+02(0)
Worst 0.000000e+00(0) 2.352812e+02(0) -1.522713e-03(0) -1.522713e-03(0) -1.989129e-01(0) -1.772472e-01(0)

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v̄ 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Mean 0.000000e+00 4.801868e+00 -1.522713e-03 -1.522713e-03 -3.367349e+02 -4.703457e+02
std 0.000000e+00 3.293251e+01 6.341035e-11 6.017895e-11 1.782166e+02 1.422306e+02

Feasible Rate(%) 100.0 100.0 100.0 100.0 100.0 100.0
Eval/Grad Rate(%) 97.68/2.04 96.82/0.0838 30.82/6.66 33.25/0.2075 21.71/14.97 24.82/0.5844

30D

Best 3.252002e+01(0) 3.203914e+01(0) -3.268462e-04(0) -3.684443e-04(0) -1.991453e-01(0) -1.991645e-01(0)
Median 3.328903e+01(0) 3.270017e+01(0) -2.843296e-04(0) -2.964730e-04(0) 5.337125e+02(1) 1.330206e+02(1)
Worst 3.463243e+01(0) 3.389747e+01(0) -2.236338e-04(0) -1.920063e-04(0) 5.461723e+02(1) 7.037591e+02(1)

c 0,0,0 0,0,0 0,0,0 0,0,0 0,1,0 0,1,0
v̄ 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 3.240709e-01 3.277013e-01

Mean 3.326175e+01 3.287527e+01 -2.863882e-04 -2.992116e-04 3.562330e+02 2.133080e+02
std 4.545577e-01 4.747073e-01 2.707605e-05 3.324991e-05 2.889253e+02 2.709754e+02

Feasible Rate(%) 100.0 100.0 100.0 100.0 12.0% 6.0%
Eval/Grad Rate(%) 28.53/5.71 28.47/0.0264 12.33/0.1276 13.22/0.0892 13.16/11.11 12.46/0.1296

TABLE V. FUNCTION VALUES OF PROBLEMS C13-C15 WITH MAX.FES OF 2 × 105 FOR THE 10D CASE AND 6 × 105 FOR THE 30D
CASE

Measures C13 C14 C15
εDEag SRS-εDEag εDEag SRS-εDEag εDEag SRS-εDEag

10D

Best -6.842937e+01(0) -6.842937e+01(0) 0.000000e+00(0) 0.000000e+00(0) 0.000000e+00(0) 0.000000e+00(0)
Median -6.842936e+01(0) -6.842936e+01(0) 0.000000e+00(0) 0.000000e+00(0) 0.000000e+00(0) 0.000000e+00(0)
Worst -6.842936e+01(0) -6.351751e+01(0) 0.000000e+00(0) 0.000000e+00(0) 4.497445e+00(0) 6.736439e+02(0)

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v̄ 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Mean -6.842936e+01 -6.803657e+01 0.000000e+00 0.000000e+00 1.798978e-01 2.209658e+01
std 1.025960e-06 1.332025e+00 0.000000e+00 0.000000e+00 8.813156e-01 1.050063e+02

Feasible Rate(%) 100.0 100.0 100.0 100.0 100.0 100.0
Eval/Grad Rate(%) 43.86/6.25 47.85/0.0908 98.90/0.94 99.69/0.0208 96.20/2.25 96.25/0.0737

30D

Best -6.642473e+01(0) -6.750817e+01(0) 5.015863e-14(0) 1.208848e-14(0) 2.160345e+01(0) 2.160353e+01(0)
Median -6.531507e+01(0) -6.589543e+01(0) 1.359306e-13(0) 7.742921e-14(0) 2.160375e+01(0) 2.160368e+01(0)
Worst -6.429690e+01(0) -6.451542e+01(0) 2.923513e-12(0) 5.123535e-13(0) 2.160403e+01(0) 2.160383e+01(0)

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v̄ 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Mean -6.535310e+01 -6.587739e+01 3.089407e-13 1.034953e-13 2.160376e+01 2.160368e+01
std 5.733005e-01 6.081125e-01 5.608409e-13 8.243519e-14 1.104834e-04 6.241290e-05

