
Niching-based Self-adaptive Ensemble DE with

MMTS for solving Dynamic Optimization Problems

Sheldon Hui and Ponnuthurai Nagaratnam Suganthan

School of Electrical and Electronics Engineering

Nanyang Technological University

Singapore, 639798

{Shel0003,epnsugan}@ntu.edu.sg

Abstract— Dynamic and non-stationary problems require

optimization algorithms search for the best solutions in a time-

varying fitness environment. Various methods and strategies

such as niching, clustering and sub-population approaches have

been implemented with Differential Evolution (DE) to handle

such problems. With the help of crowding niching to maintain

general population diversity, this paper attempts to extend the

Self-adaptive Ensemble DE with modified multi-trajectory search

attempt to solve CEC2014 dynamic optimization competition

benchmark problems.

Keywords - Dynamic Optimization Problems (DOPs), Self-

adaptive Ensemble Differential Evolution (SaDE), modified multi-

trajectory search (MMTS), crowding

I. INTRODUCTION

Real-world optimization applications are time-varying in
nature, and benchmark problems simulate this by generating
changes to the fitness landscape over a unit time defined by
number of functional evaluations (FEs). Such dynamic
optimization problems (DOPs) require optimizers to adapt to
the changes continuously because of the changing optima.
With stationary problems, the algorithmic behavior of
optimizers tends towards abandoning exploration for
exploitation over iterations. This cannot hold true for dynamic
problems because the locations of the true optima may shift
dynamically with no predictable direction. Also the dimensions
of the objective function are subject to change [1]. As such,
modifications must be made to the state-of-the-art techniques
to handle such problems [1, 6].

Advances have been made in Evolutionary Algorithms
(EAs) class of population-based optimizers to solve DOPs in
both Particle Swarm Optimizers (PSOs) and Differential
Evolution (DE) [2]. PSO imitates the behavior of birds or
insect swarms while DE simulates evolution on a population of
real-valued vectors. Both techniques systematically scour the
fitness landscape for feasible regions where the true optima are,
but inevitably loose their population diversity when converging
onto a solution [4, 5]. The loss of population diversity,
however, is a liability when solving dynamic problems because
it results in stagnation when dynamic changes occur [6]. The
obvious solution is to completely re-randomize the population,
but this would in turn means loss of any useful information
about the changing environment, particularly if the changes are
small or recurrent [1, 6].

DE mutation and crossover strategies are known to be both
diverse and specialized for exclusive fitness optimization
situations. Since there can be no one-size-fits-all strategy or
parameter in the case of dynamic optimization, the self-
adaptive ensemble strategy and parameters DE (SaEPSDE)
seems to be a prospective candidate for handling dynamic
optimization problems. Complementing the SaEPSDE is the
modified multi-trajectory search (MMTS) introduced by Zhang
and Sanderson [3] which helps to enhance multiple diverse
solutions at different evolution stages. Even so, global
population diversity in DE would ultimately diminish over
iterations, and this is where the niching mechanism plays its
part in maintaining global population diversity in anticipation
of dynamic changes. Past best solutions are stored in an archive
after each change occurred and clearing is applied to ensure
population diversity in the archive of past best solutions.

This paper is structured as follows: Section II describes past
research in dynamic optimization. Section III introduces the
basic DE algorithm. Section IV explains our proposed
algorithm. Section V provides details of our experimental
results from the CEC2014 Generalized Dynamic Benchmark
Generator (GDBG) benchmark problems [7]. Finally, Section
VI concludes the paper.

II. RELATED WORKS

This section summarizes past developments in dynamic
optimization using EAs and various techniques developed for
handling of dynamic changes.

A. Dynamic Optimization Problems

The generalized definition of the dynamic optimization
problem is as follows [6, 7]:

   F:=f(x,t) (1)

where x = [x1, x2, … xD] is the D-dimensional solution
vector of parameters, and t is time, although the unit of t may
indeed be different from actual real time for practical purposes.
The most typical measure of t in dynamic benchmark is the
number of functional evaluations of the problem’s fitness,
although on some occasions iterations of the optimizing
algorithm’s runtime over 1 cycle may be used. Regardless of
the definitions of time in the case of dynamic optimization, the

1536

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

state of the fitness landscape in a dynamic problem is triggered
to change over fixed samples of the time that an algorithm is
allowed to run.

