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Abstract— Most of the studies on project scheduling problems
assume that every assigned participant or every team of the
same number of participants, completes tasks with an equal
efficiency, but this is usually not the case for real world prob-
lems. This paper presents a more realistic and complex model
with extra consideration on team efficiency which are quan-
titatively measured on employee-task assignment. This study
demonstrates the impacts of team efficiency in a well-studied
software project management problem. Moreover, this study
illustrates how a heuristic optimization method, population-
based incremental learning, copes with such added complexity.
The experimental results show that the resulting near optimal
solutions not only satisfy constraints, but also reflect the impacts
of team efficiency. The findings will hopefully motivate future
studies on comprehensive understandings of the quality and
efficiency of team work.

I. INTRODUCTION

THE Project scheduling problem has been extensively
studied in literature. Typically such a problem is char-

acterized by resource constraints, precedence constraints, and
objectives to be optimized. A project scheduling problem
for software projects entails more than one resource con-
straints, as well as multi-tasking within one day [1] [2],
called software project management problem (SPMP). Tasks
can be completed if assigned staff have the required IT
skills, while each employee has a particular set of IT skills.
A good solution assigns employees to tasks, considering
constraints on skills capability and requirements, salaries, and
task dependencies. A study on the run-time analysis for the
SPMP has interpreted the variation of performance on design
choices for the evolutionary algorithms (EA) [2].

The SPMP problem assumes that if two employees have
the same skills and the same dedication (the percentage
of their workload per day), they will finish a task within
the same amount of time. Therefore, the only difference
of appointing one employee from another depends on the
variations of their salaries. This is far from the observations
in reality. In practice, employees with the same skills and
spending the same dedication to a task can complete it in
different durations.

Moreover, the SPMP problem does not differentiate the
efficiency caused by different combinations of employees.
In fact, the teamwork efficiency is important: various combi-
nations of employees having the same required skill set can
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complete an identical task in a largely various time scale,
especially for complicated tasks [3].

This paper aims to address the weaknesses above by
introducing a simple yet illustrative extension to the SPMP
problem. The new problem reflects the impacts of team
efficiency in project scheduling. Here individual efficiency
is treated as a special case of team efficiency.

A. Literature review - team work

It is common that much of the work in a project is
completed through a group of participants. A rich body
of literature has shown the importance of teamwork. The
growing awareness of “good team” and “bad team” raise
new questions on how to measure team efficiency [4].

The variations of team efficiency can be the consequences
of a wide variety of factors, including experiences, work-
ing relationship, team work processes, coordination, conflict
management, motivations, team cognitive, and even emo-
tional intelligence.

Team performance has been measured in role-playing
games and been predicted based on the previous performance
patterns [3]. The individual performances are compared with
the performances of a variety of combinations of players
which form teams. The performance is measured mainly by
the game point gained as well as play time. Researchers
have found that teams do not always perform better than
individual players, due to a range of factors: such as team
size, capability (level) of player(s), level diversity in a team,
and task difficulty.

B. Literature review - problem solving methods

The SPMP problem is hard to solve [2]. Therefore heuris-
tic methods are among popular choices for practical problem
solving, such as genetic algorithms (GAs) [1], GA with a
pre-decision algorithm [5], differential evolution algorithms
[6], ant colony optimization algorithms [7][8], artificial bee
colony [9], meta heuristic algorithms of simulated annealing-
genetic algorithm-Tabu search [10], frog-leaping algorithm
[11], branch-and-bound methods [12], hybrid mixed-integer
linear programming and constraint programming algorithms
[13] [14]. Pareto optimality is used as the multi-objective
optimization method for reducing the probability of over-
time during software projects [15].

Chan, et al. studied a more realistic software project
scheduling problem that is similar to SPMP [16]. They
take other factors into consideration, such as employees’
experience, speed, efficiencies, and tasks’ soft deadline, hard
deadline, penalty max head. They also solve their problem
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by GA. Wena and Lin, solve multistage human resource
allocation for software development by multi-objective GA
[17]. Similar to [1], these works also provide the “best fitness
so-far” solution(s) for a problem instance.

