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Abstract—Multimodal optimization aims to find multipleglobal 
and local optima as opposed to only the best optimum. Parallel 
genetic algorithms (PGAs) provide a natural advantage for 
dealing with this issue, since they are multi-population based 
searching methodologies. For single population based 
evolutionary algorithms, a number of niching and multimodal 
optimization techniques have been proposed and successfully 
applied to cope with this problem. However, these approaches are 
definitely not applicable for PGAs, since due to communicational 
and computational costs it is very always impossible to obtain 
and compute global information of all the sub-populations during 
massive parallel evolution procedure.In this study, a new island 
model PGA, called local competitionmodel (LCM), is developed 
to cope with this issue. The new method only uses local 
information received from a few neighbouring subpopulations to 
reach a global diversification in which all the subpopulations are 
automatically allocated to differentareas of searching space so 
that they canconverge to multiple optima including both global 
optima and local optima.Finally, experimental studies on both 
real number optimization and combinatorial optimization are 
implemented to illustrate the performance of the new PGA 
model. 

Keywords-Parallel genetic algorithm; Island model; Niching; 
Multimodal optimization 

I.  INTRODUCTION  
In real applications, it may bedesirable to find multiple 

global and local optimaof an optimization problemin a single 
run. Multimodal optimization aims to find multipleglobal and 
local optima as opposed to only one best solution.On one hand, 
it may provide a better understandingofthe solution space 
landscape.On the other hand, the users can easily choose the 
most proper solution in his/her problem domainfrom the found 
optima without worrying about the performance of solution. 

Unfortunately, the natural tendency of genetic algorithms 
(GAs) is to converge to only one best solution because of the 
global selection scheme used.How to detect and maintain 
multiple optima are two challenges of solving multimodal 
optimization problems [4]. To overcome this problem, numbers 
of niching techniques had been proposed to prevent GAs from 
premature convergence to a single optimum, such as clearing, 
sharing, crowding, speciation, and other methods such as 
locally informedparticle swarm (LIPS), attraction basins 
estimating GA, and ring topology PSO [4], [5], [20]. 

In recent years, parallel computing is rapidly becoming a 
beneficial tooland a prominent technology in many fields that 
need to tacklecomplex problems.ParallelGAs (PGAs),which 
are extensions of traditional GAs, can benefit significantly 
from thistrend since evolutionary algorithms can be 
parallelized anddistributed straightforwardly, andhave been 
demonstrated to be effective and robust in searching large and 
complex spaces in a wide range of applications [1], [2]. 
Generally, PGA models can be classified into four basic types, 
master-slave model, fine-grained model (also refer to as 
cellular model), island model (also named distributed GA or 
coarse-grained model), and hierarchical models 
[3].Fine-grained and master-slave models consist of only a 
single population. Island model is a type of multi-population 
model that consists of a number of subpopulations distributed 
on the different processors called islands. The subpopulations 
distributed on each island execute as simple GAs 
independently, and exchange individuals periodically called 
migrationmechanism.Hierarchical PGA mixes the other three 
kinds of models and develops into a hierarchical structure, so it 
also called the multi-layered parallel model. Island model 
PGAs are particularly well-suited for parallel computing 
environments such as cloudcomputing and grid computing due 
to thelow communication costs.They have been widely 
acknowledgedto speed up the searching process and to obtain 
higher qualitysolutions to large scale and complex optimization 
problems [11], [12]. 

Island model PGA is also benefit for preventing the 
problem of premature convergenceto some extent due to 
thesemi-isolation of the subpopulations. Nevertheless, 
Migration in PGA can be viewed as a special global elitist 
strategy, since the best individuals move from one 
subpopulation to the others every time migration happens until 
a super best individual capture the entire 
populations.Therefore, it could not essentiallymaintain the 
diversity of entire populations, and detecting and maintaining 
multiple optima arestill challenges of the design of island 
models. 

