
Fuzzy Multiobjective Differential Evolution        
Using Performance Metrics Feedback 

Chatkaew Jariyatantiwait                             Gary G. Yen 
Oklahoma State University 

School of Electrical and Computer Engineering 
 
 

Abstract—Differential evolution is regarded as one of the 
most efficient evolutionary algorithms to tackle multiobjective 
optimization problems. The key to success of any multiobjective 
evolutionary algorithms (MOEAs) is maintaining a delicate 
balance between exploration and exploitation throughout the 
evolution process. In this paper, we propose a Fuzzy-based 
Multiobjective Differential Evolution (FMDE) that uses 
performance metrics, specifically, hypervolume, spacing, and 
maximum spread, to measure the state of the evolution process. 
We apply the inference rules to these metrics in order to 
dynamically adjust the associated control parameters of a chosen 
mutation strategy used in this algorithm. One parameter controls 
the degree of greedy or exploitation, while another regulates the 
degree of diversity or exploration of the reproduction phase. 
Therefore, we can appropriately adjust the degree of exploration 
and exploitation through performance feedback. The 
performance of FMDE is evaluated on well-known ZDT and 
DTLZ test suites in addition two representative functions in 
WFG. The results show that the proposed algorithm is 
competitive with respect to chosen state-of-the-art MOEAs.   

Keywords—Multiobjective differential evolution, fuzzy logic, 
performance metrics, hypervolume, spacing, maximum spread. 

I. INTRODUCTION 
Differential Evolution (DE) was proposed by Storn and 

Price in 1995 as a new evolutionary algorithm (EA) [1-2]. It is 
a stochastic population-based search approach for optimization 
over the continuous space. DE is one of the most powerful 
tools for solving optimization problems. DE can handle mixed-
type variables, constraints, multimodality and also multiple- 
objective. Implementing DE is easier than other EAs such as 
genetic algorithm (GA) even for the beginners in the 
optimization field. In addition, number of control parameters is 
very few. DE is similar to other evolutionary algorithms, as it 
starts with the randomly initializing population in the search 
space. Then the population enters the evolution loop: mutation, 
crossover, and selection operations. These three operations will 
be repeated until the stopping criterion is met. However, the 
difference between DE and other EAs is the powerful use of 
differences between individuals realized by differential 
mutation which makes DE unique. 

The mutation strategy and the control parameters, namely, 
scaling factor (F), crossover rate (CR), and population size 
(NP), play the major roles in the success of DE. Choosing the 
appropriate mutation operator and parameter values for a 
particular problem is a difficult task because it is problem 
dependent and time-consuming trial and error process. 

Therefore, among multiobjective DE algorithms references [3-
6] proposed the adaptive control parameter setting during the 
search process.    

In addition, balancing the exploration and exploitation 
throughout the search is the key to the success of an EA. 
During the evolution process we may need different mutation 
strategy and parameter values. In the beginning of the 
evolution we need higher degree of exploration than 
exploitation in order to search larger regions in the space. We 
may choose the mutation operator that possesses high 
exploration ability and the control parameter that promote the 
diversity. However, near the end of the evolution we need to 
emphasize on the local search that is exploitation. The 
mutation operator that favors local search is chosen along with 
the control parameters that emphasize the exploitation. If we 
know the state of the evolution process, we may decide 
whether we should emphasize on exploration or exploitation, 
and choose suitable parameter values or the mutation 
strategies. One possible way that we can observe the status of 
the evolving process is utilizing the performance metrics. Most 
of the performance metrics are calculated at the end of the 
evolution in order to assess the quality of the obtained 
nondominated front. For instance, generational distance needs 
the complete knowledge about the true Pareto front in order for 
calculation. We cannot assume the true Pareto front is available 
during the evolution search. The quality of the population can 
be measured by three properties of the obtained nondominated 
front [7], namely, the convergence, uniform distribution, and 
extensiveness. Although there are some proposed running 
performance metrics [8] to measure the quality of the 
population, there are very few choices to allow us to measure 
the convergence, uniform distribution, and extensiveness of the 
population. Hence, we exploit three performance metrics, 
namely, hypervolume, spacing, and maximum spread to 
measure the three properties of the obtained nondominated 
solutions. The proposed multiobjective differential evolution 
utilizes hypervolume, spacing, and maximum spread as the 
input to the fuzzy rules that adaptively adjust the control 
parameters for the mutation scheme which is the greedy factor 
and the diversity factor every generation in order to balance the 
exploration and exploitation abilities of the population during 
the search process. 

The rest of this paper is organized as follows. Section II 
describes the background knowledge of DE and gathers some 
related works presenting the adaptive multiobjective DE and 
some state-of-the-art MOEAs. Then, Section III introduces the 
proposed fuzzy multiobjective DE using performance metrics 
feedback. Section IV presents the experimental setups and 
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results. Finally, Section V states the conclusion of our work 
and the future research. 