DOP benchmark generators for simulating dynamic
changes in the fitness landscape had been designed for DOP
optimizers. The 1999 Congress on Evolutionary Computation
(CEC’99) introduced two dynamic problems simulators: the
highly popular Moving Peaks Benchmark (MPB) by Branke
[8], and the DF1 bench-mark generator by Morrison and De
Jong [9]. In 2009, the Generalized Dynamic Benchmark
Generator (GDBG) by Li and Yang was adopted as the
benchmark for the CEC’09 Competition on Dynamic
Optimization [7], and in CEC’14, the GDBG is expanded to
include more change instances to better emulate real-world
dynamic problems.

B. Change handling of EAs

a) Change detection

Handling changes in a dynamic environment require
algorithms to first detect any changes to the problem
environment. The easiest and most practical way to do this is to
re-evaluate one or more members of the population over
iterations before evolution is conducted [10]. The general
assumption here is that only one instance of change would
occur within an iteration of the population. Another assumption
made in this manner of detection is that the general population
is population diversely distributed throughout the fitness
landscape so that partial changes to the environment could also
be detected [1, 6]. Since EAs loose population diversity over
iterations, many approaches have been employed to maintain at
least some degree of population diversity over time. One
method of doing so is to designate fixed locations in the fitness
landscape to be re-evaluated for change over iteration [6].
Other techniques simply attempt to maintain the population
diversity throughout the execution of evolution. [8, 10 - 16]

b) Complete reinitialization: Early dynamic

optimization techniques based on Genetic Algorithms (GAs)

simply perform complete random re-initialization on the

population when a dynamic change occurs [6]. This is highly

inefficient due to total loss of information about the

environment prior to change [1].

c) Memory-based Approaches: Since dynamic changes

may be slight or recurrent in nature, the location of the new

global optima after change may end up close in proximity to

past optimal solutions. It is therefore pertinent to store the

locations of past global and local optima in an archive. This

information can then be used as a reinitialization pool for the

new population [10, 11], either directly or with some form of

modifications [12]. The Clustering PSO (CPSO) by Yang and

Li (2010) stores past solutions in a cradle swarm from which

new swarm clusters are generated [10]. In the Self-adaptive DE

(jDE), past solutions are re-diversified with additive noise

before being applied for reinitialization [12].

d) Single-population diversity maintenance: Since loss

of population diversity is the key challenge in EAs for handling

dynamic changes, many diversity maintenance approaches

have been developed to [11, 19] ensure that complete loss of

population diversity does not occur. The Composite Particle

PSO (PSO-CP) by Liu, Yang and Wang maintain overall

population diversity by modelling every 3 particles in their

population after the nature of composite element particles [19].

The dynamic Evolutionary Programming (dynEP) by E. L. Yu

and P. N. Suganthan (2009) partially or completely

rediversifies a converged population by observing the fitness

standard deviation in the population [11].

e) Multi-population approaches: This is generally the

most popular technique for dynamic optimization because the

goal of overall population diversity is in line with the need for

local population convergence. Multi-population approach and

hybrid-variants are often complemented with other diversity

maintenance techniques involving explorative mutation

strategies and parameters. Examples of these are the Multi-

swarms with exclusion and anti-Convergence of Blackwell and

Branke [13], the Species-based PSO (SPSO) by Parrott and Li

(2006) [14]. Similarly for DE, Mendes and Mohais introduced

the Dynamic DE (DynDE) with the same diversity

maintenance structures of Multi-swarms [15]. This was further

enhanced by Plessis and Engelbrecht by introducing favored

populations and migrating individuals [16]. Clustering and

niching techniques can also be considered as forms of multi-

population techniques [18].

III. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) is introduced by Storn and
Price in 1995 as an alternative EA utilizing weighted difference
between two or more random individuals for mutation and
parent-mutant crossover. Selection is conducted between
parent and offspring populations of real-valued vectors [4, 5].
The conventional DE parameters are the population size NP,
scaling factor F and crossover probability CR.

