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Abstract— This paper applies genetic algorithms to optimize
the operation of a transmission network with energy storage
capabilities, to optimize its costs, which include both generation
and storage costs, for cases when the data inherent to the
system is assumed to be perfectly known. The problem is
formulated through the DC optimal power flow equations,
including losses across the transmission lines, therefore allowing
solutions regarding the network generation costs to be obtained,
with and without storage. In this way, the financial impact
inherent to the usage of energy storage can be derived. Since
we are dealing with a large combinatorial problem, the search
throughout the solution space was done by means of the Genetic
Algorithms. The solutions consist of the storage device’s char-
ging or discharging rate at which it must be operating during
each sub-interval considered for the simulations. The results
delivered by the GA have proven the profitability of including
energy storage capabilities in the transmission network of São
Miguel (Portugal) and the usefulness of such algorithm in a real
world application.

I. INTRODUCTION

PUMPED HYDRO ENERGY STORAGE (PHES) is the
most used energy storage technology for high-power

applications [1]. It consists of pumping water from a lower
reservoir to an upper reservoir during low power demand
periods. During high demand periods, the water is discharged
from the upper reservoir to the lower one and generates
electricity by means of a turbine. Therefore, the correct usage
of a storage device can lead to a lesser dependency on fuel
based generators and yield significant cost savings.

The scheduling of storage units in transmission networks
has been the object in several works. A conventional metho-
dology is to apply Lagrangian Relaxation [2] [3] extended
to the problem with energy storage units in order to turn the
non-convex optimization problem into a set of convex sub-
problems, coordinated by Lagrange multipliers. However, the
solutions to these sub problems may vary between maximum
and minimum generations by changing slightly the multipli-
ers. Dynamic Programming (DP) [4] [5] [6] [7] was also
used to search the solution space for the global optimum
in some works when the need of scheduling energy storage
units is present. However, when dealing with large-sized pro-
blems with too many variables, this method becomes limited,
since a high computational time and memory storage are
required. Furthermore, the global optimum is not guaranteed
[8]. Evolutionary computing methods are promising for the
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scheduling problem. Some works employ Genetic Algorithms
(GA) [9] [10], Particle Swarm Optimization (PSO) [11] [12]
and Evolutionary Programming (EP) [13], where the results
offered are reported to be reliable due to the fact that such
methods allow a very broad search throughout the solution
space to this large combinatorial problem.

The usage of GA has returned satisfactory results in a
short period of time in the cited works above and it allows a
suitable representation of the solution space [14]. Therefore,
GA was used in the present work to search the solution
space for the schedule that yields the minimum sum of both
the generation costs and the costs inherent to the storage
of energy, when transmission losses are present. The case
study was the transmission network in São Miguel, Açores,
Portugal, since a Pumped Hydro Energy Storage Power Plant
(PHESPP) is yet to be implemented in this network in the
near future.

II. PROBLEM FORMULATION

In order to obtain the operation costs of the network under
a certain schedule, the DC Optimal Power Flow (DC OPF)
can be employed to obtain the combination of generators
outputs that yields the lowest operation cost, according to
the demand levels and the configuration of the network. We
will start by introducing the standard deterministic DC OPF
problem without energy storage.

A. DC Optimal Power Flow without Energy Storage

Adopting the same methodology as in [15], the standard
DC OPF for a generic instant of time, for the deterministic
case, is formulated as follows, considering active power
losses across the lines:

min
θ,pg

∑
i∈G

cgipgi (1)

s.t.

pgi −
∑
m6=i

(pim +
1

2
him) = di (2)

him = 2gimθ
2
im (3)

pim + bim(θi − θm) = 0 (4)

|pim|+
1

2
him ≤ p̄im (5)

p
gi
≤ pgi ≤ p̄gi (6)
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Equation (1) describes the minimization of the operation
costs, where G is a set of generation nodes, cgi is the
generation cost per MWh from the energy source i ∈ G and
pgi is its power output.