II. RELATED WORKS 
A. Background 

For single objective optimization problem, we search for 
the best possible solution. However, for multiobjective 
optimization, some objective functions conflict with the others. 
We then search for a set of Pareto optimal solutions, not a 
single optimal one. The concepts of “Pareto Dominance” and 
“Pareto Optimality” are employed in order to obtain the set of 
optimal solutions. Without loss of generosity, consider the 
multiobjective minimization problem (MOPs): 

                 1 2min [ ( ), ( ),..., ( )]
D kF F F

∈ℜ
=

x
F(x) x x x .                  (1) 

A decision variable xa is said to dominate another decision 
vector xb, denoted by xa ≺ xb iff Fi(xa) ≤ Fi(xb)  for all i = 1,2, 
3,…,k and Fi(xa) < Fi(xb) for at least one i∈{1,2,3,…,k}. A 
decision variable x* is said to be the Pareto optimal iff there 
exist no x in the decision space such that x ≺ x*. The set of 
such Pareto optimal vectors is known as the Pareto optimal set 
and the corresponding curve in the objective space that 
obtained from the Pareto optimal set is called the Pareto front.  

The DE population at generation G contains NP D-
dimensional parameter vector ( )=x,G i,GP x , 1,...,i NP= and 

1, , 2, , , ,[ , ..., ]i G i G D i Gx x x=i,Gx  generated by 
 ( ) LjLjUjij bbbrandx ,,,, ]1,0( +−×=  (2) 

where Ljb , and Ujb ,  are the lower and upper bounds of the 
vectors x in dimension j, and rand[0,1) is the uniform random 
number and 1,2...,j D= . After population initialization, DE 
uses the mutation to generate a mutant vector ,i Gv with respect 
to the target vector ,i Gx by adding the base vector to weighted 
difference vectors: 

         DE/rand/1: , 1, 2, 3,( )i G r G r G r GF= + −v x x x .            (3) 
The index i, r1, r2, and r3 are randomly generated and 

mutually exclusive within the range [1, NP]. F is a scaling 
factor. The original mutation operator is called DE/rand/1. 
There are many mutation strategy proposed by many 
researchers recently [9]. After we obtain the mutant vector we 
perform the crossover operation in order to increase the 
potential diversity of the population. Crossover is applied to 
each pair of the target vector ,i Gx  and it’s mutant vector 

,i Gv then we obtain a trial vector , 1, , 2, , , , [ , ..., ]i G i G i G D i Gu u u=u . 
The DE family algorithms can use two types of crossover 
schemes: the binomial (uniform) crossover and the exponential 
crossover. The binomial crossover is the discrete 
recombination operator by 

 
⎩
⎨
⎧ =≤

=
otherwise
or  )1,0( if

,,

,,
,,

Gij

randjGij
Gij x

jjCRrandv
u . (4) 

The crossover rate or so called crossover probability 
[0,1]CR∈  is a user-defined constant that controls the fraction 

of parameter values copied from the mutant vector.  
The exponential crossover is similar to the two-point 

crossover used in genetic algorithms. Thus the trial vector ,i Gu  
inherits components from its corresponding mutant vector ,i Gv  

by randomly chosen starting point until the first time that 
rand(0,1)<CR. The remaining parameter inherits components 
from its corresponding mutant vector. The classical DE utilized 
the binomial crossover, and most of DE variants nowadays 
employ binomial crossover.  

In order to select the next generation population , 1i G +x , the 
target vector ,i Gx  competes with the corresponding trial vector 

,i Gu by objective value. If ,i Gu ≺ ,i Gx , then ,i Gu  replaces ,i Gx  
otherwise, ,i Gx survive to the next generation. 

B. Previuos Works in Adaptive Multiobjective DE 

 The performance of multiobjective DE is affected by 
balance of the exploration and exploitation during the 
evolution process. Balancing these two abilities can be based 
on choosing control parameters such as the scaling factor F, the 
crossover rate CR, and the population size NP, and the 
mutation strategy. There are some researchers that introduced 
the methods to adaptively adjust the control parameters and 
choosing the mutation strategy. For example, Huang et al. [3] 
extended the SaDE [10] to solve MOPs. They named the 
algorithm as the multi-objective SaDE algorithm (MOSaDE). 
The algorithm automatically adapts the trial vector generation 
strategies and their associated parameters according to their 
previous experience of generating promising solutions as same 
as SaDE. However, MOSaDE uses non-domination sorting and 
crowding in evaluation process. Later, Huang et al. [6] 
modified MOSaDE in order to learn the suitable crossover rate 
and mutation strategies for each objective separately in MOPs. 
Zamuda et al. [4] proposed differential evolution for 
multiobjective optimization with self-adaptation (DEMOSA). 
They extended the DEMO by incorporating the self-adaptive 
control parameters F and CR. F and CR will be encoded to the 
decision variables and simultaneously evolved with the 
population. Zhang and Sanderson [5] proposed the self-
adaptive multiobjective DE with direction information 
provided by archived inferior solutions (JADE2) which is 
extended from JADE. JADE2 incorporated the self-adaption of 
F and CR and selection scheme based on Pareto dominance 
and crowding density. Adaptation of  F and CR is based on the 
principle that the better values of control parameters tend to 
generate individuals that are more likely to survive and should 
propagate to the next generation. 
 First fuzzy adaptive parameters for DE proposed by Liu 
and Lampinen [11] for single objective optimization. They use 
fuzzy logic controllers to adapt the control parameters F and 
CR. The proposed algorithm is called a fuzzy adaptive DE 
(FADE). The inputs of the fuzzy controllers incorporate the 
relative objective function values and individuals of the 
successive generations. Xue et al. [12] introduced the fuzzy 
logic controlled multiobjective differential evolution (FLC-
MODE). They use fuzzy logic controller to dynamically adapt 
the parameters of their previous multiobjective differential 
evolution version [13]. Population diversity and the percentage 
of generation are used as inputs for the fuzzy logic controller 
that dynamically controls the greediness and perturbation 
factor associated with the reproduction operator. 
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C. State-of-The-Art Multiobjective Optimization Algorithms 