In classical DE, a population of size NP is first randomly
initialized in a continuous search space of dimension D, R
bounded upper and lower by, xj

U
 and xj

L
 respectively. The ith

individual, xi = [x1,i, x2,i, … xD,i]  X, i=1,2,…,N, is mutated
and crossed-over and updated using parent-offspring selection.
The fitness of the population is computed with objective

function f: D R
n
 R, and D≠and fitness is defined either

as a minimization or a maximization problem. The process of
mutation and crossover is described as follows.

A. Mutation

In the classic DE, the parent (target) population is perturbed
into the mutant vectors population, V, of size NP. Various
mutation strategies have been developed with their individual
advantages and disadvantages. Some of the most popular
strategies are as follows:

DE/best/1

vi
G
 = xbest

G
 + F(xrand1,i

G
 – xrand2,i

G
) 

DE/rand/1

1537

vi
G
 = xrand1,i

G
 + F(xrand2,i

G
 – xrand3,i

G
)

where xbest is the current fittest individual and xrand1 to xrand5
are randomly selected individuals with no replacement from
the population. The generation number is denoted by G, while
the scaling factors F and K determine the step-size in the
search direction dictated by the difference vectors [4].

B. Crossover

Crossover is performed between the mutant vectors and
their corresponding target vectors. The resultant vector U is
known as the trial vector. Two methods of crossover have been
proposed, and they are as follows:

Binomial crossover



where Ui,j refers to the jth dimension in the ith trial vector. CR
is the probability of crossover from the target vector. For
Binomial crossover, each dimension has a random chance of
crossover with the parent vector, with a minimum of at least 1
random dimension (j=jrand) being inherited from the trial vector.

Exponential crossover

    

Exponential crossover, on the other hand randomly selects
the nth dimension as starting point to begin crossover (j =
<n>D) from the trial vector. Subsequent dimensions (j =
<n+1>D,… <n+L-1>D) after n are subject to inherit from trial
vector with probability CR. L indicates the total number
dimensions inherited from trial vector.

C. Selection

Finally, the trial vector population is pit against the original
parent population. The fitness of each member of the trial
population is compared with its corresponding target vector,
and the fitter member survives into the next generation. Over
generations, this evolution process propels the population
towards the best regions in the problem space where optimal
solutions may be discovered.

IV. SELF-ADAPTIVE ENSEMBLE DE WITH MMTS

(SAEPSDE-MMTS)

SAEPSDE-MMTS complements the self-adaptation
mechanism of SaDE-MMTS [20] with the ensemble methods
of Ensemble parameters and strategies DE (EPSDE) by
Mallipeddi et. al. [17] so as to allow greater generalization in
optimizing single-objective problems. The modified multi-

trajectory search was first introduced by Tseng and Chen [23],
and then hybridized with SaDE to solve large-scale single-
objective numerical problems [20]. SaDE automatically adjusts
the primary DE parameters of F and CR values based on the
computed probability of successive parent-offspring
replacements over iterations. MMTS, on the other hand,
perform multi-step sized search along each dimension of the
parameter space [23, 24]. Taken together, the SaDE-MMTS
was demonstrated to be highly effective for solving large-scale
numerical optimization problems.

As mentioned in Section III, different mutation strategies in
DE have their distinct advantages and disadvantages. It is
therefore imperative to select from a few effective strategies
adaptively, particularly when the problem changes dynamically
[17]. Since SaDE consisted of only 1 mutation strategy adapted
from JADE [26], it was decided that even greater
generalization may be achieved by applying ensemble
strategies and parameter settings. The SaEPSDE-MMTS has
been demonstrated to have achieved statistically significant
improvement over SaDE-MMTS within iterations [26]. This
paper attempts to extend the algorithm further by applying
niching concepts for diversity maintenance necessary in
dynamic optimization.