Obviously the niching techniques which are designed for 
single population Gas could not directly applied to cope 
withisland model PGAs. For multi-population based PGAs, 
various PGA models have been proposed to overcome this 
problem by the use of heterogeneous PGA settings, hierarchical 
models, dynamic or adaptive migration schemes[6], [7], [8], 
[9]. More straightforwardly, [13] developed a new method to 
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create subpopulations within the niches defined by the 
multi-optima. [10] usesa master node to sendsbiased seeds to 
slave nodesfor guiding subpopulation initializationand 
searching in biasedareas in the entire solution space. [14] 
introduces a speciating island model to exploit new species 
when they arise by allocating them to new search processes 
executing on other islands. In [15], a multi-population 
algorithm was developed to perform migration between 
subpopulations where individuals are redistributed to new 
subpopulations based on a speciation tree which places similar 
individuals together. In addition, clustering techniques have 
been also incorporated in PGA to locate multiple optimal or 
sub-optimal solutions, and find better solutions in shorter 
computational time [16], [17].  

Nevertheless, these methods still have drawbacks. In order 
to perform well, they always require global information about 
all thesubpopulations, prior knowledge of optimization 
problem, and much morecomputational and 
communicationalexpenses. Furthermore, most of the previous 
approaches are designed only for improving the diversity and 
exploration capability of PGA, and will finally locatea single 
best solution, while fail to maintainmore optima even though 
they are with very good performance. As aforementioned it 
might be desirable to obtain both global and excellent local 
optima simultaneously. To cope with this problem, [18] 
proposed a self-organised islandmodel which achieves a global 
diversification of PGA by the use of the topological 
information of island interconnections to guide the 
evolutionary search of each subpopulation. 

In the present study an alternativeisland model PGA model 
is developed. The basic idea behind the new method is that a 
set of connected island can be viewed as a local competition 
environment, and may contend for a limited number of 
dummy living resources. When most neighbouring 
subpopulations converge into the same searching area in 
solution space, theassociatedresourcewill become insufficient 
and some of the subpopulations will be driven away from the 
overcrowded area. Through using the new method, island 
modelis able to automatically allocate different searching 
regions to local GAs to maintain the diversity between 
subpopulations. The advantages of the new modelcan be 
summarized as the follows. 

 Firstly, each island only uses local information 
obtained from a few neighbouring subpopulations but 
not global information about the entire population, and 
therefore it only needs small communicational and 
computational costs. 

 Secondly, in the newmethodthe only two 
parametersfor adjusting the power of diversification 
are a multiplier and a percentile value which are much 
easier to be selected. 

 Finally, the new method automatically 
allocatessubpopulations to different regions of 
solution spaceso that itis able to find multiple optima 
including both global optima and sub optima, and 
maintains these optimalsolutions until the end of 
aevolution. 

The present study is organised as follows. In section 2, a 
brief introduction to island model topology is presented, and 
the principles of new model are introduced. Section 3 presents 
the computational procedure of the new method. In section 4, 
two case studies are employed to examine the performance of 
the new method. Finally, in Section 5 conclusions are drawn to 
summarise the study. 

II. LOCAL COMPETITION MODEL (LCM) PGA 
In this study, a new PGA model called local competition 

model (LCM) is proposed to maintain the diversity of 
subpopulations in PGA procedure for multimodal optimization. 
As the new method is developed on the basis of traditional 
distributed PGA, relevant PGA models will be also briefly 
revisited in the following subsection. 

A. Island Model PGA 
Island model is the most widely used PGA model and may 

be implemented easily on parallelhardware. It is a type of 
multi-population model that consists of a number of 
subpopulations distributed on the different islands. These 
subpopulations execute as simple GAs independently, and 
exchange representative individuals occasionally. This 
exchange mechanism is called migration.Migration interval and 
migration rate specifies how often and how many individuals 
need to be exchanged. Representative selection and 
replacement schemes choose individuals from each 
subpopulation to execute the migration [19]. Finally, island 
model topology and neighbourhood shape determine the routes 
of exchanging individuals.  

Consider an island model PGA with M subpopulations 
}1|{ Mii ≤≤P .Each subpopulation consists of N  

individuals }1|{ Njs j ≤≤ , and directly connects with K  
neighbours. As shown in Fig 1, two widely-used PGA models 
i.e. ring (4 neighbours) and grid (8 neighbours) connection 
topologies are adopted in this study. 

 

 
Fig 1.Island model PGA: (A) is ring connection topology; and (B) is grid 

connection topology with Moore neighbourhood: each circles presentsa 
subpopulation (island) interconnected with its neighbours, black circle present 

(B) 

(A) 
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host subpopulations; grey circles present the neighbours connected to the host 
subpopulations 

B. Local competition model 
Searching radius of subpopulation: In most niching 

algorithms, such as fitness sharing, niche radius is a measure of 
distance for disorganising whether two individuals surround the 
same modal, nevertheless, it is always difficult to select niche 
radius since optimization problems are many and varied. In this 
study, a new distance measure, called searching radius of 
subpopulation, is proposed to substitute for the traditional niche 
radius.  

