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Abstract—Bilevel programming is used to model decentral-
ized problems involving two levels of decision makers that are
hierarchically related. Those problems, which arise in many
practical applications, are recognized to be challenging. This
paper reports a Differential Evolution (DE) method assisted by a
surrogate model to solve bilevel programming problems (BLPs).
The method proposed is an extension of a previous one, BlDE,
developed by the authors, where two DE methods are used to
generate and evolve the upper and the lower level variables. Here,
the use of a similarity-based surrogate model, and a different
stopping criteria, are proposed in order to reduce the number of
function evaluations on both levels of the problem. The numerical
results show a significant reduction in the number of function
evaluations in the lower level of the problem, as well as some
improvement in the upper level.

I. INTRODUCTION

Over the years, a branch of mathematical programming
that has become an important area of research is the design
and implementation of efficient computational methods to
treat the complex problems of bilevel optimization. Bilevel
programming problems (BLPs) are considered very difficult
to solve, because they contain an optimization problem within
the constraints of another optimization problem. Problems of
this type are considered more difficult to treat than the classical
optimization problems, since, in general, they are non-convex
and non-differentiable, even when the functions involved are
all linear; in fact in [16], [8] they were proved to be NP-hard.

In the BLP, two decision makers, the leader in the upper
level and the follower in the lower level, are hierarchically
related, where the leader’s decisions affect both the follower’s
payoff function and allowable actions, and vice-versa. The
main feature of such problems is that the decisions at the
upper level can influence the decision maker of the lower
level, but cannot completely control its actions. In addition, the
objective function of one level is usually partially determined
by variables controlled by the other level of the hierarchy.

Do to the complexity involved in solving BLPs, intelligent
heuristics, such as evolutionary computation, become powerful
tools to overcome the many challenges of bilevel programming
problems, such as non-convexity and non-differentiability,
large number of variables and/or constraints, mixed types
of design variables and non-unique optimal solution for the
follower’s problem. However, heuristic methods often require
a large number of fitness and constraint evaluations. This
becomes a serious drawback in situations where expensive
simulations are required.

Since in this paper we are interested in developing an
evolutionary method capable to solve bilevel problems with
complex simulation models, which usually require a large
computational time to be computed, we propose the use of
a surrogate model (or metamodel) and a different stopping
criteria, to replace the lower level optimization by a relatively
inexpensive approximation of the lower level function, so as to
reduce the number of calls to the (expensive) objective function
evaluator.

In this paper, a simple similarity-based surrogate model,
and a different stopping criterion are applied to the BlDE
algorithm, previously proposed in [4], in order to reduce the
number of upper and lower level function evaluations. The
method uses two nested Differential Evolution algorithms,
each one responsible for optimizing one level of the problem.
Firstly, the proposed method is tested on a variety of test
problems taken from the literature, which include linear, non-
linear, constrained and unconstrained optimization problems.
Secondly, the well known SMD test-problems [26] are used to
evaluate the proposed method.

In the next section, we present the formulation of a
general bilevel optimization problem and describe the notion of
optimal solution for this problem. In Section III the Differential
Evolution algorithm is presented where the different variants
used in the bilevel method proposed are described. In the next
section we present a description of the surrogate model used
to assist the DE. Section V describes the proposed bilevel
methodology that utilizes a surrogate model within the two
nested DE algorithms. The standard test problems and the
SMD problems, used to evaluate the proposed method, are
described in Section VI. Thereafter, the computational results
are discussed. Finally, the conclusions are presented in Section
VIII.