A. SAEPSDE-MMTS

Mallipeddi et. al. (2011) introduced the Ensemble
parameters and strategy DE (EPSDE) with the ensemble of
strategies and parameters as defined below:

1) Scaling Factor F  [0.3, 0.7, 0.9]

2) Crossover Ratio CR  [0.1, 0.5, 0.9]

3) Crossover Methods:

a) Binomial crossover

b) Exponential crossover

4) Mutation Strategies:

a) Current-to-pbest/2

vi
G
 = xi

G
 + (1 – Fi)(xpbest

G
 – xi

G
) + Fi(xrand1,i

G
 – xrand2,i

G
) 

b) Current-to-rand/2

vi
G
 = xi

G
 + (1 – Fi)(xrand1,i

G
 – xi

G
) + Fi(xrand2,i

G
 – xrand3,i

G
)

With so many parameters and strategies combinations, it is
imperative for the algorithm to adaptively select the most
suitable combination automatically during optimization. The
self-adaptation mechanism of SaDE works by computing the
probability of choosing a specific parameter or strategy based
on its performance over the past iterations. The formula for
computing the probability is as follows [20]:












],1[other allfor

1,...,1,for

,

,

,

,

,
Dj

Lnnnj

x

v
U DDD

ji

ji

ji

otherwise

jjCRrandif

x
U

randj

ji

ji

ji

)(or))1,0[(v

,

,

,











(6)

(9)

1538

where nsk,G and nfk,G are respectively the number of
successful and the number of failed survival of newly
generated trial vectors by parameter k, and Sk,G is the ratio of
both nsk and nfk accumulated over a learning period of T. pk,G is
the probability of choosing parameter k for the next iteration G
by each member of the population. This ensures that the
probability of selecting a parameter which helped evolve fitter
solutions is always kept updated throughout the course of
optimization.

MMTS is the modified version of the original MTS which
employs agents to execute local search strategies along the
dimensions of its agents [23]. 3 local search strategies (LS)
have been introduced in the original technique as follows:

1) LS 1: explore along one dimension from the first
dimension to the last dimension of the agent.

2) LS 2: same as strategy 1 except that the search is
performed only for ¼ of the dimensions.

3) LS 3: for each dimension, first evaluate three small
steps from the current agent and heuristically
determine the solution of the next step.

In both LS 1 and 2, the search range (SR) which determines
the step size from the original dimension is halved (to a
minimum of 10^-15) for every steps with unimproved fitness.
Unlike the original MTS, MMTS compute the step sizes of
dimensional search by first calculating the average of all
mutual dimension-wise distances between current population
members (AveDis) and then choosing one linearly reducing
factors from among 5 ranges: [1, 0.02], [5, 0.02], [10, 0.02],
[20, 0.02], [40, 0.02]. MMTS also does not pre-define the
locations of all agents on a simulated orthogonal array (SOA),
applying instead the niching technique clearing to ensure
diversity between the fittest members in the local regions [25].

As the time allotted to the computation of the optima in
each run is limited to a fixed number of functional evaluations
(FEs), more FEs are allocated to the strategy that performs
better for the specific problem. In the initial stage of a run, both
SaEPSDE and MMTS are allowed to execute for equal amount
of FEs. This number is adaptively reduced for the strategy that
produced less successful offspring-parent replacements by
computing the probabilities of selection in the manner
described in (9). Figure 1 describes the procedure of
SaEPSDE-MMTS.

B. Neighborhood niching

While SaEPSDE-MMTS is excellent in discovering single
global optima even when the problem dimensions are scalable,
it must be modified to suit dynamic optimization problems. As
mentioned in Section I, population diversity has to be
maintained throughout the run of a dynamic problem. Niching
and clustering techniques have been demonstrated to be highly
effective for such applications. To achieve this, we chose the
neighborhood crowding technique [25]. De Jong (1975)
introduced the concept of crowding from observing the
competition within a population for resources [21]. In
crowding, survival-of-fittest occurs within the niches of the
most similar members of the population. Each newly-generated
offspring competes not against its own parent, but its nearest

neighbor. B. Qu et. al. introduced neighborhood crowding
concept which modifies the mutation step size of evolving
individuals as well [25].