Population based incremental learning (PBIL) is a heuristic
optimization algorithm. PBIL is a special case of Estimation
of distribution algorithms (EDA) [18]. Its major difference
from a standard genetic algorithm is that probability vectors
over possible values to solutions, not candidate solutions, are
evolved. Candidate solutions are generated by sampling the
evolved probability vectors.

C. Overview of this work

This paper will extend the SPMP problem taking team
efficiency into account. To the best of our knowledge, this
is the first work that explicitly examines the impact of
team efficiency on project scheduling. This work specifies
quantitative measures, not qualitative measures on the impact
of team efficiency. The new problem in named as T-SPMP.
Its instances specify that some combinations of employees
increase or decrease the time required for task completion.
Secondly, due to the N-P hard nature of the T-SPMP problem,
a heuristic optimization method is employed. Finally, the
resulting solutions to instances of the SPMP problem and
the solutions to instances of the T-SPMP problem will be
compared and analyzed.

The rest of this paper is organized as follows: Section II
briefs a well-studied software project management problem
(SPMP) and its new extension which models team efficiency
on tasks (T-SPMP). Section III details the population-based
incremental learning (PBIL) algorithm, and the experimental
setup. The experimental results are presented in Section
IV to show the impact of team work on solutions of task
assignment. Finally, Section V concludes the paper.

II. SOFTWARE PROJECT MANAGEMENT PROBLEM WITH
TEAM EFFICIENCY IMPACTS - T-SPMP

A. Notations and solution representation

The software project management problem with team
efficiency impacts (T-SPMP) specifies employees and tasks
related to a software project. The best solutions should
complete the project with the minimal possible cost and time.
An employee is identified by his/her employee ID: ei. An
employee is specified by their skill sets, Sei and salary, Pei .
The set of total employees is {e1, e2, . . . , em}. A task is
identified by its ID, kj . A task is specified by its required skill
set Ski

, and its workload (effort), Lkj
. The workload is the

amount of time that an employee who has all of the skills in
Ski needs to independently finish the task. If two employees
work together on this task, the time will be halved if they
have the skills needed. The set of tasks is {k1, k2, . . . , kn}.

An assignment of all tasks to employees constitutes a
candidate solution x = {x1,1, x1,2,. . . , xm,n}. Table I shows
the representation of a solution. One of its tuple xij indicates
whether employee ei works on task kj . xij is his/her dedi-
cation on kj : the time s/he spends in percentage of normal

working hours per day, where xij ∈ [0, 1]. One task can
be done by a group of employees working together. An
employee can involve in more than one task on one day.

TABLE I
REPRESENTATION OF SOLUTION

k1 kj kn
e1 x1,1 x1,j x1,n
ei xi,1 xi,j xi,n
em xm,1 xm,j xm,n

B. Project related attributes

TaskDuration is defined as, given a solution x, the amount
of time that task kj is to be finished:

tkj
=

Lkj∑m
i=1 xij

. (1)

This is calculated by dividing the task workload Lkj with
the total dedications of employees assigned to this task.

A project often consists of a number of tasks. ProjectDu-
ration is the length of time from the start of the first task(s)
to the end of the last task(s). Fig.2 shows how to calculate the
project duration in pseudo code having a candidate solution
and the dependencies among tasks as inputs.

ProjectCost is defined as the total cost in term of the
salaries paid for the work done by the employees who are
assigned to this project:

projectCost =
m∑
i=1

n∑
j=1

Pei × xij × tkj
. (2)

Overwork: although one employee’s dedication to one task
is constrained by xij ∈ [0, 1], there are chances that one
employee is assigned to more than one task for a day such
that the total dedication of all tasks assigned to s/he on that
day is over 1, i.e. s/he overworks: working more than 8 hours
on that day. If there is an overwork, the solution is treated
as an infeasible solution. Fig. 2 defines how to calculate the
overwork in pseudo code with inputs of a candidate solution
and the dependencies among tasks. Overworknow in Fig. 2
denotes the current value in calculating Overwork.