II. BILEVEL PROGRAMMING

In bilevel programming problems, two decision makers,
the leader (L) in the upper level and the follower (F ) in the
lower level, are hierarchically related. The main characteristic
of BLPs is that the leader’s decisions affect both the follower’s
payoff function and its allowable actions, and vice-versa. Each
decision maker has control over a set of variables, seeking to
optimize his own objective function. The leader has control
over the x variables, and makes his decision first, fixing x,
while the follower has control over the y variables. Reacting
to the decision of the leader, the y variables are set in response
to the given x.
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A bilevel programming problem can be written as:

(L) min
x∈X

f1(x, y(x))

subject to g1(x, y(x)) ≤ 0
(F ) y(x) ∈ R(x) := arg min

y∈Y
f2(x, y)

subject to g2(x, y) ≤ 0

(1)

where f1(x, y(x)) and f2(x, y) are the upper and lower level
objective functions, respectively, with g1(x, y(x)) and g2(x, y)
being their respective constraints. x ∈ X ⊂ Rn1 are the upper
level variables and y ∈ Y ⊂ Rn2 are the lower level variables.
The reaction set of the follower R(x) defines the follower’s
response given a fixed x by the leader. To ensure that (1) is
well posed it is common to assume that for all decisions taken
by the leader, the follower has some room to respond, i.e.,
R(x) 6= ∅.

The feasible set of the bilevel problem (1) is

Ω := {(x, y) : x ∈ X, y ∈ Y, g1(x, y(x)) ≤ 0, g2(x, y) ≤ 0}
and the feasible set of the follower, for each x ∈ X , is

Ωy := {y ∈ Y : g2(x, y) ≤ 0}
A minimizing solution y(x), for the follower’s problem, in
response to a given x fixed by the leader, satisfies the following
relation [25]:

f2(x, y(x)) ≤ f2(x, y) ∀y ∈ Ωy

For such y(x), if it exists x∗ ∈ X , such that

f1(x∗, y(x∗)) ≤ f1(x, y(x)) ∀x ∈ Ω

then the solution (x∗, y∗), where y∗ = y(x∗), is the optimal
solution for the bilevel problem with y∗ being the optimal
solution for the follower’s problem in response to x∗.

A. Difficulties in solving BLPs

One difficulty that arises in solving a BLP is that, if R(x) is
not single-valued for all possible x, the leader may not achieve
his minimum payoff, since the follower has multiple minimum
solutions to choose from. In this case, there is no guarantee
that the follower’s choice is the best for the leader, leading to
sub-optimal solutions in the leader’s problem.

To overcome this situation at least two approaches can be
considered; the optimistic one and the pessimistic one. In the
optimistic case, the leader assumes that the follower is willing
to support him, i.e., that the follower will select a solution
y(x) ∈ R(x) which is the best from the leader’s point-of-
view. This results in the so-called optimistic or weak bilevel
problem [12]:

(L) min
x∈X

min
y∈R(x)

f1(x, y(x))

subject to g1(x, y(x)) ≤ 0
(F ) y(x) ∈ R(x) := argmin

y∈Y
f2(x, y)

subject to g2(x, y) ≤ 0

(2)

On the other hand, in the pessimistic case, the leader protects
himself against the worst possible situation, leading to the so-
called pessimistic or strong bilevel problem [12]:

(L) min
x∈X

max
y∈R(x)

f1(x, y(x))

subject to g1(x, y(x)) ≤ 0
(F ) y(x) ∈ R(x) := argmin

y∈Y
f2(x, y)

subject to g2(x, y) ≤ 0

(3)

Another challenge lies in the fact that unless a solution is
optimal for the lower level problem, it cannot be feasible for
the overall problem. This suggests that approximate methods
could not be used to solve the lower level problem, as they
are not guaranteed to reach the optimal solution. However, the
complexity of many bilevel applications makes the use of exact
methods impractical.

III. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) is a stochastic population-
based algorithm for global optimization, considered very sim-
ple and easy to use because it requires very few control
parameters. The basic operation of DE is to perturb the current
population members with scaled differences of distinct ran-
domly selected population members. The variants (strategies)
of DE are determined by the number of differences applied, the
way in which the individuals are selected, and the distribution
of recombination. The DE performance depends on the variant
chosen, and here two DE variants proposed in [20] are applied
and evaluated:

DE/best/1/bin: The new individual generated uses the best
individual in the population xbest,j,G as base vector in the
mutation, and r1 and r2 indicate randomly selected individuals,
leading to

xbest,j,G + F.(xr1,j,G − xr2,j,G) (4)

DE/target-to-best/1/bin: This variant uses the best individual
of the population and the target individual (the one that will be
used in the comparison after the mutation, also called current
individual), to generate a new individual, leading to

xi,j,G + F.(xbest,j,G − xi,j,G) + F.(xr1,j,G − xr2,j,G) (5)

In addition, a crossover operation is performed, using the
parameter CR. Also, for each design variable, lower and upper
bounds are usually applied. Whenever a given component xi
of a candidate solution x is generated outside its prescribed
range, a standard projection operation is performed:

If xi,j > xUj then xi,j = xUj ; if xi,j < xLj then xi,j = xLj .

