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Abstract— Dynamic and non-stationary problems require 

optimization algorithms search for the best solutions in a time-

varying fitness environment. Various methods and strategies 

such as niching, clustering and sub-population approaches have 

been implemented with Differential Evolution (DE) to handle 

such problems. With the help of crowding niching to maintain 

general population diversity, this paper attempts to extend the 

Self-adaptive Ensemble DE with modified multi-trajectory search 

attempt to solve CEC2014 dynamic optimization competition 

benchmark problems.  

Keywords - Dynamic Optimization Problems (DOPs), Self-

adaptive Ensemble Differential Evolution (SaDE), modified multi-

trajectory search (MMTS), crowding 

I.  INTRODUCTION  

Real-world optimization applications are time-varying in 
nature, and benchmark problems simulate this by generating 
changes to the fitness landscape over a unit time defined by 
number of functional evaluations (FEs). Such dynamic 
optimization problems (DOPs) require optimizers to adapt to 
the changes continuously because of the changing optima. 
With stationary problems, the algorithmic behavior of 
optimizers tends towards abandoning exploration for 
exploitation over iterations. This cannot hold true for dynamic 
problems because the locations of the true optima may shift 
dynamically with no predictable direction. Also the dimensions 
of the objective function are subject to change [1]. As such, 
modifications must be made to the state-of-the-art techniques 
to handle such problems [1, 6].  

Advances have been made in Evolutionary Algorithms 
(EAs) class of population-based optimizers to solve DOPs in 
both Particle Swarm Optimizers (PSOs) and Differential 
Evolution (DE) [2]. PSO imitates the behavior of birds or 
insect swarms while DE simulates evolution on a population of 
real-valued vectors. Both techniques systematically scour the 
fitness landscape for feasible regions where the true optima are, 
but inevitably loose their population diversity when converging 
onto a solution [4, 5]. The loss of population diversity, 
however, is a liability when solving dynamic problems because 
it results in stagnation when dynamic changes occur [6]. The 
obvious solution is to completely re-randomize the population, 
but this would in turn means loss of any useful information 
about the changing environment, particularly if the changes are 
small or recurrent [1, 6].  

DE mutation and crossover strategies are known to be both 
diverse and specialized for exclusive fitness optimization 
situations. Since there can be no one-size-fits-all strategy or 
parameter in the case of dynamic optimization, the self-
adaptive ensemble strategy and parameters DE (SaEPSDE) 
seems to be a prospective candidate for handling dynamic 
optimization problems. Complementing the SaEPSDE is the 
modified multi-trajectory search (MMTS) introduced by Zhang 
and Sanderson [3] which helps to enhance multiple diverse 
solutions at different evolution stages. Even so, global 
population diversity in DE would ultimately diminish over 
iterations, and this is where the niching mechanism plays its 
part in maintaining global population diversity in anticipation 
of dynamic changes. Past best solutions are stored in an archive 
after each change occurred and clearing is applied to ensure 
population diversity in the archive of past best solutions.  

This paper is structured as follows: Section II describes past 
research in dynamic optimization. Section III introduces the 
basic DE algorithm. Section IV explains our proposed 
algorithm. Section V provides details of our experimental 
results from the CEC2014 Generalized Dynamic Benchmark 
Generator (GDBG) benchmark problems [7]. Finally, Section 
VI concludes the paper. 

II. RELATED WORKS 

This section summarizes past developments in dynamic 
optimization using EAs and various techniques developed for 
handling of dynamic changes. 

A. Dynamic Optimization Problems 

The generalized definition of the dynamic optimization 
problem is as follows [6, 7]: 

   F:=f(x,t)            (1) 

where x = [x1, x2, … xD] is the D-dimensional solution 
vector of parameters, and t is time, although the unit of t may 
indeed be different from actual real time for practical purposes. 
The most typical measure of t in dynamic benchmark is the 
number of functional evaluations of the problem’s fitness, 
although on some occasions iterations of the optimizing 
algorithm’s runtime over 1 cycle may be used. Regardless of 
the definitions of time in the case of dynamic optimization, the 
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state of the fitness landscape in a dynamic problem is triggered 
to change over fixed samples of the time that an algorithm is 
allowed to run. 