Task precedence graph (TPG) determines the dependence
among tasks. Precedence constraints are studied in con-
strained scheduling and optimization [19]. This paper only
studies the type of “Finish to Start” dependence. Fig. 1
provides an example with 10 tasks and 21 task dependencies.
A dependence kj → kj′ is interpreted as task kj′ cannot be
started before task kj is finished. Table II shows a problem
instance with 21 task dependencies. These dependencies
between tasks must be satisfied; otherwise the project cannot
be completed.

C. Constraints

There are a few important constraints in the T-SPMP
problem.
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Fig. 1. Task precedence graph: each node represents a task. Nodej →
Nodej′ is interpreted as task kj′ cannot be started before task kj is finished.

1: while TPG 6= φ do
2: Let V:= unfinished tasks not depending on any other

task.
3: if V = φ then
4: return “Unsolvable” and STOP
5: end if
6: for all task kj ∈ V do
7: for all employee ei do
8: Let dedicationij = xij
9: end for

10: if
∑
dedicationi > 1 then

11: overworknow := overworknow +dedicationi−
1

12: end if
13: calculate total dedication dj :=

∑m
i=1 dedicationij

14: if dj := 0 then
15: return (∞,∞) and STOP
16: end if
17: end for
18: Let t := MINj(Lj/dj)
19: projectDuration = projectDuration+ t
20: for all kj ∈ V do
21: Let Lj := Lj − t× dj
22: if Lj := 0 then
23: Mark kj as finished and remove it and its edges

from TPG
24: end if
25: overwork = overwork + overworknow × t
26: end for
27: end while
28: Output projectDuration, overwork and stop

Fig. 2. The pseudo code for calculating project duration and overwork,
given the inputs of TGP and a candidate solution x.

TABLE II
INSTANCE EXAMPLE AND EXPLANATION

Instance values Explanation
Summary: The total numbers of
skill.number=10 skills, tasks, employees,
task.number=10 dependencies, and team
employee.number=5 efficiency of an instance.
graph.arc.number=21
teamefficiency.number=1
Attributes and The number of skills
their values required for a task and
about tasks: its workload. Task 1
task.1.skill.number=2 here requires two skills:
task.1.skill.1=3 skills 3 and 5 in the
task.1.skill.2=5 skill set.
task.1.load=7.0 Task 1’s workload is 7.
. . .
Attributes and The number of skills that
their values that an employee has
about employees: and his/her salaries.
employee.1.skill.number=4 This example shows that
employee.1.skill.1=1 employee 1 has four
employee.1.skill.2=8 different skills, numbered
employee.1.skill.3=9 1, 8, 9 and 3 in the
employee.1.skill.4=3 skill set.
employee.4.salary=10448.13
. . .
Attributes and The dependencies among
their values about tasks which are numbered
dependencies as 1, 2, etc:
between tasks: “graph.arc.1=1 3”
graph.arc.1=1 3 means task 3 cannot
graph.arc.2=1 2 start before Task 1
graph.arc.3=2 4 finishes.
. . .
e1e2 duration ↓ e1 and e2 are assigned
team efficiency factor to a task, the task
δ = 0.5 duration decreases 50%

(1) Every task should be assigned to at least one employee.
Here “undt” is used to calculate the number of times that a
candidate solution violates this constraint:

undt = |{kj |
m∑
i=1

xij = 0, 1 ≤ j ≤ n}|. (3)

(2) The union of the skills of the employees who are
assigned to a task should have all skills that this task requires.
Here “reqsk” denotes the number of the skills unavailable
from employees assigned to tasks:

reqsk =
n∑

j=1

|Skj
−

⋃
{i|xij>0}

Sei |. (4)

(3) Overwork is not allowed. The maximal working load
an employee can take should not be larger than 1. The
calculation of overwork is shown in Fig 2. A recent work has
showed that to normalize employees dedication for different
tasks to ensure they are not working overtime has found the
best results in their experiments [2]. As our focus here is
given to team efficiency, the original design in [1] is chosen
here.