IV. DE ASSISTED BY A SURROGATE MODEL

Replacing the original evaluation function (a complex
computer simulation) by a substantially less expensive approx-
imation is known as surrogate modeling, or metamodeling.
This idea appeared early in the evolutionary computation
literature [15] and many possibilities are available today (see
[14] for a survey). In the context of Differential Evolution,
many surrogate models were already proposed such as artificial
neural networks [27], radial basis function networks [19] and
nearest neighbors techniques [17].

Similarity-Based Surrogate Models (SBSM) store their
inputs and defer processing until a prediction of the fitness
value of a new candidate solution is requested. Thus, SBSM
can be classified as “lazy” learners or memory-based learners
[1]. Our proposal is to apply a surrogate model, based on
nearest neighbors techniques, aiming at reducing the number
of objective function evaluations. The k-Nearest Neighbors (k-
NN) [23] was used, in which the k nearest candidate solutions
are selected.
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In the BlDE method [4], for each x fixed, a DE method
was performed to obtain the y values. However, this process
required a large number of lower level function evaluations.
Therefore, we propose to replace the DE follower process by
a k-NN approximation. So, when the x values are selected we
have two situations: (i) the DE follower process is applied, and
the y values are obtained or (ii) an approximated method is
applied to calculate the y values, using equation (6).

When the follower DE is applied, the x and y values are
stored in the archive D. When the approximation method is
selected to be applied, the y values are calculated based in the
x values and the archive D.

Given a candidate solution x and the archive D =
{(xi, y(xi)), i = 1, . . . , η}, containing the solutions evaluated
by the follower DE, the following approximation is considered:

y(x) ≈ ŷ(x) =

∑|N |
j=1 s(x, x

N
j )py(xNj )∑|N |

j=1 s(x, x
N
j )p

(6)

where η is the size of the archive D, |N | denotes the cardinality
of the set N composed by the k elements in the set D most
similar to x. The xNj ∈ N are the nearest neighbors of x,
s(x, xNj ) is a similarity measure between x and xNj , and p is
set to 2. Here, s(x, xNj ) = [dE(x, xNj )]−1, where dE(x, xNj )
is the Euclidean distance between x and xNj . If x = xi for
some xi ∈ D then ŷ(x) = y(xi).

V. THE PROPOSED METHODOLOGY

Algorithms 1 and 2 describe the upper –leader– and lower
–follower– level optimization of the proposed method. The
main steps of the algorithm are summarized as follows:

Step 0: Initialization. The algorithm starts with a popula-
tion, of size POPu, of vectors containing the upper level vari-
ables x ∈ Rn1 . The upper level variables are initialized with
random values and the lower level variables are determined
by executing the lower level procedure (Algorithm 2), which
generates the vector y ∈ Rn2 of lower level variables.

Step 1: Upper level procedure. Following the basic DE
algorithm described in Algorithm 1, the upper level individuals
are mutated and recombined.

Step 2: Evaluation of each upper level individual. To
evaluate the individuals in the upper level, where fitness is
assigned based on the upper level function and constraints, the
lower level procedure is performed. The solution returned, that
is, the best individual obtained in the lower level procedure,
is used to evaluate the upper level individual.

Step 3: Lower level procedure. In order to evaluate the
lower level problem, two different procedures can be applied:

Step 3.1: Evolutionary model. For fixed upper level vari-
ables, a new DE algorithm is executed, as described in Al-
gorithm 2. The individuals are evaluated based on the lower
level function and constraints. Finally, the procedure returns
the best value of the lower level problem. After this process
the x variables and its associated y are stored in the archive
D.

Step 3.2: Surrogate model. For fixed upper level variables,
the equation (6) and the archive D are used to obtain the
associated y variables.