 The nondominated sorting genetic algorithm-II (NSGA-II) 
[14] was improved from its first version. A fast nondominated 
sorting method is employed to Pareto rank individuals and a 
crowding distance measurement is the density estimation for 
each individual. In fitness assignment, NSGA-II prefers the 
one with the lower rank, or the one that located in a less 
crowded region if both points are in the same front. The 
crowding comparison method preserve the diversity of the 
population and no sharing parameter is required. The elitism 
mechanism does not allow an already found nondominated 
solution be deleted. Therefore, NSGA-II combines a fast 
nondominated sorting approach, a parameterless sharing 
method, and an elitism scheme in order to produce a better 
spread of solutions in some test functions. However, the 
nondominated sorting needs to be performed on a population 
size of 2NP. 
 A multiobjective evolutionary algorithm based on 
decomposition (MOEA/D) [15] decomposes a multiobjective 
optimization problem into a number of scalar single 
optimization subproblems and optimizes them simultaneously. 
Later, the new version of MOEA/D so called MOEA/D-DE 
[16] was introduced. MOEA/D-DE employs a DE operator and 
polynomial mutation. The simulation study of MOEA/D-DE 
shows that it is less sensitive to F and CR setting. 

III. FUZZY MULTIOBJECTIVE DIFFERENTIAL EVOLUTION       
USING PERFORMANCE METRICS FEEDBACK  

 The quality of the multiobjective optimization algorithms 
consists of three design goals [7]. First, the distance of the 
resulting nondominated set to the true Pareto-optimal front 
should be minimized. Second, a good (in most cases uniform) 
distribution of the solutions found is desirable. Last, the extent 
of the obtained nondominated front should be maximized, i.e., 
for each objective, a wide range of values should be covered by 
the nondominated solutions. This understanding motivated the 
idea that we used the performance metrics, specifically 
hypervolume, spacing, and maximum spread which match the 
three optimization goals as inputs to fuzzy rules to adapt the 
control parameters of the proposed FMDE algorithm in order 
to smoothly adapt to the emphasis on the convergence or the 
diversity and exploration and exploitation during the evolution 
process. The flowchart of the proposed FMDE is shown in Fig. 
1. 

The FMDE begins with randomly generated population and 
associated control parameters. The population will undergo the 
mutation and crossover processes. Afterward we combine the 
offspring and parent population together and identify the 
nondominated solutions of the combined population. The 
obtained nondominated front will be measured by all three 
performance metrics. These three values are inputs to the fuzzy 
rule based system. Outputs of the fuzzy rule based system are 
control parameters of DE, namely, scaling factor F and greedy 
factor γ for the mutation strategy that is used in FMDE. The 
fuzzy rules will be implemented every generation in order to 
adaptively adjust the parameter of mutation strategy for the 
next generation. The combined population size 2NP will be 
truncated to size NP. Then we update the archive by adding the 
nondominated solution found from the combined population. 
The truncation method used in maintaining external archive in 

FMDE follows the same approach from NSGA-II [14]. The 
new population undergoes the whole process until the stopping 
criterion is met. The stopping criterion is the preset maximum 
number of generation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Fuzzy Multiobjective Differential Evolution flowchart 

A. Mutation Strategy 
Joshi and Sanderson [17] proposed the mutation operator as 

          , , ,
1

(1 ) ( ),k k
a b

K

i G best G i G i i
k

Fγ γ
=

= + − + −∑v x x x x           (5) 

where γ ∈ [0,1] is the greediness of the operator, F∈ [0,2] is 
the scaling factor, xbest is the best individual in the parent 
population, and K is the number of differentials used to 
generate the perturbation. The control parameter γ represents 
the degree of exploitation and greediness of the mutation 
operator. If γ value is large, the mutation strategy is greedier. 
Consequently, mutant vectors will be generated near the best 
vectors in the parent population and emphasize the exploitation 
ability of the algorithm. The scaling factor F controls the 
diversity and exploration ability of the mutation. If F value is 
larger, the degree of exploration is higher, and more diversity 
among the mutant vectors will be favored. Choosing the 
appropriate values for γ and F is often a trial-and-error, time-

1961



consuming, and problem-dependent task. Knowing the state of 
the current population through performance metrics, we can 
adjust the value of these parameters without the prior 
knowledge of the considered problem.  
 Even though Joshi and Sanderson suggested that F should 
be between 0 and 2, and it is the maximum scaling range for 
the DE research. According to a more recent study by Wang et 
al. [18], F should be set even tighter between 0.4 and 1. Given 
this consideration, our algorithm sets the range of F between 
0.4 and 1. 

B. Crossover Strategy 

As stated in Section II, there are two types of crossover 
strategies employed in DE community: binomial and 
exponential crossovers. Zaharie [19] analyzed the influence of 
crossover type on the behavior of the DE algorithms, and found 
that the exponential crossover was more sensitive to the 
problem size than the binomial crossover does. Wang et al. 
[18] suggested that CR should be a low value near 0, or high 
value near 1. We therefore choose the binomial crossover and 
set CR = 0.3.  

C. Performance Metrics 

Since during the evolution process, we do not know the 
location of the true Pareto front. We choose the performance 
metrics that can measure the three design goals of optimization 
without the knowledge of the true Pareto front. Although there 
are proposed running performance metrics by Deb and Jain [8], 
there are very few choices to allow us to measure the 
convergence, uniform distribution, and extensiveness of the 
population. Hence, we choose three performance metrics in 
order to measure the three properties of the obtained 
nondominated solutions as the following.  