Feasible Rate(%) 100.0 100.0 100.0 100.0 100.0 100.0
Eval/Grad Rate(%) 30.94/7.42 33.08/0.0260 98.68/1.15 99.75/0.0037 65.61/4.63 67.82/0.0095

TABLE VI. FUNCTION VALUES OF PROBLEMS C16-C18 WITH MAX.FES OF 2 × 105 FOR THE 10D CASE AND 6 × 105 FOR THE 30D
CASE

Measures C16 C17 C18
εDEag SRS-εDEag εDEag SRS-εDEag εDEag SRS-εDEag

10D

Best 0.000000e+00(0) 0.000000e+00(0) 1.463180e-17(0) 5.546678e-32(0) 3.731439e-20(0) 1.523574e-20(0)
Median 2.819841e-01(0) 1.625153e-02(0) 5.653326e-03(0) 1.824505e-11(0) 4.097909e-19(0) 2.187970e-19(0)
Worst 1.018265e+00(0) 1.043905e-01(0) 7.301765e-01(0) 6.438400e-01(0) 9.227027e-18(0) 1.292241e-15(0)

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v̄ 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Mean 3.702054e-01 2.337096e-02 1.249561e-01 4.152941e-02 9.678765e-19 5.789320e-17
std 3.710479e-01 2.641648e-02 1.937197e-01 1.243568e-01 1.811234e-18 2.236009e-16

Feasible Rate(%) 100.0 100.0 100.0 100.0 100.0 100.0
Eval/Grad Rate(%) 32.09/21.64 41.98/0.2157 35.19/16.84 47.02/0.4114 91.02/4.64 95.38/0.1687

30D

Best 0.000000e+00(0) 0.000000e+00(0) 2.165719e-01(0) 8.546849e-03(0) 1.226054e+00(0) 1.241343e-01(0)
Median 0.000000e+00(0) 0.000000e+00(0) 5.315949e+00(0) 1.169026e-01(0) 2.679497e+01(0) 9.631557e+00(0)
Worst 5.421011e-20(0) 0.000000e+00(0) 1.889064e+01(0) 3.712959e+00(0) 7.375363e+02(0) 2.402905e+02(0)

c 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0
v̄ 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Mean 2.168404e-21 0.000000e+00 6.326487e+00 4.829979e-01 8.754569e+01 3.946860e+01
std 1.062297e-20 0.000000e+00 4.986691e+00 7.767602e-01 1.664753e+02 6.238992e+01

Feasible Rate(%) 100.0 100.0 100.0 100.0 100.0 100.0
Eval/Grad Rate(%) 64.44/7.22 67.79/0.0221 35.55/16.92 37.96/0.1157 11.23/14.35 12.00/0.0390
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random selection for gradient-based repair. The population is
divided into species firstly by the clustering method proposed
in [6]. Then for every species, a small number of the infeasible
individuals are repaired in accordance with the proportion of
feasible solutions in this species. In order to examine the
effectiveness, the strategy has been applied to εDEag which
repairs the random selected individuals using the gradient-
based repair. The new algorithm is named SRS-εDEag. Re-
sults show that SRS-εDEag outperforms εDEag in most test
functions. Meanwhile the number of the function evaluations
for the gradient-based repair is reduced significantly.

In the future, it is interesting to explore the effective-
ness of the SRS in combination with other state-of-the-art
EAs, such as the SAMO-DE [15] and the SAMO-GA [15],
etc. And the idea of reducing computing time by repairing
representative individuals could also be used to hill-climbing
strategies. Through only applying hill-climbing strategies to
representative individuals, the calculation cost is expected to
be reduced and the quality of final results could not degrade.
Moreover, other kinds of infeasible individuals, such as the
ones with least constraint violation, can be considered in the
selection of the individuals to be repaired. Other clustering
methods should be tested. And the self-adaptive setup of the
parameter rs needs to be studied.
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