(4) Another constraint is that the solutions which assign
employees who have no skills required for a task are unfa-

3018



vorable. This is a soft constraint. The variable “notwork”
is used to count the number of times when employees are
assigned to tasks on which they do not have any skill
required:

{
notwork = |{i, j|xij > 0, Sei

⋂
Skj

= φ,
1 ≤ i ≤ m, 1 ≤ j ≤ n}|. (5)

The essential difference between “notwork” and “reqsk”
is that any solution whose “reqsk” is larger than 0 implies
that this solution is invalid, as at least one task cannot be
completed. However a solution whose “notwork” is larger
than 0 is unnecessarily to be invalid, as long as other
employees who are also assigned to this task can finish
it. Nevertheless, to assign employee(s) who have no skill
required by tasks clearly increases the project cost, and
perhaps also project duration.

The above project related attributes and constraints will be
used into the design of the fitness function later.

D. Team efficiency

Defining team efficiency can be complicated. There are
two types of team efficiency:
• task-specific team efficiency: such type of team effi-

ciency is related to a specific task. A team may obtain
different team efficiencies for various tasks;

• general team efficiency: such type of team efficiency
applies to all tasks in a project.

Moreover, there are a variety of aspects to quantify team
efficiency. This paper only studies the impacts of team
efficiency on task duration.

Let a team T has a number of employees. The size of
T is w, w ≥ 1. Here individual efficiency is treated as a
special case of team efficiency. The set of employees who
are assigned to task kj in a given (candidate) solution, is
notated as Ekj

. If T is a subset of Ekj
, the team efficiency

factor is applied to TaskDuration tkj
by multiplication. δ is

T ’s team efficiency factor, δ > 0.

tkj
=


Lkj∑m
i=1 xij

× δ, if Πei∈Ekj
xij > 0 and

T ⊆ Ekj
;

Lkj∑m
i=1 xij

, otherwise.
(6)

For simplicity, only one T, i.e. one team efficiency factor,
is applied to one problem instance throughout this paper.
Given T = {e1, e2} whose team efficiency factor is δ, δ
applies to both Ekj

= {e1, e2, e3} and E′kj
= {e1, e2, e4}.

However, given T = {e1, e2} whose team efficiency factor
is δ, and T ′ = {e1, e3} whose team efficiency factor is δ′, in
one problem instance Ekj

= {e1, e2, e3}’s team efficiency
factor cannot be determined: δ and δ′ cannot be applied
simultaneously. To study the complexity of team efficiency
will be one of the future work.

The definition (6) can be applied to task-specific efficiency
or general efficiency.

E. Performance evaluation

T-SPMP is a typical multiple objective optimization prob-
lem with constraint satisfaction. The two objectives on pur-
suing the best solutions for this problem are to minimize the
project cost and to minimize the project duration:

minimize projectDuration, projectCost
subject to undt = 0,

reqsk = 0,
overwork = 0.

(7)

The specifications of team efficiency can be viewed as
added preferences or soft constraints for multi-objective
optimization. Equation (6) indicates that the team efficiency
defined in this paper may affect selecting the desirable
solutions through the objective of projectDuration.

With the knowledge of the objectives and constraints,
candidate solutions are evaluated and biased. This work
chooses the definitions of the fitness function in [1] as:

f(x) =

{
1
q , if x is feasible;

1
(q+r) , otherwise, (8)

where

q = 10−6 × projectCost+ 0.1× projectDuration (9)

and

r = 100 + 10×undt+ 10× reqsk+ 0.1×overwork. (10)

Function f(x) is to be maximized. It contains two parts:
q is the sum of the weighted objective values for feasible
solutions; and r is the penalty for infeasible solutions. The
search is guided to minimize q among feasible solutions,
thus to maximize f(x). This design ensures that feasible
solutions are certainly more favorable than any infeasible
one in selection. Equation (8) differentiates among infeasible
solutions, such that solutions with a smaller number of
violations to constraints are more favorable than those violate
more constraints. The weights applied to “q” (9) and “r” (10)
were chosen through experimentation, as explained in [1].