Firstly, at the last generation before migration a distance 
parameter iD  is computed as follows. 

)max( repiD d=                                (1) 

where }1|{ , Njd jreprep ≤≤=d , and jrepd ,  denotes the 

distance between rep
is  and ijs P∈ .  rep

is is the 

representative individual.Then, searching radius )(t
ir  is 

derived as follows. 

},...,,{median 1 nKnii DDDr α=                    (2) 

It should be noted that ir  is a median which could make 
theradiusvalueuniform, and prevent the influence of extreme 
subpopulations. Moreover, 0>α is a parameter to modify the 
power of diversification in whichthe diversity of entire 
population will become higher as α increases. 

Grouping of representatives:It is quite possible that the 
searching area of the two subpopulations overlap when the 
distance between their representatives is smaller than 
subpopulation radius. In other words, two local GAs can be 
viewed as searching around the same area in solution space if 
the two representatives are close to each other. Based on this 
principle, the new method divides the representativesinto 
groups that each group indicates a distinctive searching area. 

Consider a host subpopulation iP , once migration occurs 
representatives },...,,{ 1

, rep
nK

rep
n

rep
i

repi sss=S  including boththe 
native and immigrantscan be classified into a number of 
groups }1|{ Kgii ≤≤G  where repi

Kg
,

21 ,..., sGGG =∩  

and ∅=∩ ji GG . In this study, the definition of a group is 

based on the notation of reachability. A representative rep
ps  is 

called directly reachable from another representative rep
qs  if 

it is not farther away than )(t
ir . rep

ps is also reachable from 

the rep
qs  if there is a chain of representatives rep

k
rep ss ,...,1  

where rep
p

rep ss =1  and rep
q

rep
k ss =  such that each rep

js 1+  is 

directly reachable from rep
js . Then, all the representatives 

which are mutually reachable with respect to ir  are classified 
into the same group. Fig 2 shows the sketch plot of 
representative grouping. 

 
Fig 2.Sketch plot of representative grouping: squares present the 

immigrated representatives; star presents the native representative. 

Local competition: The basic idea of local competition 
mechanism is that a set of neighbouring subpopulations forms 
a local competition environment, and contend for a limited 
number of dummy living resources. Similar subpopulations, in 
which their representatives are classified into the same group, 
split up a single resource.Three rules of resource constraint are 
proposed as follows.  

 If there are too many subpopulations share the same 
resource, the resource will become insufficient, hence, 
only better subpopulations can survive, and the other 
ones have to move to other areas for finding new 
resources. 

 If there are few subpopulations share the resource, since 
the resource is sufficient the corresponding searching 
region is very attractive to other subpopulations.  

 When a proper number of representatives converge intoa 
searching area, the area is neither overcrowded nor 
attractive.  

Let minL  and maxL  respectively denote the limitations of 
group size that perform attractive and overcrowded. It should 
be noted that, in the present studystudy ],[ maxmin LL  are fixed 
to be [1,3] for ring topology, and [2,4] for grid topology.  

Subsequently attractive representatives AS  and 
overcrowded representatives OS  are extracted from repi,S  as 
follows.  

Selection procedure of AS  and OS  

Begin 
1=k , ∅=AS , and ∅=OS  

While Kgk ≤  

kn G group of size the=  
If minLn ≤  

1max-n-Lm = ,  times copy mkk GG =  

k
AA GSS ∪=  

Elseif maxLn ≥  

If ( k
rep
is G∈  and rep

is  is not the best 1max −L  

representatives in kG ) or k
rep
is G∉  

Representatives 

Group 1 
(Overcrowded) Group 2 

r 
r 

r 

Group 3 
(Attractive) 
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k
OO GSS ∪=  

     End If 
End If 

1+= kk  
End While 

End Begin 

C. Rejection operation 
OS indicates the searching areas of insufficient recourse, 

therefore, host subpopulation should avoid these areas as 
much as possible. This process is named rejection operation 
which is achieved through reducing the fitness of the native 
individuals. There are two conditions may arise in the use of 
rejection operation, as depicted inFig 3. 