DOP benchmark generators for simulating dynamic 
changes in the fitness landscape had been designed for DOP 
optimizers. The 1999 Congress on Evolutionary Computation 
(CEC’99) introduced two dynamic problems simulators: the 
highly popular Moving Peaks Benchmark (MPB) by Branke 
[8], and the DF1 bench-mark generator by Morrison and De 
Jong [9]. In 2009, the Generalized Dynamic Benchmark 
Generator (GDBG) by Li and Yang was adopted as the 
benchmark for the CEC’09 Competition on Dynamic 
Optimization [7], and in CEC’14, the GDBG is expanded to 
include more change instances to better emulate real-world 
dynamic problems. 

B. Change handling of EAs 

a) Change detection 

Handling changes in a dynamic environment require 
algorithms to first detect any changes to the problem 
environment. The easiest and most practical way to do this is to 
re-evaluate one or more members of the population over 
iterations before evolution is conducted [10]. The general 
assumption here is that only one instance of change would 
occur within an iteration of the population. Another assumption 
made in this manner of detection is that the general population 
is population diversely distributed throughout the fitness 
landscape so that partial changes to the environment could also 
be detected [1, 6]. Since EAs loose population diversity over 
iterations, many approaches have been employed to maintain at 
least some degree of population diversity over time. One 
method of doing so is to designate fixed locations in the fitness 
landscape to be re-evaluated for change over iteration [6]. 
Other techniques simply attempt to maintain the population 
diversity throughout the execution of evolution. [8, 10 - 16] 

b) Complete reinitialization: Early dynamic 

optimization techniques based on Genetic Algorithms (GAs) 

simply perform complete random re-initialization on the 

population when a dynamic change occurs [6]. This is highly 

inefficient due to total loss of information about the 

environment prior to change [1].  

c) Memory-based Approaches: Since dynamic changes 

may be slight or recurrent in nature, the location of the new 

global optima after change may end up close in proximity to 

past optimal solutions. It is therefore pertinent to store the 

locations of past global and local optima in an archive. This 

information can then be used as a reinitialization pool for the 

new population [10, 11], either directly or with some form of 

modifications [12]. The Clustering PSO (CPSO) by Yang and 

Li (2010) stores past solutions in a cradle swarm from which 

new swarm clusters are generated [10]. In the Self-adaptive DE 

(jDE), past solutions are re-diversified with additive noise 

before being applied for reinitialization [12]. 

d) Single-population diversity maintenance: Since loss 

of population diversity is the key challenge in EAs for handling 

dynamic changes, many diversity maintenance approaches 

have been developed to [11, 19] ensure that complete loss of 

population diversity does not occur. The Composite Particle 

PSO (PSO-CP) by Liu, Yang and Wang maintain overall 

population diversity by modelling every 3 particles in their 

population after the nature of composite element particles [19]. 

The dynamic Evolutionary Programming (dynEP) by E. L. Yu 

and P. N. Suganthan (2009) partially or completely 

rediversifies a converged population by observing the fitness 

standard deviation in the population [11]. 

e) Multi-population approaches: This is generally the 

most popular technique for dynamic optimization because the 

goal of overall population diversity is in line with the need for 

local population convergence. Multi-population approach and 

hybrid-variants are often complemented with other diversity 

maintenance techniques involving explorative mutation 

strategies and parameters. Examples of these are the Multi-

swarms with exclusion and anti-Convergence of Blackwell and 

Branke [13], the Species-based PSO (SPSO) by Parrott and Li 

(2006) [14]. Similarly for DE, Mendes and Mohais introduced 

the Dynamic DE (DynDE) with the same diversity 

maintenance structures of Multi-swarms [15]. This was further 

enhanced by Plessis and Engelbrecht by introducing favored 

populations and migrating individuals [16]. Clustering and 

niching techniques can also be considered as forms of multi-

population techniques [18].  

III. DIFFERENTIAL EVOLUTION 

Differential Evolution (DE) is introduced by Storn and 
Price in 1995 as an alternative EA utilizing weighted difference 
between two or more random individuals for mutation and 
parent-mutant crossover. Selection is conducted between 
parent and offspring populations of real-valued vectors [4, 5]. 
The conventional DE parameters are the population size NP, 
scaling factor F and crossover probability CR.   

In classical DE, a population of size NP is first randomly 
initialized in a continuous search space of dimension D, R 
bounded upper and lower by, xj

U
 and xj

L
 respectively. The ith 

individual, xi = [x1,i, x2,i, … xD,i]  X, i=1,2,…,N, is mutated 
and crossed-over and updated using parent-offspring selection. 
The fitness of the population is computed with objective 

function f: D R
n
 R, and D≠and fitness is defined either 

as a minimization or a maximization problem. The process of 
mutation and crossover is described as follows. 