In neighborhood crowding, niches of a fixed population
size are formed around local best members (lbest) such that a
niche size of m would consist of the lbest and its nearest m-1
neighbors. Neighborhood mutation is implemented with the
SaEPSDE-MMTS by modifying the ensemble of strategies
from two basic strategies DE/rand/1 (1) and DE/best/1 (2) to
their neighborhood mutation forms:

vi
G
 = xrand_n1,i

G
 + F(xrand_n2,i

G
 – xrand_n3,i

G
)

vi
G
 = xlbest,i

G
 + F(xrand_n1,i

G
 – xrand_n2,i

G
)

where xrand_n1 to xrand_n3 are random members chosen from
the neighborhood of the local best xlbest. Neighborhood size m
has been recommended as 1/25 or a minimum of 5 by Qu et.
al. in their introduction of the technique [25]. The selection
process for the SaEPSDE part of the algorithm is also
modified from parent-offspring replacement to selection
between the offspring and its nearest neighbor within the niche
parent population. This process is explained in Figure 2:

WHILE stopping criteria not met (FEs < Max FEs)

Step 1: Initialize a randomly distributed population X of size N

within the range of [XLower, XUpper]

Step 2: Randomly generate ensemble of parameters [Fi
G, Ci

G,

strati
G, CR_methodi

G] as described in Section IV.A.

Step 3: DO FOR i=1 to N

Evolve xi in X based on specified parameters

Step 4: Evaluate trial vector ui

Step 5: Compare fitness of offspring with the most similar

individual in X

IF f(ui
G) ≤ f(xd), where d=min(dist(ui,xk)), k=1,…N

Xd
G+1= ui

G

 ENDIF

Step 6: Accumulate number of successful nsk and failed nfk

replacements for each parameter in ensemble.

Step 7: Compute the probability pk of selecting parameter k using

eqn. (9)

IF Generation number G > learning period T

Update parameters for next iteration, [Fi
G+1,

Ci
G+1, strati

G+1, CR_methodi
G+1], choosing

[Fk, Ck, stratk, CR_methodk] if random

number randi<pk.

END IF

Step 9: Accumulate number of successful ns and failed nf

improvement for SaEPSDE and MMTS.

Step 10: Compute the probability pk of executing SaEPSDE and

MMTS using (9)

IF Generation number G > learning period T

Update member v choice for [SaEPSDE,

MMTS] in next iteration if random number

randi<pv.

END IF

Step 11: Increment generation number G= G+1

END WHILE

Figure 1: SaEPSDE-MMTS

1539

C. Archive clearing and reinitialization

With dynamic optimization, changes to the problem
demand drastic changes in behavior for the algorithm. To
check for dynamic changes over every generation, the current
fittest member gbest and another randomly chosen member are
re-evaluated for changes in their fitness to ensure that dynamic
change has not occurred. If change is detected, the gbest and all
local optima locations thus far discovered would be archived.
This archive accumulates all solutions in the past, and is re-
evaluated for every new search. Since simple archiving of past
solutions may lead to repetitions, clearing is applied to this
archive. An adaptive archive clearing procedure that had been
previously proposed in [27] is applied here. The cleared
archive would be used for the reinitialization of individuals due
to dynamic change by replacing half of the new population
with the fittest archive members and randomly reinitializing the
rest.

V. EXPERIMENTAL RESULTS

The benchmark from IEEE WCCI 2014 Competition on
Evolutionary Computation for Dynamic Optimization
Problems comprised of the generalized dynamic benchmark
problems (GDBP) [7]. The following are the functions and

Figure 2: Neighborhood mutation crowding in SaEPSDE

WHILE number of functional evaluations FEs < MaxFEs

Step 1: Initialize a randomly distributed population X of size N

Step 2: Compute Euclidean distance for all members in X

distij=|X|=√∑(xi,j)
2, j=1, …D, i=1,2…N

Step 3: DO FOR i=1 to N

1) Sort neighboring individuals according to fitness

2) The fittest member is labeled as local best lbest

3) Sort individuals according to distance proximity

to current lbest

4) Label m-1 nearest individuals to current lbest as

from the same niche

DO FOR i=1 to N

Step 4: Evaluate trial vector ui

Step 5: Compute the Euclidean distance between ui and all

individuals in X

Step 6: Compare fitness of offspring with the most similar

individual in X

IF f(ui
G) ≤ f(xd), where d=min(dist(ui,xk)), k=1,…N

Xd
G+1= ui

G

END IF

Increment FEs = FEs + N

END WHILE

TABLE I: ERROR VALUES FOR F1-F6

F1

Change

ratio

Change Instance

 T1 T2 T3 T4 T5 T6 T7 T8.1 T8.2 T8.3 T9 T10

0.3

Mean 4.06e-03 2.95e-02 7.76e-02 1.89e-02 2.62e-02 7.81e-03 2.48e-02 7.88e-02

Std.