 Condition 1: When host subpopulation overlaps the 
overcrowded area, all the nearby native individuals are 
rejected in order to force host subpopulation escape from 
the region.  

 Condition 2: When host subpopulation is isolated from 
the representatives, some of the native individuals are 
also rejected even they are outside the overcrowded 
region, for the sake of driving host subpopulation way 
from the area.  

 
Fig 3.Sketch plot of rejection process: circles denote the individuals in 

these two subpopulations; black squares present the immigrated representatives 
selected for implementing rejection; black star present the native representative 
generated after rejection operation; grey circles present the native individuals 
which is rejected; white circles present the other native individuals. 

The computational procedure of rejection operation is 
formulated as follows. First, threshold ikR  with respect to a 
particular Orep

ks S∈  is derived as follows. 

),max( %,βkiik drR =                            (3) 

where %,βjd  is the β  percentile of the distances 

}1|{ Njd jk ≤≤  between rep
ks  and iP . β is the parameter 

for adjusting the power of rejection, i.e. the larger α the 
higherrejection power. 

Host subpopulation rejects an individual through decreasing 
its survival probability. Then, for individual js  the 
reassignment of fitness is derived as follows. 

⎪
⎩

⎪
⎨

⎧

>

≤
−

=

ikjk

ikjk
ik

jkik

ijk

Rd

Rd
R

dR

                       , 0

        , 
ε                  (4) 

( )∑−−=
reject

ijkjj ff
s

ff ε)min()max(        ( 5 ) 

where jf  and jf  respectively denote the raw and 

reassigned fitness values.It is clear that jj ff <  if jkd  is 

smaller than the threshold, otherwise jj ff = . 

III. COMPUTATIONAL PROCEDURE OF THE NEW METHOD 
The new PGA procedure differs from traditional island 

model in four aspects surmised as follows. 

Two subpopulations on each island:On each island at 
generation t , besides subpopulation )( t

iP , a rejection pool 
)( t

iQ is also formed to keep OS . It is obviously that )( t
iQ  is 

empty at the beginning of evolution procedure, and will be 
updated every time migration occurs. 

Enlarged selection after every migration: Once migration 
takes place, AS are picked up and passed onto host 
subpopulation straightforwardly. Roulette selection, then, are 
adopted to select individuals from the enlarged )( t

iP  to construct 
)1( +t

iP . 

Fitness reassigningand representative selection: At each 
generation, rejection operation is implemented to reassign 
fitness values jf  to all the individuals through the use of (5) 
for computing survival probability.In addition, for each island 
the individual with the largest jf  is selected as representative, 
and will be chosen as emigrant to send copies to the other 
islands.  

Since new subpopulation is selected according to jf , then 
representatives and the nearby individuals are most likely to 
survive during the evolution procedure. Representatives can be 
considered as the centres of diversified searching areas of local 
GAs so that selection process will automatically direct the 
subpopulations to different regions in solution space. 

Local elitist strategy: Elite preserving technique is also 
employed in the new method. The best individual with the jf  
will be directly passed onto new generation to ensure the local 
best individual wouldn’t be lost during parallel evolution 
procedure. At the same time, the global best individual, which 
is the best one of the local bests found so far, will be also 
preserved. 

The computational procedure of the new PGA model is 
presented as follows. 

LCM PGA 

Begin 
0←t  

Subpopulation Subpopulation 

Condition 1 Condition 2 
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Initialize )0(
iP , ∅=)0(

iQ , and 0)0( =ir , where Mi ≤≤1  
While Termination condition is not met 

Do in parallel for each island 
If Migration condition is met 

Exchange representatives rep
is  and iD  with 

neighbouringsubpopulations 
Divide repi,S  into groups, and select AS  and OS  
Pass AS  onto )(t

iP  directly, update Ot
i SQ =+ )1( , 

and calculate ir  
Else 

)()1( t
i

t
i QQ ←+ , and )()1( t

i
t

i rr =+  
End If 
Evaluate )(t

iP  to assign raw fitness values jf  

If ∅≠+ )1(t
iQ  

Perform rejection operation to reassign fitness 
values jf  

Else 

jj ff ←  
End If 
Compute survival probabilities for )(t

iP  

Select individuals from )(t
iP  to construct )1( +t

iP  
Perform crossover, mutation, and elitist strategies 

End Do in parallel 
1+← tt  

End While 
End Begin 

 

I. EXPERIMENTAL STUDIES 
Experiments on both real numberoptimization and 

combinatorial optimizationare conducted to illustrate the 
proposed method under the situation of multimodal, the PGA 
performances of locating multi optima are observed under 
different island connection topologies. 