A. Mutation 

In the classic DE, the parent (target) population is perturbed 
into the mutant vectors population, V, of size NP. Various 
mutation strategies have been developed with their individual 
advantages and disadvantages. Some of the most popular 
strategies are as follows: 

DE/best/1 

vi
G
 = xbest

G
 + F(xrand1,i

G
 – xrand2,i

G
) 

DE/rand/1 
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vi
G
 = xrand1,i

G
 + F(xrand2,i

G
 – xrand3,i

G
)

where xbest is the current fittest individual and xrand1 to xrand5 
are randomly selected individuals with no replacement from 
the population. The generation number is denoted by G, while 
the scaling factors F and K determine the step-size in the 
search direction dictated by the difference vectors [4]. 

B. Crossover 

Crossover is performed between the mutant vectors and 
their corresponding target vectors. The resultant vector U is 
known as the trial vector. Two methods of crossover have been 
proposed, and they are as follows: 

Binomial crossover 



 

where Ui,j refers to the jth dimension in the ith trial vector. CR 
is the probability of crossover from the target vector. For 
Binomial crossover, each dimension has a random chance of 
crossover with the parent vector, with a minimum of at least 1 
random dimension (j=jrand) being inherited from the trial vector. 

Exponential crossover 

    

 

Exponential crossover, on the other hand randomly selects 
the nth dimension as starting point to begin crossover (j = 
<n>D) from the trial vector. Subsequent dimensions (j = 
<n+1>D,… <n+L-1>D) after n are subject to inherit from trial 
vector with probability CR. L indicates the total number 
dimensions inherited from trial vector. 

C. Selection 

Finally, the trial vector population is pit against the original 
parent population. The fitness of each member of the trial 
population is compared with its corresponding target vector, 
and the fitter member survives into the next generation. Over 
generations, this evolution process propels the population 
towards the best regions in the problem space where optimal 
solutions may be discovered.  

 

IV. SELF-ADAPTIVE ENSEMBLE DE WITH MMTS 

(SAEPSDE-MMTS) 

SAEPSDE-MMTS complements the self-adaptation 
mechanism of SaDE-MMTS [20] with the ensemble methods 
of Ensemble parameters and strategies DE (EPSDE) by 
Mallipeddi et. al. [17] so as to allow greater generalization in 
optimizing single-objective problems. The modified multi-

trajectory search was first introduced by Tseng and Chen [23], 
and then hybridized with SaDE to solve large-scale single-
objective numerical problems [20]. SaDE automatically adjusts 
the primary DE parameters of F and CR values based on the 
computed probability of successive parent-offspring 
replacements over iterations. MMTS, on the other hand, 
perform multi-step sized search along each dimension of the 
parameter space [23, 24]. Taken together, the SaDE-MMTS 
was demonstrated to be highly effective for solving large-scale 
numerical optimization problems. 

As mentioned in Section III, different mutation strategies in 
DE have their distinct advantages and disadvantages. It is 
therefore imperative to select from a few effective strategies 
adaptively, particularly when the problem changes dynamically 
[17]. Since SaDE consisted of only 1 mutation strategy adapted 
from JADE [26], it was decided that even greater 
generalization may be achieved by applying ensemble 
strategies and parameter settings. The SaEPSDE-MMTS has 
been demonstrated to have achieved statistically significant 
improvement over SaDE-MMTS within iterations [26]. This 
paper attempts to extend the algorithm further by applying 
niching concepts for diversity maintenance necessary in 
dynamic optimization. 

A. SAEPSDE-MMTS 

Mallipeddi et. al. (2011) introduced the Ensemble 
parameters and strategy DE (EPSDE) with the ensemble of 
strategies and parameters as defined below:  

1) Scaling Factor F  [0.3, 0.7, 0.9] 

2) Crossover Ratio CR  [0.1, 0.5, 0.9] 

3) Crossover Methods: 

a) Binomial crossover 

b) Exponential crossover 

4) Mutation Strategies: 

a) Current-to-pbest/2 

vi
G
 = xi

G
 + (1 – Fi)(xpbest

G
 – xi

G
) + Fi(xrand1,i

G
 – xrand2,i

G
)  

b) Current-to-rand/2 

vi
G
 = xi

G
 + (1 – Fi)(xrand1,i

G
 – xi

G
) + Fi(xrand2,i

G
 – xrand3,i

G
)

With so many parameters and strategies combinations, it is 
imperative for the algorithm to adaptively select the most 
suitable combination automatically during optimization. The 
self-adaptation mechanism of SaDE works by computing the 
probability of choosing a specific parameter or strategy based 
on its performance over the past iterations. The formula for 
computing the probability is as follows [20]: 

 











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where nsk,G and nfk,G are respectively the number of 
successful and the number of failed survival of newly 
generated trial vectors by parameter k, and Sk,G is the ratio of 
both nsk and nfk accumulated over a learning period of T. pk,G is 
the probability of choosing parameter k for the next iteration G 
by each member of the population. This ensures that the 
probability of selecting a parameter which helped evolve fitter 
solutions is always kept updated throughout the course of 
optimization.  