Dev
8.53e-03 5.44e-02 2.10e-02 2.64e-02 3.94e-02 9.52e-04 5.45e-02 3.78e-03

0.7

Mean 8.55e-02 6.71e-01 7.68e-01 9.49e-02 2.22e-01 1.71e-01 8.58e-01 8.78e-01

Std.

Dev
1.23e-01 3.49e-01 2.00e-00 3.89e-01 2.43e-01 5.26e-01 9.46e-01 1.98e+00

1

Mean 6.22e-02 4.92e-01 2.73e-01 1.85e-01 3.12e-01 2.16e-01 6.46e+01 8.18e-03 1.33e-01 3.08e+00 2.48e+00 6.98e-01

Std.

Dev
4.11e-01 5.66e-01 5.12e-00 3.14e-01 4.04e-01 9.20e-01 3.90e+01 4.77e-03 9.31e-01 4.27e+00 5.65e+00 3.55e+00

F2

Change

ratio

Change Instance

 T1 T2 T3 T4 T5 T6 T7 T8.1 T8.2 T8.3 T9 T10

1

Mean 5.72e-01 9.12e+01 3.72e+01 2.84e+00 6.13e+01 2.16e+00 6.45e+00 7.15e-03 2.34e-01 9.80e+00 3.28e-01 3.96e-01

Std.

Dev
8.81e-01 7.65e+01 8.32e+01 2.34e-01 9.14e+00 9.33e-01 1.90e+01 4.47e-03 3.31e-01 4.97e+00 5.35e+00 5.51e+00

F3

Change

ratio

Change Instance

 T1 T2 T3 T4 T5 T6 T7 T8.1 T8.2 T8.3 T9 T10

1

Mean 9.44e+02 4.32e+01 2.74e+02 1.35e+02 3.15e+02 7.16e+02 4.45e+01 4.28e+01 5.33e+01 9.18e+02 6.48e+02 5.97e+01

Std.

Dev
6.12e+02 2.61e+02 5.02e+02 3.14e+02 1.64e+02 8.20e+02 9.90e+02 4.57e+01 5.18e+01 1.22e+02 3.65e+02 3.75e+02

F4

Change

ratio

Change Instance

 T1 T2 T3 T4 T5 T6 T7 T8.1 T8.2 T8.3 T9 T10

1

Mean 8.52e-01 6.41e+00 8.68e+00 5.49e+00 2.62e+00 1.11e+00 8.82e+00 5.28e-01 2.31e-01 2.98e+00 6.78e-01 9.28e-01

Std.

Dev
1.93e-01 2.49e+00 2.90e+01 5.59e+00 2.77e+00 2.26e+00 1.13e+00 4.97e-02 2.41e-01 7.67e-01 3.46e-01 1.88e+00

F5

Change

ratio

Change Instance

 T1 T2 T3 T4 T5 T6 T7 T8.1 T8.2 T8.3 T9 T10

1

Mean 6.57e+00 4.92e+00 3.33e-01 1.25e+00 3.92e-01 3.16e-01 6.71e+00 7.78e-01 1.31e-00 2.88e+00 2.93e+00 7.98e+00

Std.

Dev
1.36e+00 3.61e+00 5.11e-00 9.16e+00 4.84e-01 1.27e-01 3.99e-01 4.79e-02 6.66e-01 1.27e+00 7.61e+00 3.50e+00

F6

Change

ratio

Change Instance

 T1 T2 T3 T4 T5 T6 T7 T8.1 T8.2 T8.3 T9 T10

1

Mean 4.02e+01 4.05e+01 2.76e+01 6.82e+00 2.15e+01 2.19e+01 4.44e+00 4.16e+00 1.39e+01 3.89e+00 3.55e+01 1.58e+01

Std.