In order to measure convergence, the metric we choose is 
hyperarea Ratio (hypervolume indicator) [20]. It calculates the 
size of the hypervolume enclosed by the obtained 
nondominated front PFknown and a reference point. For instance, 
an individual xi in PFknown for a two-dimensional MOP defines 
a rectangle area, ( ),ia x  bounded by an origin and ( ).if x  The 
union of such rectangle areas is referred to as hyperarea of 

knownPF , 

           ( ) ( )known i i known
i

H PF a x x PF⎧ ⎫= ∀ ∈⎨ ⎬
⎩ ⎭
∪ .                 (6) 

It measures both convergence and distribution of a 
nondominated set, and reference points are set as discussed in 
[21]. If hypervolume value is larger, we can interpret the status 
of the population as is converging and/or with good 
distribution. However, it is not clear that the increased value is 
due to converging, or better distribution, or both. Therefore, we 
need another metric that can measure the degree of uniform 
distribution, i.e., spacing. 

Spacing (S) [22] is a metric measuring how the obtained 
nondominated solutions are evenly distributed: 

     2

1

1 ( ) ,
n

i known
i

S d d n PF
n =

= − →∑           (7) 

where di is the Euclidean distance in the objective space 
between individual xi and the nearest solution of the true Pareto 
front, and n is the number of solutions in the obtained 
nondominated front. If S is zero, it indicates that all solutions 
of the nondominated front are equally spaced.  

Maximum spread (MS) [7] measures the length of diagonal 
hyperbox formed by the extreme solutions observed in the 
nondominated sets. But it does not reveal the distribution of 
solutions. A normalized version of MS [23] is 

         
2

1 1
max min

1

max min1 Q i Q iM
i m i m

m m m

f f
MS

M F F
= =

=

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

∑                 (8) 

where max
mF  and min

mF are the maximum and minimum values 
of the m-th objective in the chosen set of Pareto optimal 
solutions. Q  is a set of the obtained nondominated solutions. 

i
mf  is the value of the m-th objective function of the i-th 

member of Q and M is the dimension of the objective 
function. 

D. Fuzzy Membership Functions and Fuzzy Rules 
 

 
 

 

 

 

Fig. 2. Input membership functions 

 The membership functions of hypervolume, spacing, and 
maximum spread are shown in Fig. 2. All three performance 
metrics use the same shape of membership functions for 
simplicity. The input is the percent change of performance 
metrics calculated every two successive generation and 
fuzzified to the “decreasing” and “increasing” membership 
values. The fuzzification method is “and” method. The output 
membership function for γ and F are the same shape. There 
are three status, namely, “decrease,” “no change,” and 
“increase” for γ and F value. The “centroid” defuzzification is 
used, then we get the percent change of γ and F value. The 
output membership function is shown in Fig. 3. 

 
 

        

 

 

 
Fig. 3. Output membership functions 

The fuzzy inference rules are shown in Table 1. These rules 
are used for adjusting the value of γ and F in order to 
emphasize the exploitation (greedy) or exploration (diversity) 
of the mutation strategy for the next generation. 

,H Spacing MSandμ μ μ

Fand γμ μ
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Once we receive the quality feedback of the nondominated 
front through all performance metrics, we can design how we 
emphasize the exploitation or exploration abilities of the 
proposed algorithm. If we need to put strong emphasis on 
exploitation, we increase γ and decrease F. If we need to place 
strong emphasis on exploration, we decrease γ and increase F. 
However, if we need to place a mild emphasis on the 
exploitation, we can do it by two methods: increase γ and keep 
F unchanged, or keep γ unchanged and decrease F. To place 
the mild emphasis on the exploration, we can have two options 
as the same manner as exploitation: keep γ unchanged and 
increase F or decrease γ and keep F unchanged. 

 
TABLE I.  FUZZY RULES 

Rules 
Inputs Outputs 

Hyper 
Volume Spacing MS γ F 

1 Increase Increase Increase Increase No Change 

2 Increase Increase Decrease Decrease No Change 

3 Increase Decrease Increase No Change No Change 

4 Increase Decrease Decrease No Change Increase 

5 Decrease Increase Increase Decrease No Change 

6 Decrease Increase Decrease Decrease Increase 

7 Decrease Decrease Increase No Change Increase 

8 Decrease Decrease Decrease No Change Increase 

 
Rule number 3 is the best status of the population because 

hypervolume is increasing and spacing is decreasing, that 
implies the population is converging and more uniformly 
distributed. The extensiveness of the obtained front is larger by 
increasing MS value. Thus, we will not change γ and F because 
they should remain the suitable values for the current status. 
Compared to Rule 3, in Rule number 4 we need mild 
exploration in order to increase the extensiveness of the 
population. So, we do nothing with γ, but increase F slightly.  

Rule number 6 is the worst case scenario, because all three 
metrics states that the obtained front is diverging and losing 
diversity and extensiveness in the obtained nondominated 
front. We need strong exploration so to decrease γ and increase 
F. 