F. Problem instances

In order to compare with the experimental results in [1],
the problems instances which are published at [20] are
chosen. Each instance provides the values to the attributes
aforementioned. Table II offers an example instance, specify-
ing its attributes of tasks, employees, dependencies and team
efficiency and their values. In practice, the instance values on
team efficiency are estimated by management from previous
records and managers’ experiences.

III. PBIL AND EXPERIMENTAL SETUP

A heuristic optimization algorithm is chosen as the prob-
lem solving method: population-based incremental learning
(PBIL) which generates probabilities over the possible values
of candidate solutions. PBIL evolves a probability vector, but
not a population of candidate solutions [21].
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A. Probability vector representation

A probability distribution of possible values to a tu-
ple xij is interpreted as employee ei’s dedication on
task j: the percentage of ei’s normal working hours
per day. For example, let consider the dedication of e1
on task 2, tuple x1,2. The possible values to x1,2 are
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. The number of
possible dedications, notated by “NoDdct”, is 11 here. This
set of values has been chosen, as more precision will not
help problem solving. Here dedication 0 shows that e1 is
not assigned to this task, and dedication 1 shows that s/he is
assigned full time on this task. Table III offers three example
probability distributions which are e1’s dedication to k2, e3’s
dedication to k4, and e5’s dedication to k7 respectively. Task
2 can be assigned to e1 with a dedication 0.8 with a 20%
probability, a dedication 0.9 with a 50% probability, or a
full dedication with a 30% probability. So e1 will certainly
be assigned with a high dedication to task 1. Contrastingly,
e3 can be assigned to task k4 with a dedication 0.1 with a
10% probability, and no dedication with a 90% probability.
So, employee e3 will unlikely be assigned to task 4. The
probability distribution for x5,7 indicates that as long as e5
involves in the completion of task 7, it is no matter the
value of his/her dedication. The sum of probabilities over
all possible dedications for xij is 1.

TABLE III
THREE PROBABILITY DISTRIBUTIONS OF DEDICATION.

possible dedication value pv(x1,2) pv(x3,4) pv(x5,7)
0 0 0.9 0

0.1 0 0.1 0.1
0.2 0 0 0.1
0.3 0 0 0.1
0.4 0 0 0.1
0.5 0 0 0.1
0.6 0 0 0.1
0.7 0 0 0.1
0.8 0.2 0 0.1
0.9 0.5 0 0.1
1 0.3 0 0.1

Given this representation, there are in total i×j×NoDdct
numbers to represent all probabilities over dedications of
all tuples. A probability vector (pv) which consists of a
set of probability distributions, each for a tuple xij . The
relationship between pv and a candidate solution x is that
a candidate solution is just one sampling from pv. Conven-
tionally a candidate solution is called a “chromosome” in
GA community. The “ChromLength” is i × j. It is also the
number of tuples xij . In this case, a candidate solution or
a chromosome determines the dedications to each task. One
sampling from the probability distributions in Table III could
include x1,2 = 0.9 that means employee 1 will work on task
2 with a 90% dedication.

B. PBIL learning procedure

PBIL learning procedure follows the steps in Fig.3. Its’
functions are implemented in pseudo code in Table IV,

1: Initialize ()
2: repeat
3: Sample(pv)
4: Evaluate(pv)
5: Update(pv)
6: Mutate(pv)
7: until stopping condition met

Fig. 3. PBIL learning procedure.

together with the explanation of its parameters. PBIL algo-
rithm starts with initializing a probability vector (pv). At
this stage, all tuples are assigned an equal probability, as
specified in Function Initialize() in Table IV. The sum
of the probabilities over one tuple is 1. Then a population
(set) of candidate solutions is generated from the probability
vector pv. Due to equal probability, the initial population of
sampled candidate solutions is random. The performances of
the candidate solutions are evaluated by the fitness function
(8).