Algorithm 1: Algorithm DE Leader.
input : POPu (population size), F (mutation scaling),

CR (crossover rate)

1 G = 0;
2 CreateRandomInitialPopulation(POPu);
3 for i← 1 to POPu do
4 −→y = DEFollower(POPl, F, CR, −→x i,G);
5 Evaluate f1(

−→x i,G, −→y ) ; /*
−→x i,G is an

individual in the population */
6 InsertDatabase(−→x i,G, −→y )
7 while termination criteria not satisfied do
8 G ++;
9 for i← 1 to POPu do

10 SelectRandomly(r1, r2, r3);
/* r1 6= r2 6= r3 6= i */

11 jRand←RandInt(1, n1)
12 for j ← 1 to n1 do
13 if Rand(0, 1) < CR or j = jRand then
14 ui,j,G+1 = equation (4) or (5)
15 else
16 ui,j,G+1 = xi,j,G;

17 if Rand(0, 1) ≤ β and G ≥ γ then
18 −→y = AproximatedFollower(POPl,−→u i,G+1);
19 else
20 −→y = DEFollower(POPl, F, CR,

−→u i,G+1);
21 InsertDatabase(−→u i,G+1, −→y )
22 if f1(−→u i,G+1,

−→y ) ≤ f1(−→x i,G,−→y ) then
23 −→x i,G+1 = −→u i,G+1;
24 else
25 −→x i,G+1 = −→x i,G;

A. Constraint handling

The upper and lower level constraints of the bilevel prob-
lems are handled by the method proposed in [11], which
enforces the following criteria: (i) any feasible solution is
preferred to any infeasible solution; (ii) among two feasible
solutions, the one having better objective function value is
preferred, and (ii) among two infeasible solutions, the one
having smaller constraint violation is preferred.

B. Termination criteria

The algorithm uses a variance based termination criterion
in each level of the bilevel optimization [26]. At the upper
level, when the value of αu, described in (7), becomes less
than αstopu , the upper level algorithm terminates.

αu =

n1∑
i=1

σ2(xti)

σ2(xinitiali )
(7)

where n1 is the number of upper level variables, xti are the
upper level variables in generation t and xinitiali are the upper
level variables in the initial population, with i ∈ {1, ..., n1}.
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Algorithm 2: Algorithm DE Follower.
input : POPl (follower population size), F (mutation

scaling), CR (crossover rate), −→v (leader
variables)

1 G = 0;
2 CreateRandomInitialPopulation(POPl);
3 for i← 1 to POPl do
4 Evaluate f2(

−→v , −→x i,G) ; /*
−→x i,G is an

individual in the population */

5 while termination criteria not satisfied do
6 G ++;
7 for i← 1 to POPl do
8 SelectRandomly(r1, r2, r3) ;

/* r1 6= r2 6= r3 6= i */
9 jRand←RandInt(1, n2)

10 for j ← 1 to n2 do
11 if Rand(0, 1) < CR or j = jRand then
12 ui,j,G+1 = equation (4) or (5)
13 else
14 ui,j,G+1 = xi,j,G;

15 if f2(
−→v ,−→u i,G+1) ≤ f2(

−→v ,−→x i,G) then
16 −→x i,G+1 = −→u i,G+1;
17 else
18 −→x i,G+1 = −→x i,G;

19 return SelectBestIndividual

For the lower level, when the value of αl, described in (8),
becomes less than αstopl , the lower level algorithm terminates.

αl =

n2∑
i=1

σ2(yti)

σ2(yinitiali )
(8)

where n2 is the number of lower level variables, yti are the
lower level variables in generation t and xinitiali are the lower
level variables in the initial population, with i ∈ {1, ..., n2}.

VI. TEST PROBLEMS

The results obtained by the proposed method are analyzed
using 25 test-problems divided in two groups. Due to the lack
of space, the description of the problems is omitted (they are
all available in [4], except for problem 19, available in [9]).