A. Real number optimization 
Two multimodal benchmark test functions, Rastrigin 

function and Ripple function, are employedin this study to test 
the new method. It is noted that these two functions display 
different and typical multimodal properties that Rastrigin 
function has a finite number of isolated local optima in its 
feasible solution space, contrarily, Ripple function has infinite 
numbers of optima continuously distributed on several circles. 
In this study, the dimension of the two functions was set to be 2 
in order to visually investigate the distributions of 
subpopulations. The two test functions are given as follows. 

( )
⎪
⎩

⎪
⎨

⎧

≤≤−

+−=∑
=

12.512.5

10)2cos(10)(
1

2
2

i

n

i
ii

x

xxxf π
               (6) 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤≤−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+=

∑

∑

=

=

1010

001.01

5.0sin

5.0)( 2

1

2

2

1

2

i

n

i
i

n

i
i

x

x

x

xf                (7) 

In these experiments, all the initial subpopulations were 
generated at random, and rank selection was adopted to 
compute survival probability for implementing roulette wheel 
selection. Convex crossover and Gaussian mutation with 
standard deviation of 0.2 were employed as genetic variations. 
Crossover and mutation rates were set as 0.6 and 0.1. For island 
model PGA, migration interval was set to be 10, the size of 
subpopulation was fixed as 20, in addition 1=α and 

%30=β . Ring topology with 50 subpopulations and grid 
topology with400 subpopulations were employed to implement 
the new PGA model. The maximum (termination) generation 
number was set to be 200.  

Figs 4 (A-1) to (D-1) show the contour maps of the 
objective function values, and the subpopulations distribution 
obtained during the PGA procedures for (6) and (7) 
respectively. The figures clearly suggest that the new method 
successfully locate both global optimum and numbers of 
sub-optima simultaneously. All subpopulations converge to the 
optima, particularly the representative individuals achieve the 
optimal or sub-optimal points exactly. Actually, these 
subpopulations are already stable, and their distribution would 
not change significantly even though they evolve for more 
generations. Moreover, Figs 4 (C-1) and (D-1) clearly suggests 
that with grid topology and more subpopulations the new island 
model could locate even more optima. Especially for Ripple 
function that the obtained optima evenly spread on the first 
sub-optimal circle. 

For the sake of visually displaying the diversification 
performance of the subpopulations, RGB images, also referred 
to as true-colour images, are adopted to illustrate the 
subpopulation distribution correspond to the island model 
topology. Firstly, twodimensional individuals (solutions) are 
normalized into the range of [0 1]. Then, the normalized values 
are used as the components of red and green colour, and the 
blue colour component is fixed to be 0. Finally the colour 
representation of each individual is determined by the 
combination of the red, green, and blue intensities. It is clear 
that a similar colour indicates a similar solution. Moreover, it is 
noted that in these plots, each lattice presents a representative 
individual which represents the searching region of 
subpopulation, and ordered according to the interconnection 
topology of island model.  

Figs 4 (A-2) to (D-2) present the RGB images for cases (6) 
and (7). As can be seen from the figures, at the beginning of 
evolution, subpopulations distribute randomly, and at the end 
of evolution they exhibit a regular distribution. First, similar 
representative individuals are grouped and linked together, 
which means that neighbouring islands always tend to locate 
similar optima by the means of migration operation. Second, 
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according to the local competition mechanism different 
representatives appear alternatelyin every local region of the 
connection topologies so that it will avoid convergence to a 
single solution. 

 
(A-1) 

 
(A-2) 

 
(B-1) 

 
(B-2) 

 
(C-1) 

 
(C-2) 
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(D-1) 

 
(D-2) 

Fig.4. Experimental results for real number optimization: (A-1) to (D-1) show 
the subpopulation distributions (green solid circles present the representatives, 
and blue hollow circles present the other individuals),and (A-2) to (D-2) are 
RGB images; (A) and (C), (B) and (D) arethe results for functions (6) and (7) 
respectively; (A) and (B), (C) and (D) are obtained from the use of ring and 
grid topologies respectively. 