Given their fitness values, pv is updated using the principle
that the probabilities of the possible dedication values chosen
by the best performed candidate solution(s) will be increased.
For example, one candidate solution is really doing well.
Its value on tuple x1,2 is 0.8. Then the probability to the
value 0.8 of the probability distribution pv(x1,2) should
increase while the probabilities of the rest possible values,
i.e {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 1} of pv(x1,2) de-
crease accordingly. The method to update probabilities is
specified in the function Update(pv) in Table IV.

TABLE IV
PBIL FUNCTION IMPLEMENTATION AND PARAMETERS. *: LEARNING

RATE. **:MUTATION RATE ON PER VALUE OF pv.

Function Implementation
Initialize() pv = (1/NOV alues)×

ones(NOV alues, chromLength);
Sample(pv) if (pv(j, i) ≥ r(i))*

chrom(i) = possibleV alues(j);
Update(pv) bestpv(m, j) = learningRate;

pv = (1− learningRate)× pv;
pv = pv + bestpv;

Mutate(pv) if rand() < mutationRate **
mutatePoints(round(rand()×
NOV alues+ 0.5), j) = mutationRate;
pv(:, j) = (1−mutationRate)× pv(:, j)+
mutatePoints(:, j);

Parameter Explanation
pv Probability vector
NOValues The number of possible values to xij
ChromLength The length of chromosome
chrom Chromosome (solution) sampled from pv
p Population of chroms

Mutation plays a role to maintain a certain level of
diversity in pv. How to mutate probabilities is specified in the
function Mutate(pv) in Table IV. Note that the mutation rate
applies on per value of pv. There are in total i×j×NoDdct
values of a pv.

3020



C. PBIL Parameters

The two major parameters for PBIL are the learning
rate and the mutation rate. The sensible values to these
two parameters are searched by experimentation. Four 100-
runs are tested using the same problem instance and the
same random sequences, but using different learning rates
and different mutation rates. When learning rate is 0.1 and
mutation is 0.1, none of the solutions found is infeasible,
while the other learning rates and mutation rates tested have
lead to infeasible solutions.

TABLE V
GAS AND PBIL PARAMETERS

Experimental Values for GAs Values for PBIL
parameters [1]
NoDdct Any real number 11

∈ [0, 1]
Size of population 64 64
of candidate solutions
Selection 2-member Elitist

tournament
Recombination 2-D SPX N/A
Mutation Bit-Flip as in Table IV

(1/length) (mutation rate on
per value of pv)

Replacement Elitist Re-sample
Learning rate =0.1

Number of iteration 5000 300
Number of runs 100 100

IV. EXPERIMENTAL RESULTS

This section analyzes the experimental results on the
impacts of team work. Totally four problem instances are
tested. For each instance, 20 runs are experimented. starting
with different random seeds.

The problem instance in Table II is one of the four
instances. It specifies a team efficiency factor Eq.(6) as: if e1
and e2 are both assigned to a task, the duration of the task
decreases 50%. This is the general type of team efficiency:
its efficiency factor applies to all tasks of a project. Table VI
specifies the team efficiency factors of the four instances.
The following experimental results will demonstrate how
such team efficiency factors make impacts on the solutions,
comparing with the results on the matching problem instance
of SPMP which do not consider team efficiency.

As mentioned earlier, the structure of team efficiency can
be more complicated. The number of all combinations of
employees can be huge; the values of impacts can be various.
In this paper, the instance values on team efficiency presented
are relatively simple: a team with two employees, its impact
being a 50% variation on the task duration; and one problem
instance only applying one of the team efficiency values in
Table VI. This decision is made because, firstly a large num-
ber of team efficiency values in one instance will generate
compound impacts so that the exact impacts of a particular
team will be difficult to be investigated; and secondly, small
values of team efficiency may not be influential enough to
change the solutions, while other reasons, such as salaries

TABLE VI
TEAM EFFICIENCY EXAMPLES

Team efficiency values Explanation
e1e2 duration ↑ e1 and e2 are assigned
team efficiency factor: to a task, the task
δ = 1.5 duration increases 50%
e1e2 duration ↓ e1 and e2 are assigned
team efficiency factor: to a task, the task
δ = 0.5 duration decreases 50%
e4e5 duration ↑ e4 and e5 are assigned
team efficiency factor: to a task, the task
δ = 1.5 duration increases 50%
e4e5 duration ↓ e4 and e5 are assigned
team efficiency factor: to a task, the task
δ = 0.5 duration decreases 50%

and constraints can be more important to the performance of
solutions to some problem instances. However this design is
illustrative, emphasizing the team impact.