A. Standard test problems

First, the proposed method is applied on a variety of
test problems from the literature [25], [10], [6], [2], [7], [3],
[22], [13], [24], [5], [18], [21], [9]. Those problems include
linear, non-linear, constrained, and unconstrained optimization
problems, most of them with 2 or 4 decision variables, and
one of them with 8 decision variables.

B. SMD test-problems

The second part of the experiments consists in solving
the unconstrained test-collection (SMD1 to SMD6) proposed
in [26]. Those problems aim to induce difficulties at both
levels of the BLP, independently and collectively, such that

the performance of the algorithms could be better evaluated
when handling the two levels.

For those problems the instances considered have 10 de-
cision variables and correspond to setting p = 3, q = 3, and
r = 2 for problems SMD1 to SMD5, and p = 3, q = 1, r = 2,
and s = 2 for problem SMD6.

VII. COMPUTATIONAL RESULTS

The algorithm proposed was first tested in 19 test problems
taken from different sources in the literature. In the second
part of the tests the performance of the proposed method
was analyzed using the SMD test-problems. As described in
Section III two variants of DE were considered, DE/target-to-
rand/1/bin and DE/best/1/bin.

The experiments analyze the results obtained by the pro-
posed algorithm when a surrogate model is used to replace the
lower level optimization. The proposed method, with different
probabilities β of using the surrogate model, is analyzed from
the point of view of the quality of the solutions found and the
number of exact function evaluations saved.

A. Parameter setting

The proposed method was executed 30 times for each test
problem, using the following parameter setting:

• F: the scale factor –mutation rate– is set to 0.8.

• CR: the crossover probability is set to 0.9.

• POPu and POPl: the upper and the lower level
population size are both set to 30.

• αstopu and αstopl : the accuracy in both termination
criteria is set to 0.00001.

• β: the probability of using the metamodel varies
among 0 (no use), 0.3, 0.5, and 0.8.

• k: the number of nearest candidate solutions selected
to calculate the lower level variables via the meta-
model is set to 2.

• γ: the initial number of generations in which the
surrogate model is not applied is set to 1.

B. Results for the standard test problems

Because of the diversity of the 19 test problems and
the very aggressive search of DE variant DE/best/1/bin, the
proposed method, using this variant on both levels, did not
perform well on those problems. Thereby, the results presented
on Tables I to IV correspond only to the use of the DE/target-
to-rand/1/bin variant on both levels of the optimization.

Tables I and II describe the median and mean objective
functions values of the upper (UL) and lower (LL) level
problems, where BKS indicates the best known solutions.
Tables III and IV present the median and mean values of the
number of function evaluations (FE) for the upper and lower
level problems, and the last column indicates the percentage
of savings on the number of lower level function evaluations
(%LLSav).
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C. Results for the SMD test-problems

Table V describes the median and mean values of the upper
(UL) and lower (LL) level objective functions, where “target”
means the variant DE/target-to-rand/1/bin and “best” means
the variant DE/best/1/bin. For those problems the best known
solution for the upper and lower problems are both zero. Table
VI presents the median and mean values of number of function
evaluations (FE) for the upper and lower level problems.

D. Discussions

From Table I and II it is possible to observe that the
proposed method using no metamodel (β = 0) was capable
to reach, or get very close to, the best known solutions in all
problems tested. However, when the probability of using the
metamodel increases, for some problems, the method cannot
reach the best known solutions. It seems that when β ≥ 0.5
the solutions deviate from the expected results.

When the surrogate model is not able to obtain the expected
values, the optimization process can be directed to false
optimal solutions (minimum solutions of the approximated
function), leading to poor quality solutions. Furthermore, in
some cases, the surrogate method can even slow down the
convergence of the upper level optimization.

Tables III and IV show that the number of lower level func-
tion evaluations is significantly reduced (except for problem
16) as the percentage of using the surrogate model increases, as
indicated by the percentage of savings on the number of lower
level function evaluations. We can highlight that although the
metamodel has been used to reduce the number of function
evaluations of the lower level, for problems 7, 11, 15, and 17
the number of upper level function evaluations also decreased
as the use of the metamodel increased.