Dev
8.13e+01 5.67e+01 8.12e+00 3.94e+01 4.14e+01 9.30e+00 1.39e+01 4.57e+01 8.31e+01 2.27e+01 4.14e+01 3.58e+00

1540

change types being tested:

 F1 – Rotation peak function

 F2 – Composition of Sphere’s function

 F3 – Composition of Rastrigin’s function

 F4 – Composition of Griewank’s function

 F5 – Composition of Ackley’s function

 F6 – Hybrid Composition function

Unlike the 2009 version of GDBP, another parameter
known as the change ratio has been implemented to simulate
partial change in the environment. With the exception of F1, a
single run of each test require test function F2 - F6 to be
executed over 60 change instances for 12 different change
types (T1 – T10). For each function and each step changes, 20
separate runs have been executed and the accuracy recorded.
Table 1 displays the mean and standard deviations of the
absolute error in our tests.

VI. CONCLUSION

We have proposed a new niching DE variant with self-
adaptive MMTS and neighborhood mutation for dynamic
optimization problems (DOPs). The performance of our
algorithm has been assessed based on the benchmark problems
of the GDBG, and the promising results from our tests indicate
the need for further development in our algorithm.

REFERENCES

[1] Y. Jin and J. Branke, “Evolutionary Optimization in Uncertain
Environments – A Survey”, IEEE Trans. on Evolutionary Computation,
vol. 9, no. 3, pp. 303 – 317, June 2005.

[2] A. P. Engelbrecht, Computational Intelligence: An Introduction, 2nd ed.
John Wiley & Sons, London, pp.70 – 85, 2007.

[3] Zhang JQ, Sanderson AC, “JADE: adaptive differential evolution with
optional external archive.”, IEEE Trans Evol Comput 13(5): 945–958

[4] K. Price, R. Storn, J. Lampinen., Differential Evolution: A practical
approach to global optimization, 1st ed. Springer, Heidelberg, pp. 1-10,
135 – 185, June 2005.

[5] A. Qing, Differential Evolution: Fundamentals and Applications in
Electrical Engineering, 1st ed., John Wiley & Sons, Singapore, pp. 1-30,
61-83, 2009.

[6] J. Branke, Evolutionary Optimization in Dynamic Environments,
Norwell, MA: Kluwer, 2001.

[7] C. Li, M. Mavrovountiotis, S. Yang, X. Yao, "Benchmark Generator for
the IEEE WCCI-2014 Competition on Dynamic Optimization: Dynamic
rotation peak benchmark generator and Dynamic general benchmark
generator", Technical Report, October 2013

[8] J. Branke, “Memory enhanced evolutionary algorithms for changing
optimization problems”, Proc. of the 1999 Congress on Evolutionary
Computation, pp. 1875-1882, 1999.

[9] R. W. Morrison and K. A. De Jong, “A test problem generator for non-
stationary environments”, Proc. of the 1999 Congress on Evolutionary
Computation, pp. 2047-2053, 1999.

[10] S. Yang and C. Li, “A Clustering Particle Swarm Optimizer for Locating
and Tracking Multiple Optima in Dynamic Environments”, IEEE Trans.
on Evolutionary Computation, vol. 14, no. 6, pp 959-974, December
2010.

[11] E. L. Yu and P. N. Suganthan, “Evolutionary Programming with
Ensemble of Explicit Memories for Dynamic Optimization”, Proc. of the
2009 Congress on Evolutionary Computation, pp. 431 – 438, 2009.

[12] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec and V. Zumer,
“Dynamic Optimization using Self-Adaptive Differential Evolution”,
Proc. of the 2009 Congress on Evolutionary Computation, pp. 415 –
422, 2009.

[13] T. Blackwell and J. Branke, “Multi-swarms, Exclusion and Anti-
convergence in Dynamic Environments”, IEEE Trans. on Evolutionary
Computation, vol. 10, no. 4, pp 459-472, 2006.

[14] D. Parrott and X. Li, “Locating and Tracking Multiple Dynamic Optima
by a Particle Swarm Model Using Speciation”, IEEE Trans. on
Evolutionary Computation, vol. 10, no. 4, pp 440-458, August 2006

[15] R. Mendes and A. S. Mohais, “DynDE: a Differential Evolution for
Dynamic Optimization Problems”, Proc. of the 2005 Congress on
Evolutionary Computation, pp. 2808-2815, 2005.