A. Overview

Table VII lists the project durations and project costs
under five configurations on team efficiency: “10s-5e-10t”
does not consider team efficiency. The rest configurations
consider team efficiency: “e1e2 duration ↑” specifies that
when e1 and e2 work together on a task, the task duration will
increase 50%. This models the practical situations where two
team members have a poor working relationship and cannot
work productively together. Such a poor working relationship
delays the task completion, even if there are other team
members working on the same task. On the other hand, the
configuration “e1e2 duration ↓” models the situations where
two team members can work productively together and speed
up the progress of task completion. The rest of configurations
are explained in Table VI.

Table VII shows that for the configurations “e1e2 duration
↑” and “e4e5 duration ↑”, their project durations and project
costs have increased significantly, when compared with those
of the configuration “10s-5e-10t”. On the contrast, under
the configurations “e1e2 duration ↓” and “e4e5 duration
↓”, their project durations and project costs have decreased
significantly, when compared with those of the configuration
“10s-5e-10t”. These demonstrate that team efficiency can be
an important factor in assigning employees to tasks. To avoid
choosing teams with a “bad combination” and to encourage
choosing teams with a “good combination” help achieve
objectives.

TABLE VII
PROJECT DURATION AND PROJECT COST WITH AND WITHOUT IMPACTS

OF TEAM EFFICIENCY

Configuration Fig. project duration project cost
10s-5e-10t 6(a) 16.44 785770

e1e2 duration ↑ 6(b) 19.43 842440
e1e2 duration ↓ 6(c) 13.10 595810
e4e5 duration ↑ 6(d) 23.96 864460
e4e5 duration ↓ 6(e) 11.00 476880

Fig 4 is the Gantt chart to the best solution found for the
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configuration “10s-5e-10t”. A near optimal solution to this
configuration will complete the project within 16 working
days. Fig 5 is the Gantt chart to the best solution found for
the configuration “e4e5 duration ↓”: when e4 and e5 are
assigned to a task, this task will complete much sooner. A
near optimal solution to this configuration will complete the
project within only 11 working days.

Fig. 4. Gantt chart to the best solution found for the configuration of
the problem instance, “10s-5e-10t” which has no consideration on team
efficiency.

Fig. 5. Gantt chart to the best solution found for the configuration of the
problem instance, “e4e5 duration ↓”.

Fig 6 (a) shows the assignment of 5 employees to 10 tasks.
The darkest blocks represent the largest dedication value,
‘1’ and white ones represent the smallest dedication value,
‘0’. For the rest, the darker a block, the higher values on
dedication. There are 11 white blocks (xij = 0), meaning
a zero dedication of the respective employee ei on task kj .
The zero dedication is the outcome of various reasons: the
employees do not have any skill required to complete the
task; and/or employees have been fully assigned to other
tasks for which there is no appropriate alternative, otherwise
overwork occurred.