MMTS is the modified version of the original MTS which 
employs agents to execute local search strategies along the 
dimensions of its agents [23]. 3 local search strategies (LS) 
have been introduced in the original technique as follows: 

1) LS 1: explore along one dimension from the first 
dimension to the last dimension of the agent. 

2) LS 2: same as strategy 1 except that the search is 
performed only for ¼ of the dimensions. 

3) LS 3: for each dimension, first evaluate three small 
steps from the current agent and heuristically 
determine the solution of the next step. 

In both LS 1 and 2, the search range (SR) which determines 
the step size from the original dimension is halved (to a 
minimum of 10^-15) for every steps with unimproved fitness. 
Unlike the original MTS, MMTS compute the step sizes of 
dimensional search by first calculating the average of all 
mutual dimension-wise distances between current population 
members (AveDis) and then choosing one linearly reducing 
factors from among 5 ranges: [1, 0.02], [5, 0.02], [10, 0.02], 
[20, 0.02], [40, 0.02]. MMTS also does not pre-define the 
locations of all agents on a simulated orthogonal array (SOA), 
applying instead the niching technique clearing to ensure 
diversity between the fittest members in the local regions [25].  

As the time allotted to the computation of the optima in 
each run is limited to a fixed number of functional evaluations 
(FEs), more FEs are allocated to the strategy that performs 
better for the specific problem. In the initial stage of a run, both 
SaEPSDE and MMTS are allowed to execute for equal amount 
of FEs. This number is adaptively reduced for the strategy that 
produced less successful offspring-parent replacements by 
computing the probabilities of selection in the manner 
described in (9). Figure 1 describes the procedure of 
SaEPSDE-MMTS.  

B. Neighborhood niching 

While SaEPSDE-MMTS is excellent in discovering single 
global optima even when the problem dimensions are scalable, 
it must be modified to suit dynamic optimization problems. As 
mentioned in Section I, population diversity has to be 
maintained throughout the run of a dynamic problem. Niching 
and clustering techniques have been demonstrated to be highly 
effective for such applications. To achieve this, we chose the 
neighborhood crowding technique [25]. De Jong (1975) 
introduced the concept of crowding from observing the 
competition within a population for resources [21]. In 
crowding, survival-of-fittest occurs within the niches of the 
most similar members of the population. Each newly-generated 
offspring competes not against its own parent, but its nearest 

neighbor. B. Qu et. al. introduced neighborhood crowding 
concept which modifies the mutation step size of evolving 
individuals as well [25].  

 

In neighborhood crowding, niches of a fixed population 
size are formed around local best members (lbest) such that a 
niche size of m would consist of the lbest and its nearest m-1 
neighbors. Neighborhood mutation is implemented with the 
SaEPSDE-MMTS by modifying the ensemble of strategies 
from two basic strategies DE/rand/1 (1) and DE/best/1 (2) to 
their neighborhood mutation forms: 

vi
G
 = xrand_n1,i

G
 + F(xrand_n2,i

G
 – xrand_n3,i

G
)

vi
G
 = xlbest,i

G
 + F(xrand_n1,i

G
 – xrand_n2,i

G
)

where xrand_n1 to xrand_n3 are random members chosen from 
the neighborhood of the local best xlbest. Neighborhood size m 
has been recommended as 1/25 or a minimum of 5 by Qu et. 
al. in their introduction of the technique [25]. The selection 
process for the SaEPSDE part of the algorithm is also 
modified from parent-offspring replacement to selection 
between the offspring and its nearest neighbor within the niche 
parent population. This process is explained in Figure 2: 

WHILE stopping criteria not met (FEs < Max FEs) 

Step 1: Initialize a randomly distributed population X of size N 

within the range of [XLower, XUpper] 

Step 2: Randomly generate ensemble of parameters [Fi
G, Ci

G, 

strati
G, CR_methodi

G] as described in Section IV.A.  