For the SMD problems, in both variants, the proposed
method efficiently solve all problems when no metamodel was
used. In fact, for problems SMD1 and SMD3, with a high
probability of using the metamodel (β = 0.8), the method
still solves efficiently these problems. However, as happened
with the standard test problems, for problems SMD2, SMD4,
SMD5, and SMD6, when β ≥ 0.5 the solutions deviate from
the expected results.

From Table VI it is possible to observe a significant
reduction on the number of lower level function evaluations for
both DE variants in all problems tested, reaching a reduction
of over 75% in problems SMD1 and SMD3, when β = 0.8.
One can observe that the variant DE/best/1/bin presented a
reduced number of function evaluations when compared with
the variant DE/target-to-best/1/bin for all values of β in all
SMD test-problems.

VIII. CONCLUSION

In this paper we proposed to improve the BlDE algorithm,
previously developed by the authors [4], in order to reduce the
number of objective function evaluations in bilevel optimiza-
tion problems. The new method implements a nested technique
where each DE algorithm is responsible for optimizing one
level of the bilevel problem, uses a different termination
criterion, and is equipped with a surrogate model in the lower
level optimization.

TABLE I. MEDIAN AND MEAN VALUES OF THE UPPER (UL) AND
LOWER (LL) LEVEL OBJECTIVE FUNCTIONS (FUNCTIONS 1 – 12)

Problem 1
β UL Med. UL Mean LL Med. LL Mean
0.8 99.75 99.18 0.002961 0.1089 UL BKS
0.5 99.99 99.57 0.0001027 0.07055 100
0.3 100 99.73 1.008e-05 0.05117 LL BKS
0.0 100 100 2.212e-06 4.061e-06 0

Problem 2
β UL Med. UL Mean LL Med. LL Mean
0.8 224.9 223 99.13 94.23 UL BKS
0.5 225.1 224.5 99.77 99.16 225
0.3 225.1 225 99.76 99.36 LL BKS
0.0 225.1 225.1 99.83 99.79 100

Problem 3
β UL Med. UL Mean LL Med. LL Mean
0.8 28.43 28.55 -3.154 -5.816 UL BKS
0.5 28.76 28.72 -3.156 -3.135 29.2
0.3 28.86 28.39 -3.182 -3.276 LL BKS
0.0 28.91 28.84 -3.174 -3.16 -3.2

Problem 4
β UL Med. UL Mean LL Med. LL Mean
0.8 3.327 3.13 2.461 2.268 UL BKS
0.5 3.31 3.386 2.715 2.322 3.25
0.3 3.251 3.337 3.587 2.824 LL BKS
0.0 3.247 3.245 3.945 3.936 4

Problem 5
β UL Med. UL Mean LL Med. LL Mean
0.8 0 -1.661 200 192.2 UL BKS
0.5 0 -0.6545 200 198.1 0
0.3 0 -0.5524 200 198.7 LL BKS
0.0 0 -1.409e-06 200 193.3 200

Problem 6
β UL Med. UL Mean LL Med. LL Mean
0.8 16.32 12.43 0.6178 -1.548 UL BKS
0.5 17 14.77 0.9964 -0.05756 17
0.3 17 15.14 0.9989 0.06603 LL BKS
0.0 17 17 0.9989 0.9925 1

Problem 7
β UL Med. UL Mean LL Med. LL Mean
0.8 -12.82 -12.8 -0.9483 -0.8823 UL BKS
0.5 -12.83 -12.84 -0.933 -0.9066 -12.679
0.3 -12.83 -12.83 -0.9578 -0.9172 LL BKS
0.0 -12.82 -12.83 -0.9686 -0.951 -1.015

Problem 8
β UL Med. UL Mean LL Med. LL Mean
0.8 48.84 47.39 -16.89 -15.85 UP BKS
0.5 48.96 48.59 -16.98 -16.71 49
0.3 48.97 48.96 -16.98 -16.97 LL BKS
0.0 48.96 48.95 -16.98 -16.97 -17

Problem 9
β UL Med. UL Mean LL Med. LL Mean
0.8 -1.544 -1.658 7.948 8.555 UL BKS
0.5 -1.416 -1.51 7.627 8.031 -1.407
0.3 -1.405 -1.422 7.61 7.727 LL BKS
0.0 -1.407 -1.405 7.616 7.606 7.61