In the case of increasing hypervolume, it means the 
population is converging but we do not know whether the 
nondominated solutions are uniformly distributed or not. Thus, 
we consider spacing metric. If it is increasing, so the solutions 
are not well distributed and we need a mild exploitation. Rules 
1 and 2 are under this case, but the maximum spread for Rule 1 
is increasing then F is kept unchanged but decreased the  γ 
value. Maximum spread for rule number 2 is decreasing, the 
stage of population is converging but not well distributed and 
the searched area is shrinking. Thus we need to increase the 
mild degree of exploration. Since the spacing is worsen, then 
we decrease γ, and keep F unchanged. 

If the hypervolume is decreasing, it implies that the search 
direction of the population is incorrect; we will increase the 
exploration ability. Rules 5 to 8 are under this case. Rule 5 and 

7 need to increase the mild degree of exploration. Spacing of 
rule 5 is decreasing, it implies that the solutions are crowded 
then we decrease γ, while keep γ unchanged for rule 7. 

Rule 8 states that the population is not converging and the 
search area of the population is shrinking even though the 
distribution is good. We increase the mild degree of 
exploration by keep γ unchanged and increase F. 

IV. EXPERIMENTAL RESULTS 
 

The proposed MODE, FMDE, is tested on the ZDT test suit 
[10], i.e., ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. All test 
functions are bi-objective optimization problems. DTLZ1 to 
DTLZ7 [28] in three objectives are tested as well. Also WFG1 
and WFG2 [29] in two objectives are tested. 

ZDT1 is a convex Pareto-optimal front, while ZDT2 is 
having the nonconvex counterpart to ZDT1. ZDT3 represents 
the discontinuous Pareto-optimal front. It consists of several 
discontinuous convex parts. ZDT4 contains many local Pareto-
optimal fronts. The search space of ZDT6 is non-uniformity. 
Thus, it causes two difficulties: first, the Pareto-optimal front is 
non-uniformly distributed, and the density of the solutions is 
lowest near the Pareto front and highest away from the front. 
ZDT5 is not included in the experiment because the decision 
variable is a binary string.  

DTLZ1 is a linear hyper-plane and have many local Pareto 
fronts where an MOEA can be attracted to them before 
reaching the global Pareto front. DTLZ2 is the spherical 
Pareto optimal front. DTLZ3 is the concave and 
multimodality. The local optimal fronts are parallel to the 
global Pareto optimal front. DTLZ4 is the modification of 
DTLZ2 to allow the solutions to be crowded near the 1Mf f−  
plane. DTLZ5 is to test the ability of an MOEA to converge to 
a curve. DTLZ6 is modified from DTLZ5 to make the 
problem harder. DTLZ7 has four disconnected Pareto optimal 
regions in the search space. WFG1 is a convex, mixed shape 
Pareto front where an MOEA should have the ability to coping 
with bias. WFG2 is a convex disconnected front.  

A. Experimental Setup 

The proposed algorithm is compared with state-of-the-art 
MOEA/D-DE [16], NSGA-II [14], and SPEA2 [24]. We 
compare FMDE with JADE2 [5] which is the self-adaptive 
MODE as well. Each algorithm is tested on the two-objective, 
ZDT test functions, three-objective DTLZ test functions and 
bi-objective WFG1 and WFG2 with 30 independent runs. 

For each trial, an algorithm will stop if it reaches 250 
generations for bi-objective and three objective problems. The 
population size is 100 for bi-objective and 300 for three 
objective problems.  

The FMDE use the external archive and is updated as in 
[14]. γ and F are 0.5 for the first generation. K is 1 which 
implies we use only one difference vector. Even though CR is 
the diversity control mechanism for DE as well, however if we 
adaptively adjust γ, F, and CR, it can be overly used for the 
diversity effect, we set CR = 0.3 and F should be limit in [0.4, 
1] for the whole experiments [18].  

The other parameter settings for MOEA/D-DE, NSGA-II, 
SPEA2 and JADE2 are the same as what suggested in the 
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original papers. The reference points we set for calculating 
hypervolume indicator for all test function are the same as [21].  
We choose the reference point (3,100) for ZDT1 and the other 
points for ZDT2, ZDT3, ZDT4, ZDT6 are (3/2, 4/3), (100, 
5.446), (1.497, 4/3). DTLZ1 is (1, 1, 1). The reference point 
(1.180, 1.180, 1.180) for DTLZ2, DTLZ3 and DTLZ4 is the 
same. DTLZ7 is (13.3725, 5.3054, 5.3054). Since [21] does not 
state the reference points for DTLZ5 and DTLZ6, we choose 
the reference point as (5, 5, 5) for both functions and the 
reference point for both WFG1 and WFG2 are (7,9) . 
B. Performance Metrics 

In comparing the performance between three algorithms, 
the performance metric used in this experiment is the inverted 
generational distance (IGD) [25]. Let truePF  be the uniformly 
distributed true Pareto front. Let AP  be the obtained 
approximated one. IGD is defined as 

  
( , )

( , ) true

A
v PF

A true
true

d v P
IGD P PF

PF
∈=
∑

, (9) 

where ( , )Ad v P  is the minimal Euclidean distance between 
every truev PF∈ and set AP . IGD measures both the 
convergence and diversity of the obtained approximation front. 
If 0IGD = , it means that all the approximation solutions are in 
the true Pareto solutions and they cover all the extension of the 
true Pareto front.  
 The uniformly distributed true Pareto fronts for calculating 
IGD for all test problems are taken from [26]. truePF for 
ZDT1, ZDT2, ZDT3 and ZDT6 is 1001 whereas ZDT4 is 269. 
Also truePF for DTLZ1 and DTLZ2 is 10,000, DTLZ3 and 
DTLZ4 is 4,000, DTLZ5 is 166,500, DTLZ6 is 28,000 and 
DTLZ7 is 676. truePF for WFG1 is 1,113 and WFG2  is 119. 