B. Team efficiency of e1 and e2

Fig 6 (b) shows the assignment under the configuration
“e1e2 duration ↑”. Comparing with Fig 6 (a), there are four
occurrences where tasks are not longer assigned to the related
employees: e1 is assigned to tasks k2 and k8 on (a), but is not
assigned to these two tasks on (b); and e2 is assigned to tasks
k1 and k10 on (a), but is not assigned to these two tasks on
(b). Consequently, there are 5 tasks for which both e1 and e2
work on in (a), but only 1 task, task k7, for which both e1 and
e2 work on in (b). This demonstrates that the heuristic search
avoids assigning both e1 and e2 to a task while optimizing
the objectives. However both e1 and e2 must work on task
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Fig. 6. Employee-task assignment under configurations: (a): “10s-5e-10t”:
the assignment considering no team efficiency; (b): “e1e2 duration ↑” whose
team efficiency factor: δ = 1.5; (c): “e1e2 duration ↓” whose team efficiency
factor: δ = 0.5; (d): “e4e5 duration ↑” whose team efficiency factor: δ =
1.5; (e): “e4e5 duration ↓” whose team efficiency factor: δ = 0.5. x axis
represents employees and y axis represents tasks. The blocks represents the
values of dedication xij . The darkest blocks represent the largest value, ‘1’
and white blocks represent the smallest one, ‘0’. For the rest, the darker the
block, the higher value on dedication.

k7 together, because each has a skill required by k7 which
is not practised by any other employee.

For the rest, those employees who are assigned to tasks
in (a) remain being assigned to the same tasks in (b),
although their dedications slightly vary due to the afore-
mentioned differences. In addition, those employees are not
assigned to certain tasks remain zero dedication, namely
x1,3, x1,6, x1,9, x2,3, x2,4, x2,5, x2,9, x3,3, x3,10, x5,1 and x5,7
to satisfy the constraints of undt (3), reqsk (4) and notwork
(5).

Fig 6 (c) shows the assignment under the configuration
“e1e2 duration ↓”. Fig 6 (c) is similar to (a), although their
dedications slightly vary. The shortened durations of the 5
tasks on which both e1 and e2 work, make an re-arrangement
on dedications necessary. Under this configuration, it is
desirable to assign both e1 and e2 to as many tasks as
possible. However, due to the constraints, e1 and e2 will
not work together for 5 tasks.

C. Team efficiency of e4 and e5
Fig 6 (d) shows the assignment under the configuration

“e4e5 duration ↑”. Comparing with Fig 6 (a), there are six
occurrences where e4 or e5 is assigned to a task on (a), but
is not assigned to these tasks on (d). This demonstrates again
that the heuristic search avoids assigning both e4 and e5 to
a task while optimizing the objectives. Both e4 and e5 must
work together on tasks k3 and k5, because each employee
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has skills required by these two tasks, and these skills are
not practised by any other employee.

Fig 6 (e) shows the assignment under the configuration
“e4e5 duration ↓”. Fig 6 (e) is similar to (a), although
their dedications slightly vary. This is because the shortened
durations of 7 tasks make an re-arrangement on dedications
necessary. Under this configuration, it is desirable to assign
both e4 and e5 to as many tasks as possible. However, due
to the constraints, e4 and e5 will not work for two tasks
together. Please note x4,2 is 0.1, not zero.

In summary, the resulting solutions under the five com-
parative configurations demonstrate the compound impacts
and trade-off of team efficiency, constraints and objectives.
These findings indicate that team efficiency can be influential
in project scheduling, especially when the impact of team
efficiency overpowers the impact of other influential factors.

V. CONCLUSIONS

This paper explores team efficiency in the context of
project scheduling. A richer problem (T-SPMP) to the well-
studied software project management problem (SPMP) is
introduced with added considerations on employees’ team
efficiency.

As T-SPMP is hard, a heuristic optimization method,
population based incremental learning (PBIL), is applied. It
evolves probability vectors over possible values to solutions.
Candidate solutions are generated by sampling evolved prob-
ability vectors.

The experimental results suggest that given a sufficient
number of iterations, appropriate learning rates and mutation
rates, PBIL was able to find probability vectors which always
produce feasible and desirable solutions to the problem
instances tested.

This work provides insightful information to managers to
make better informed decisions for task-employee allocation
in complicated situations. It also shows the worth of compre-
hensive studies on various configurations on team efficiency.

In future, more comprehensive experimental studies need
to carried out on a large and more diverse set of test problem
instances, in order to gain a better understanding of why and
how the proposed algorithm behaves on different T-SPMPs.
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