Step 3:  DO FOR i=1 to N 

Evolve xi in X based on specified parameters 

Step 4: Evaluate trial vector ui  

Step 5: Compare fitness of offspring with the most similar 

individual in X 

IF f(ui
G) ≤ f(xd), where d=min(dist(ui,xk)), k=1,…N 

Xd
G+1= ui

G 

 ENDIF 

Step 6: Accumulate number of successful nsk and failed nfk 

replacements for each parameter in ensemble.  

Step 7: Compute the probability pk of selecting parameter k using 

eqn. (9) 

IF Generation number G > learning period T 

Update parameters for next iteration, [Fi
G+1, 

Ci
G+1, strati

G+1, CR_methodi
G+1], choosing 

[Fk, Ck, stratk, CR_methodk] if random 

number randi<pk.  

END IF 

Step 9: Accumulate number of successful ns and failed nf 

improvement for SaEPSDE and MMTS.  

Step 10: Compute the probability pk of executing SaEPSDE and 

MMTS using (9) 

IF Generation number G > learning period T 

Update member v choice for [SaEPSDE, 

MMTS] in next iteration if random number 

randi<pv.  

END IF 

Step 11: Increment generation number G= G+1 

END WHILE 

 

Figure 1: SaEPSDE-MMTS 
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C. Archive clearing and reinitialization 

With dynamic optimization, changes to the problem 
demand drastic changes in behavior for the algorithm. To 
check for dynamic changes over every generation, the current 
fittest member gbest and another randomly chosen member are 
re-evaluated for changes in their fitness to ensure that dynamic 
change has not occurred. If change is detected, the gbest and all 
local optima locations thus far discovered would be archived. 
This archive accumulates all solutions in the past, and is re-
evaluated for every new search. Since simple archiving of past 
solutions may lead to repetitions, clearing is applied to this 
archive. An adaptive archive clearing procedure that had been 
previously proposed in [27] is applied here. The cleared 
archive would be used for the reinitialization of individuals due 
to dynamic change by replacing half of the new population 
with the fittest archive members and randomly reinitializing the 
rest.  

V. EXPERIMENTAL RESULTS 

The benchmark from IEEE WCCI 2014 Competition on 
Evolutionary Computation for Dynamic Optimization 
Problems comprised of the generalized dynamic benchmark 
problems (GDBP) [7]. The following are the functions and 

Figure 2: Neighborhood mutation crowding in SaEPSDE 

WHILE number of functional evaluations FEs < MaxFEs 

Step 1: Initialize a randomly distributed population X of size N  

Step 2: Compute Euclidean distance for all members in X 

distij=|X|=√∑(xi,j)
2, j=1, …D, i=1,2…N 

Step 3: DO FOR i=1 to N 

1) Sort neighboring individuals according to fitness 

2) The fittest member is labeled as local best lbest 

3) Sort individuals according to distance proximity 

to current lbest 

4) Label m-1 nearest individuals to current lbest as 

from the same niche 

DO FOR i=1 to N 

Step 4: Evaluate trial vector ui  

Step 5: Compute the Euclidean distance between ui and all 

individuals in X 

Step 6: Compare fitness of offspring with the most similar 

individual in X 

IF f(ui
G) ≤ f(xd), where d=min(dist(ui,xk)), k=1,…N 

Xd
G+1= ui

G 

END IF 

Increment FEs = FEs + N 

END WHILE 

 

TABLE I: ERROR VALUES FOR F1-F6 

F1 

Change 

ratio 

Change Instance 

 T1 T2 T3 T4 T5 T6 T7 T8.1 T8.2 T8.3 T9 T10 

0.3 

Mean 4.06e-03 2.95e-02 7.76e-02 1.89e-02 2.62e-02 7.81e-03     2.48e-02 7.88e-02 

Std. 

Dev 
8.53e-03 5.44e-02 2.10e-02 2.64e-02 3.94e-02 9.52e-04     5.45e-02 3.78e-03 

0.7 

Mean 8.55e-02 6.71e-01 7.68e-01 9.49e-02 2.22e-01 1.71e-01     8.58e-01 8.78e-01 

Std. 

Dev 
1.23e-01 3.49e-01 2.00e-00 3.89e-01 2.43e-01 5.26e-01     9.46e-01 1.98e+00 

1 

Mean 6.22e-02 4.92e-01 2.73e-01 1.85e-01 3.12e-01 2.16e-01 6.46e+01 8.18e-03 1.33e-01 3.08e+00 2.48e+00 6.98e-01 

Std. 