C. Experimental Results 

An example of the obtained nondominated front and the 
associated performance metrics, and control parameters are 
shown in Fig. 4 for ZDT1. At the beginning of the evolutionary 
process, γ and F starts at 0.5. At 20 generation, the spacing is 
the highest while MS is the lowest, this means the obtained 
front is crowed and the distance between extreme solutions are 
shorter, even though the hypervolume is increasing. This 
shows that the population can find more nondominated 
solutions but they are crowded together in some part of the 
approximation front. Hypervolume is continuously improved 
and go to steady around 100 generation. After that the 
hypervolume has very small fluctuation which means FMDE 
continuously improves its convergence and distribution. When 
the algorithm converges, we can see that the spacing went to 
near zero which is the ideal value for evenly distribution. The 
maximum spread of the algorithm is glowing to approximately 
one which stated that the algorithm reach its maximum extent 
of the extreme solutions. Later γ is decreasing while F is 
increasing according to the search process detect the promising 
region and then fast converge toward that direction which 
make γ  value high in order to use the exploitation ability. 
When the population converges, the exploration becomes 
prominent because every individual will be near or at the true 

Pareto front and we need to do the local search. As can be seen, 
the FMDE is continuously improves its performance: 
hypervolume is increasing which demonstrate that the 
algorithm is converging but we observe that the distribution is 
not good due to spacing values are fluctuating. Meanwhile the 
fluctuation of the maximum spread indicates that our extreme 
nondominated solutions occupy smaller space. After 120 
generations, γ decreased to the lowest value near zero, but F is 
closed to 1, means that the degree of exploration is higher that 
exploitation. What it means is that the algorithm converged, the 
number of the nondominated solutions found are high, the 
algorithm tried to do the local search to be evenly distributed. 

The mean value and standard deviation of IGD for FMDE, 
MOEA/D-DE, NSGA-II, SPEA2 and JADE2 are shown in 
Table 2. We compare the performance between any two 
algorithms in terms of statistics by utilizing the t-test on IGD 
with 95% of confidence level.  

Table II shows that the proposed FMDE outperforms 
MOEA/D-DE 10 out of 14 functions. In case of bi-objective, 
FMDE is competitive with MOEA/D-DE. The performance of 
FMDE is statistically better than MOEA/D-DE in ZDT1, 
ZDT2, ZDT3, WFG1 and WFG2 but worse for ZDT4 and 
ZDT6. However, FMDE outperforms MOEA/D-DE 5 out of 7 
three objective functions. FMDE outperforms NSGA-II 12 out 
of 14 functions. It outperform NSGA-II on all ZDT and WFG 
test functions, but underperforms on DTLZ2. Whereas FMDE 
outperforms SPEA2 on ZDT1 and ZDT4 but the performance 
on ZDT6 is not statistically difference. In comparison with 
SPEA2, FMDE is competitive with SPEA2 for both bi-
objective and three objective problems. FMDE outperform 
JADE2 for all test problems.   

Overall, FMDE is competitive with the other algorithms for 
bi-objective benchmark functions, and outperforms all the 
others on ZDT and WFG. It is superior for the three objective 
benchmark functions especially DTLZ2, DTLZ4 and DTLZ5. 
The most difficult problem for FMDE is DTLZ1.   

FMDE perform good on the convex, nonconvex, and 
discontinuous problems. But it faces difficulties on the 
multimodality problem such as ZDT4 and DTLZ1. The 
preservation of diversity in FMDE is not enough for solving 
the multimodality. It should be improved by adaptively adjust 
CR. 

V. CONCLUSION 
This paper presents a MODE which utilizes hypervolume, 

spacing, and maximum spread to indicate the stage of 
evolution in order to dynamically adapt the greedy and 
distribution parameters of a mutation strategy used in DE. The 
direction of change for each parameter is determined by fuzzy 
rules.  The effect of dynamically adjust these parameters is that 
we can emphasize the exploitation or exploration ability due to 
the status of the search process.   

The experimental results show that FMDE is better than 
two chosen state-of-the-art and one of the adaptive MODEs. 
This research demonstrates that we can combine performance 
metrics and human knowledge of optimization process together 
by fuzzy rules. Therefore, it is one possible method to 
automatically adjust the control parameter values without a 
prior knowledge on the problem. Our future research is to 
adaptively adjust CR in concurrent with F, and use the 
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performance metrics as the maintaining mechanism for the external archive, and stopping criteria.  

                                                          

                                                  

Fig. 4. An example result of ZDT1. The approximated front, true Pareto front, and performance metrics, and control parameters. 
 