B. Combinatorial optimization 
In this subsection, experiments on integer coded GA for 

solving well-known travel salesman problem (TSP) was 
conducted to demonstrate the performance of the new method. 
TSP is a typical combinatorial optimization problem which can 
be characterized by a finite number of discontinuous feasible 
solutions. It also can be viewed as a multimodal problem since 
a TSP problem always has a number ofoptimal solutions.Two 
benchmark problems, St70 andEil76, are selected from 
TSPLIB 
(http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsp/). OX 
crossover and Inversion mutation were employed, and 
crossover and mutation rates were set to be 0.5 and 0.3 
respectively. For PGA, migration interval was set to be 20. The 
size of subpopulation was also fixed as 20.Ring topology 
with20 subpopulations and grid topology with100 
subpopulations wereused here. Finally, 2=α , %20=β , and 
the maximum generation number was set to be 3000. It should 
be noted that in this study the distance for TSP problem is 
measured as totaldiffij NNd /=  where diffN  is the number of 

different edges between twoTSP cycles, and totalN  is the total 
edge number of a cycle. 

The new method was implemented for each problem and 
each connection topology only once. Figs 5 (A-1) to (D-1) 
show the selected TSP solutions for the two problems obtained 
at the end of evolution procedure. Actually numbers of 
different optima were maintained at the generation of 3000 in 
these experiments. Here, only four typical solutions which are 
very different from each other are chosento display for each 
case. The figures clearly suggest that even with a single run the 
new PGA method is able to successfully locate different 
optima.  

TSP is a typical combinatorial optimization problem, and 
therefore it is impossible to directly display TSP solution by 
RGB images. In this study a new conversion process is 
proposedand used to transfer a set of TSP solutions to three 
dimension real numbers.  

 First the distance matrix is computed as ],...,[ 1 MddD =
where T

Miii dd ],...,[ 1=d .  

 Second, principle component analysis (PCA) is used to 
reduce the dimension of D  and three principle 
components are generated.  

 Finally, these principle components are normalized into 
the range from zero to one, and used as the components of 
red, green, and blue colours for plotting RGB images.  

It is clearly that this method could not accurately describe 
TSP cycles in solution space, however, it can roughly position 
each TSP solution in a three-dimensional space, that is, similar 
solutions should display similar colours, and different colours 
indicate different solutions. Figs 5 (A-2) and (D-2) show the 
RGB images that the diversity of subpopulations is also clear 
and evident. Similar representatives are grouped together, and 
regularly distributed inaccordancewith the connection 
topologies.Many different optimum solutions have been found 
and kept until the end of PGA evolution. 

 
(A-1) 
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(A-2) 

 
(B-1) 

 
(B-2) 

 
(C-1) 

 
(C-2) 

 
(D-1) 
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(D-2) 

Fig.5. Experimental results for TSP optimization: (A-1) to (D-1) show optimal 
solutions (the title of each subfigure indicates the subpopulation number and 
objective function value) maintained at the last generation, and (A-2) to (D-2) 
are RGB images; (A) and (C), (B) and (D) are the results for St70 and Eil76 
respectively; (A) and (B), (C) and (D) are obtained from the use of ring and 
grid topologies respectively. 

II. CONCLUSIONS 
In this study, a novel islandmodel PGA named LCM has 

been proposed to realizemultimodal optimization. The new 
method maintains the diversity of entire population of PGA by 
the use of onlylocal information exchanged from a few 
neighbouring subpopulations. It is able to locate multiple 
optimal solutions in a single run, and maintains these found 
optimasimultaneously until the end of evolution. Moreover 
itonlyhas two parameters which can be set easily as oppose to 
the specification of niching distance, or the number of 
optima.In the new model, without manualintervention, 
subpopulations are automatically guided in searching different 
regions of the solution space. Finally, it does not significantly 
enhance the communication and computational costs of island 
model PGA as only local information is utilized for conducting 
the new method. Empirical studies on both real number and 
integer number coded PGA have been implemented to 
illustrated the performance of the new method. Experiment 
results clearly suggest that the new model successfully locates 
numbers of optimal solutions, and these optima evenly 
distributed in the solution spaces. Furthermore, similar 
subpopulations are grouped together, regularly distributed 
inaccordancewith the connection topologies of islands. 
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