Dev 
4.11e-01 5.66e-01 5.12e-00 3.14e-01 4.04e-01 9.20e-01 3.90e+01 4.77e-03 9.31e-01 4.27e+00 5.65e+00 3.55e+00 

F2 

Change 

ratio 

Change Instance 

 T1 T2 T3 T4 T5 T6 T7 T8.1 T8.2 T8.3 T9 T10 

1 

Mean 5.72e-01 9.12e+01 3.72e+01 2.84e+00 6.13e+01 2.16e+00 6.45e+00 7.15e-03 2.34e-01 9.80e+00 3.28e-01 3.96e-01 

Std. 

Dev 
8.81e-01 7.65e+01 8.32e+01 2.34e-01 9.14e+00 9.33e-01 1.90e+01 4.47e-03 3.31e-01 4.97e+00 5.35e+00 5.51e+00 

F3 

Change 

ratio 

Change Instance 

 T1 T2 T3 T4 T5 T6 T7 T8.1 T8.2 T8.3 T9 T10 

1 

Mean 9.44e+02 4.32e+01 2.74e+02 1.35e+02 3.15e+02 7.16e+02 4.45e+01 4.28e+01 5.33e+01 9.18e+02 6.48e+02 5.97e+01 

Std. 

Dev 
6.12e+02 2.61e+02 5.02e+02 3.14e+02 1.64e+02 8.20e+02 9.90e+02 4.57e+01 5.18e+01 1.22e+02 3.65e+02 3.75e+02 

F4 

Change 

ratio 

Change Instance 

 T1 T2 T3 T4 T5 T6 T7 T8.1 T8.2 T8.3 T9 T10 

1 

Mean 8.52e-01 6.41e+00 8.68e+00 5.49e+00 2.62e+00 1.11e+00 8.82e+00 5.28e-01 2.31e-01 2.98e+00 6.78e-01 9.28e-01 

Std. 

Dev 
1.93e-01 2.49e+00 2.90e+01 5.59e+00 2.77e+00 2.26e+00 1.13e+00 4.97e-02 2.41e-01 7.67e-01 3.46e-01 1.88e+00 

F5 

Change 

ratio 

Change Instance 

 T1 T2 T3 T4 T5 T6 T7 T8.1 T8.2 T8.3 T9 T10 

1 

Mean 6.57e+00 4.92e+00 3.33e-01 1.25e+00 3.92e-01 3.16e-01 6.71e+00 7.78e-01 1.31e-00 2.88e+00 2.93e+00 7.98e+00 

Std. 

Dev 
1.36e+00 3.61e+00 5.11e-00 9.16e+00 4.84e-01 1.27e-01 3.99e-01 4.79e-02 6.66e-01 1.27e+00 7.61e+00 3.50e+00 

F6 

Change 

ratio 

Change Instance 

 T1 T2 T3 T4 T5 T6 T7 T8.1 T8.2 T8.3 T9 T10 

1 

Mean 4.02e+01 4.05e+01 2.76e+01 6.82e+00 2.15e+01 2.19e+01 4.44e+00 4.16e+00 1.39e+01 3.89e+00 3.55e+01 1.58e+01 

Std. 

Dev 
8.13e+01 5.67e+01 8.12e+00 3.94e+01 4.14e+01 9.30e+00 1.39e+01 4.57e+01 8.31e+01 2.27e+01 4.14e+01 3.58e+00 
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change types being tested: 

 F1 – Rotation peak function 

 F2 – Composition of Sphere’s function 

 F3 – Composition of Rastrigin’s function 

 F4 – Composition of Griewank’s function 

 F5 – Composition of Ackley’s function 

 F6 – Hybrid Composition function 

Unlike the 2009 version of GDBP, another parameter 
known as the change ratio has been implemented to simulate 
partial change in the environment. With the exception of F1, a 
single run of each test require test function F2 - F6 to be 
executed over 60 change instances for 12 different change 
types (T1 – T10). For each function and each step changes, 20 
separate runs have been executed and the accuracy recorded. 
Table 1 displays the mean and standard deviations of the 
absolute error in our tests. 

VI. CONCLUSION 

We have proposed a new niching DE variant with self-
adaptive MMTS and neighborhood mutation for dynamic 
optimization problems (DOPs). The performance of our 
algorithm has been assessed based on the benchmark problems 
of the GDBG, and the promising results from our tests indicate 
the need for further development in our algorithm. 
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