 

TABLE II.  COMPARISON OF IGD FOR FMDE, OTHER MODES AND MOEAS ON T-TESTS 
Functions  FMDE MOEA/D-DE NSGA-II SPEA2 JADE2 

ZDT1 

Mean 
Std. 
t-test 

 

0.0048 
2.5595e-4 

 
 

0.1460 
5.2931e-18 
-3.0216e+3 

+ 

0.6174 
0.2605 

-1.28804e+1 
+ 

3.14684e+1 
1.084e-14 

-6.7331e+5 
+ 

0.2385 
0.0328 

-3.9024e+1 
+ 

ZDT2 

Mean 
Std. 
t-test 

 

0.0047 
1.9826e-4 

0.0064 
8.8219e-19 
-4.6956e+1 

+ 

0.9636 
0.7273 
-7.2214 

+ 

0.0042 
0.0000 

1.38132e+1 
- 

0.1591 
0.0281 

-3.0095e+1 
+ 

ZDT3 

Mean 
Std. 
t-test 

 

0.0035 
2.3176e-4 

 

0.0123 
7.0575e-18 

-2.07972e+2 
+ 

0.3730 
0.1805 

-1.12124e+1 
+ 

0.0033 
1.3233e-18 

4.7266 
- 

0.2269 
0.0297 

-4.1198e+1 
+ 

ZDT4 

Mean 
Std. 
t-test 

 

0.6949 
0.6792 

 

0.0070 
0.0025 
5.5473 

- 

1.6299 
0.8700 
-4.6399 

+ 

30.2537 
1.4454e-14 
-2.3837e+2 

+ 

3.1201e+1 
7.3325 

-2.2690e+1 
+ 

ZDT6 

Mean 
Std. 
t-test 

 

0.0037 
6.545e-4 

0.0021 
0.0000 

1.33897e+1 
- 

5.1635 
1.4989 

-1.88548e+1 
+ 

0.0037 
8.8219e-19 

0.0000 
= 

0.0799 
0.0093 

-4.4767e+1 
+ 

DTLZ1 

Mean 
Std. 
t-test 

 

2.3507e+2 
0.7330 

0.5108 
6.0532e-4 
1.7527e+3 

- 

8.7177 
3.4200 

3.5446e+2 
- 

32.4673 
1.4454e-14 
1.5139e+3 

- 

2.4554e+2 
4.5334 

-1.2485e+1 
+ 

DTLZ2 

Mean 
Std. 
t-test 

 

0.0398 
0.0010 

0.6241 
1.1292e-16 
-3.2003e+3 

+ 

0.0714 
0.0034 

-4.8837e+1 
+ 

0.0609 
3.5288e-17 
-1.1557e+2 

+ 

0.524 
0.0710 

-3.7357e+1 
+ 

DTLZ3 

Mean 
Std. 
t-test 

 

0.9965 
1.5138 

 

0.5569 
3.3876e-16 

1.5906 
- 

0.3509 
0.2640 
2.3012 

- 

9.2031 
3.6134e-15 
-2.9693e+1 

+ 

1.8621e+2 
1.4556e+1 
-6.9320e+1 

+ 

DTLZ4 

Mean 
Std. 
t-test 

 

0.0442 
0.0033 

 

0.2940 
1.6938e-16 

-4.14609e+2 
+ 

0.0532 
0.0070 
-6.3698 

+ 

0.0490 
0.0000 
-7.9669 

+ 

0.5241 
0.0710 

-3.6982e+1 
+ 

DTLZ5 
Mean 
Std. 
t-test 

0.6066 
0.0086 

0.9385 
2.2584e-16 
-2.1138e+2 

0.6270 
0.0057 

-1.08297e+1 

0.6061 
4.5168e-16 

0.3184 

0.6387 
0.0310 
-5.4652 

ZDT1 

ZDT1 ZDT1 
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Functions  FMDE MOEA/D-DE NSGA-II SPEA2 JADE2 

 + + - + 

DTLZ6 

Mean 
Std. 
t-test 

 

0.6015 
0.0105 

3.4282 
2.2584e-15 
-1.4745e+3 

+ 

4.1792 
1.1628 

-1.68516e+1 
+ 

1.9353 
6.7752e-16 
-6.9576e+2 

+ 

1.3176 
0.6640 
-5.9063 

+ 

DTLZ7 

Mean 
Std. 
t-test 

 

0.0285 
8.0856e-4 

0.6550 
0.0000 

-4.2439e+3 
+ 

0.1351 
0.0740 
-7.8897 

+ 

0.0276 
1.0586e-17 

6.0966 
- 

0.2834 
0.0394 

-3.5428e+1 
+ 

WFG1 

Mean 
Std. 
t-test 

 

0.5243 
5.2681e-5 

0.5355 
0.0000 

-1.1645e+3 
+ 

0.5346 
1.3103e-4 

-3.9945e+3 
+ 

0.5774 
1.1292e-16 
-5.5208e+3 

+ 

0.5341 
0.0041 

-1.3091e+1 
+ 

WFG2 

Mean 
Std. 
t-test 

0.4594 
2.5406e-5 

0.5584 
1.1292e-16 
-2.1343e+4 

+ 

0.5597 
0.0014 

-3.9234e+2 
+ 

0.5584 
1.1292e-16 
-2.1343e+4 

+ 

0.4617 
3.9464e-4 

-3.1856e+1 
+ 

Better (+) 
Same (=) 
Worse (-) 

Score 

 10 
0 

(4) 
6 

12 
0 

(2) 
10 

8 
1 

(5) 
3 

14 
0 

(0) 
14 

 
 

REFERENCES 
 

[1] R. Storn and K. Price, “Differential evolution - a simple and efficient 
adaptive scheme for global optimization over continuous spaces,” 
Technical Report TR-95-012, March, 1995 [online]. Available: 
http://icsi.berkeley.edu/~litera.html. 

[2] R. Storn and K. Price, “Differential evolution - a simple and efficient 
heuristic for global optimization over continuous spaces,” Journal of 
Global Optimization, vol. 11, pp. 341-359, 1997. 