[16] M. C. du Plessis and A. P. Engelbrecht, “Improved Differential
Evolution for Dynamic Optimization Problems”, Proc. of the 2008
Congress on Evolutionary Computation, pp. 229 – 234, 2008.

[17] R. Mallipeddi and P. N. Suganthan, “Differential Evolution Algorithm
with Ensemble of Parameters and Mutation and Crossover Strategies”,
Applied Soft Computing Journal, v 11, n 2, p 1679-1696, March 2011.

[18] U. Halder, D. Maity, P. Dasgupta, S. Das, “Self-adaptive Cluster-Based
Differential Evolution with an External Archive for Dynamic
Optimization Problems”, Swarm, Evolutionary, and Memetic
Computing, Lecture Notes in Computer Science, Volume 7076, 2011, pp
19-26

[19] L. Liu, S. Yang, D. Wang, “Particle Swarm Optimization with
Composite Particles in Dynamic Environments”, IEEE Trans. on
Systems, Man And Cybernetics – Part B: Cybernetics, vol. 40, no. 6,
Dec 2010

[20] K. Qin and P. N. Suganthan, “ Self-adaptive differential evolution
algorithm for numerical optimization,” in Proceedings of the 2005
IEEE Congress on Evolutionary Computation, vol. 2, 2005, pp. 1785–
1791.

[21] S. Z. Zhao, P. N. Suganthan, and S. Das, “Self-adaptive differential
evolution with multi-trajectory search for large scale optimization,”
Soft Computing, vol. 43, no. 1, pp. 1–17, 2011.

[22] A. Pe´trowski, “A clearing procedure as a niching method for genetic
algorithms.” in Proceedings of the IEEE international conference on
evolutionary computation, New York, USA, 1996, pp 798–803.

[23] L. Y. Tseng, C. Chen, “Multiple trajectory search for multiobjective
optimization.” in Proceeding 2007 IEEE congress on evolutionary
computation, pp 3609–3616

[24] L. Y Tseng, C. Chen, “Multiple trajectory search for large scale global
optimization.” in Proceeding 2008 IEEE congress on evolutionary
computation, pp 3052–3059

[25] B. Y. Qu, P. N. Suganthan, J. J. Liang, “Differential Evolution with
Neighborhood Mutation for Multimodal Optimization”, IEEE
Transactions on Evolutionary Computation, v 16, n 5, p 601-14, Oct.
2012

[26] J. Derrac, S. García, S. Hui , F. Herrera, P. N. Suganthan, “Statistical
Analysis of Convergence Performance Throughout the Evolutionary

Search: A Case Study with SaDE-MMTS and Sa-EPSDE-MMTS.”,

2013 IEEE Symposium on Differential Evolution (SDE), Singapore, pp.

151-156, April 16-19, 2013

[27] S. Hui, P. N. Suganthan, “Ensemble differential evolution with dynamic
subpopulations and adaptive clearing for solving dynamic optimization
problems 2012 IEEE Congress on Evolutionary Computation, CEC 2012

1541

http://link.springer.com/search?facet-author=%22Udit+Halder%22
http://link.springer.com/search?facet-author=%22Dipankar+Maity%22
http://link.springer.com/search?facet-author=%22Preetam+Dasgupta%22
http://link.springer.com/search?facet-author=%22Swagatam+Das%22
http://link.springer.com/book/10.1007/978-3-642-27172-4
http://link.springer.com/book/10.1007/978-3-642-27172-4
http://link.springer.com/bookseries/558
http://www.engineeringvillage2.org.ezlibproxy1.ntu.edu.sg/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bQu%2C+B.Y.%7d§ion1=AU&database=131075&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org.ezlibproxy1.ntu.edu.sg/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSuganthan%2C+P.N.%7d§ion1=AU&database=131075&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org.ezlibproxy1.ntu.edu.sg/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bLiang%2C+J.J.%7d§ion1=AU&database=131075&yearselect=yearrange&sort=yr
http://sci2s.ugr.es/members/index.php#l0057
http://sci2s.ugr.es/members/index.php#l0031
http://sci2s.ugr.es/members/index.php#l0001