Problem 10
β UL Med. UL Mean LL Med. LL Mean
0.8 -1.025 -1.024 0.00113 0.01522 UL BKS
0.5 -1.024 -1.035 0.001833 0.00852 -1
0.3 -1.017 -1.037 0.0006187 0.02157 LL BKS
0.0 -1.015 -1.015 0.000304 0.0003688 0

Problem 11
β UL Med. UL Mean LL Med. LL Mean
0.8 2049 1913 85.91 3937 UL BKS
0.5 2099 1963 155.6 4077 2250
0.3 2210 2119 156.9 472 LL BKS
0.0 2248 2248 197.3 192.5 197.75

Problem 12
β UL Med. UL Mean LL Med. LL Mean
0.8 -12.02 -12.77 4 4.069 UL BKS
0.5 -12.02 -12.54 4 4.058 -12
0.3 -11.99 -12.4 3.997 4.038 LL BKS
0.0 -11.99 -11.98 3.997 3.993 4

1788



TABLE II. MEDIAN AND MEAN VALUES OF THE UPPER (UL) AND
LOWER (LL) LEVEL OBJECTIVE FUNCTIONS (FUNCTIONS 13 – 19)

Problem 13
β UL Med. UL Mean LL Med. LL Mean
0.8 3.117 3.262 -6.696 -7.312 UL BKS
0.5 3.117 3.117 -6.696 -6.699 3.111
0.3 3.113 3.114 -6.686 -6.702 LL BKS
0.0 3.113 3.117 -6.682 -6.696 -6.662

Problem 14
β UL Med. UL Mean LL Med. LL Mean
0.8 1 0.839 0 175.2 UL BKS
0.5 1 0.9553 0 90.97 1
0.3 1 0.9996 0 27.77 LL BKS
0.0 1 1 0 0 0

Problem 15
β UL Med. UL Mean LL Med. LL Mean
0.8 951.3 760.5 1 1 UL BKS
0.5 1000 854.4 1 1 1000
0.3 1000 881.1 1 1 LL BKS
0.0 1000 885.2 1 1 1

Problem 16
β UL Med. UL Mean LL Med. LL Mean
0.8 4.766 4.581 3.845 4.025 UL BKS
0.5 4.805 4.738 3.911 3.904 5
0.3 4.957 4.88 4.168 4.075 LL BKS
0.0 4.997 4.997 4.025 4.033 4

Problem 17
β UL Med. UL Mean LL Med. LL Mean
0.8 9 9 3.974e-13 1.804e-11 UL BKS
0.5 9 9 7.861e-14 4.893e-12 9
0.3 9 9 5.652e-14 3.538e-13 LL BKS
0.0 9 9 1.36e-14 1.813e-13 0

Problem 18
β UL Med. UL Mean LL Med. LL Mean
0.8 84.78 81.76 -50.07 -49 UL BKS
0.5 84.94 83.55 -50.13 -49.64 85.09
0.3 85.01 84.93 -50.15 -50.12 LL BKS
0.0 85.02 84.98 -50.15 -50.14 -50.181

Problem 19
β UL Med. UL Mean LL Med. LL Mean
0.8 0.1522 0.1617 0.5003 0.5755 UL BKS
0.5 0.1851 0.1908 0.4238 0.5248 0.081
0.3 0.1747 0.1833 0.4197 0.5119 LL BKS
0.0 0.1713 0.1801 0.5467 0.5507 0.666

The experiments showed that the proposed method was
capable to efficiently solve all problems tested when the
probability of using the surrogate model is about 30% and
50%, providing a significant reduction on the number of lower
level function evaluations. The results also indicate that the
surrogate model used may be too simple to efficiently solve the
variety of test problems considered. When a high probability
(β > 0.5) of using the surrogate model is applied, in some
cases the method generated poor quality solutions, and the
convergence of the upper level was compromised.

In this way, as future work, it is intended to study new sur-
rogate models for both levels of bilevel optimization problems
so as to significantly reduce the number of upper and lower
level objective function evaluations without compromising the
quality of the final solutions.
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