[3] V. L. Huang, A. K. Qin, P. N. Suganthan, and M. F.Tasgetiren, “Multi-
objective optimization based on self-adaptive differential evolution 
algorithm,” in Proc. of Congress on Evolutionary Computation, 2007, 
pp. 3601-3608. 

[4] A. Zamuda, J. Brest, B. Boskovic, and V. Zumer, “Differential evolution 
for multiobjective optimization with self adaptation,” in Proc. of IEEE 
Congress on Evolutionary Computation, 2007, pp. 3617-3624. 

[5] J. Zhang and A. C. Sanderson, “Self-Adaptive multi-objective 
differential evolution with direction information provided by archived 
inferior solutions,” in Proc. of IEEE Congress on Evolutionary 
Computation, 2008, pp. 2801-2810. 

[6] V. L. Huang, S. Z. Zhao, R. Mallipeddi, and P. N. Suganthan, “Multi-
objective optimization using self-adaptive differential evolution 
algorithm," in Proc. of IEEE Congress on Evolutionary Computation, 
2009, pp. 190-194. 

[7] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective 
evolutionary algorithms: empirical results,” Evolutionary Computation, 
vol. 8, pp. 173-195, 2000. 

[8] K. Deb and S. Jain, “Running performance metrics for evolutionary 
multi-objective optimization,” KanGal Technical Report No. 2002004, 
2002. 

[9] R. Mallipeddi and P. N. Suganthan, “Differential evolution algorithm 
with ensemble of populations for global numerical optimization,” 
OPSEARCH, vol. 46, pp. 184-213, 2009 

[10] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution 
algorithm with strategy adaptation for global numerical optimization,” 
IEEE Trans. on Evolutionary Computation, vol. 13, pp. 398-417, 2009. 

[11] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution 
algorithm,” Soft Computing - A Fusion of Foundations, Methodologies 
and Applications, vol. 9, pp. 448-462, 2005. 

[12] F. Xue, A. C. Sanderson, P. P. Bonissone, and R. J. Graves, “Fuzzy 
Logic Controlled Multi-Objective Differential Evolution,” in Fuzzy 
Systems, 2005. FUZZ '05. The 14th IEEE International Conference on, 
2005, pp. 720-725. 

[13] F. Xue, A. C. Sanderson, and R. J. Graves, “Pareto-based multi-
objective differential evolution,” in The 2003 Congress on Evolutionary 
Computation, CEC '03., 2003, Vol.2, pp. 862-869. 

 

 
 
 
 
[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist 

multiobjective genetic algorithm: NSGA-II,” IEEE Trans. on 
Evolutionary Computation, , vol. 6, pp. 182-197, 2002. 

[15] Q. Zhang, and H. Li, “MOEA/D: A Multiobjective Evolutionary 
Algorithm Based on Decomposition,” IEEE Trans. on Evolutionary 
Computation, vol. 11, pp. 712-731, 2007. 

[16] H. Li and Q. Zhang, “Multiobjective Optimization Problems With 
Complicated Pareto Sets, MOEA/D and NSGA-II,” IEEE Trans. on 
Evolutionary Computation, , vol. 11, pp. 712-731, 2007. 

[17] R. Joshi and A. C. Sanderson,  “Minimal Representation Multisensor 
Fusion Using Differ ential Evolution,” IEEE trans. on  Systems, Man, 
and Cybrnatics---Part A, No. 29, Vol. 1, pp. 63-76, 1999. 

[18] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with composite 
trial vector generation strategies and control parameters,” IEEE Trans. 
on Evolutionary Computation, vol. 15, pp. 55-66, 2011. 

[19] D. Zaharie, “Influence of crossover on the behavior of differential 
evolution algorithms,” Appl. Soft Comput., vol. 9, pp. 1126-1138, 2009. 

[20] D. V. Veldhuizen, “Multiobjective evolutionary algorithms: 
classifications, analyses, and new innovations,” PhD Thesis, Department 
of Electrical and Computer Engineering. Graduate School of 
Engineering., Air Force Institute of Technology, Wright-Patterson AFB, 
Ohio, 1999 

[21] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, “Theory of the 
hypervolume indicator: optimal μ-distributions and the choice of the 
reference point,” in Proceedings of ACM SIGEVO Workshop on 
Foundations of Genetic Algorithms, Orlando, FL, 2009, pp. 87-102. 

[22] J. R. Schott, “Fault tolerant design using single and multicriteria genetic 
algorithm optimization,” MS Department of Aeronautics and 
Astronautics, Massachusetts Institute of Technology, Cambridge 
Massachusetts, 1995. 

[23] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms: 
Wiley, 2009. 

[24] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the 
strength pareto evolutionary algorithm,” Swiss Federal Institute of 
Technology (ETH), Zurich, Switzerland, Technical report TIK-Report 
103, May 2011. 

[25] C. A. C. Coello and N. C. Cortes, “Solving multiobjective optimization 
problems using an artificial immune system,” Genetic Programming and 
Evolvable Machines, vol. 6, pp. 163-190, 2005. 

[26] J. J. Durillo and A. J. Nebro, “jMetal: A Java framework for multi-
objective optimization,” Advances in Engineering Software, vol. 42, pp. 
760-771, 2011. 

[27] S. Huband, P. Hingston, L. Barone, and L. While, “A review of 
multiobjective test problems and a scalable test problem toolkit,” IEEE 
Trans. on Evolutionary Computation, vol. 10, pp. 477-506, 2006.

1966