Equation (2) specifies that the power balance in a generic
bus i must result in supplying that bus with its demand
and (3) expresses the losses across the transmission lines.
Equation (4) simply translates what the power flow between
two generic nodes must be equal to.

In (5), we’re constricting the power flow between two
buses to a limited amount that depends on the conductors
linking them. (6) constrains the power output from a ge-
nerator bus to between its minimum input and its maximum
capacity.

B. DC Optimal Power Flow with Energy Storage

The inclusion of storage units adds additional constraints to
the problem, since these units can only store a certain amount
of energy and may have limited charging or discharging rates.
Moreover, while the classical OPF problem without storage
consists in a static evaluation of the network (optimizing the
objective function for a specific fixed time), the inclusion
of a storage node induces a correlation across time, since
the operation of a storage unit in a certain interval of time
will influence the outcome during the periods after. In this
section, we extend the formulation presented in [16] and
include the active power losses and constraints regarding the
storage units. The objective function considered here is the
total operation cost of the network.

Considering the losses in the transmission lines, the DC
OPF problem with a certain number of storage units in the
network is formulated as follows:

min
θ,pg,s

T∑
t=1

(∑
i∈G

cgi(pgi(t), t) +
∑
k∈S

sk(wk(t), rk(t))
)

(7)

s.t.

pgi(t) + ri(t)−
∑
m6=i

(pim(t) +
1

2
him(t)) = di(t) (8)

him(t) = 2gimθ
2
im(t) (9)

pim(t) + bim(θi(t)− θm(t)) = 0 (10)

|pim(t)|+ 1

2
him(t) ≤ p̄im (11)

p
gi

(t) ≤ pgi(t) ≤ p̄gi(t) (12)

wk(t) =

{
w0
k − rk(t)∆t if t = 1

wk(t− 1)− rk(t)∆t if t > 1
(13)

0 ≤ wk(t) ≤Wk (14)

−q̄k ≤ rk(t) ≤ f̄k (15)

In (7), S is the set of storage nodes in the network.
ci(pgi(t), t) is the generation cost per MWh and depends
on the generator’s power output during the period t, as well
as on the specific period, in a generic way. wk(t) is the
accumulated energy by the storage unit at the end of period t
and rk(t) is the power draw during this period (if positive, the
storage node is supplying the network with a power output;
if negative, it stores energy). Therefore, sk(wk(t), rk(t)) is
the storage cost during the period t, which in a generic
way depends on wk and rk. T is the number of periods the
problem is solved for.

Equation (8) is the power balance in a node i, as explained
on the previous section, but now including the power draw
ri, in case the node i is an energy storage unit.

As for the storage constraints, (13) relates the storage
node’s charged energy in a period with the power draw
during that period (multiplied by the length of the time
period ∆t) and the previously stored energy (w0

k is the stored
energy at the beginning of the simulation). (14) assures the
stored energy can’t be either negative or superior to the
maximum storage capacity (Wk). (15) limits the power draw
inferiorly to its maximum storing rate (q̄k) and superiorly to
its maximum generating rate (f̄k).

III. GENETIC ALGORITHMS IN PUMPED HYDRO ENERGY
STORAGE SCHEDULING

GA consists in a mechanism of natural selection, meaning
that fittest individuals are most likely to be winners within
a competitive environment. Such algorithms are widely used
in large combinatorial integer problems [17], since being a
metaheuristic makes it prosecute a very broad search of the
solution space. The modelling of the problem under study fits
these characteristics and its performance in pumped-storage
devices’ scheduling is reported in some studies to deliver
reliable results [9] [10] in a satisfactory amount of time [18],
in comparison to other algorithms.

A. Solution Encoding

When applying a GA to a specific problem, the first step
is to represent each solution by means of a chromosome
- a set of genes, where each gene contains a fixed value
related to the decision variables. In the specific case we’re
dealing with, the PHESPP to be analysed can only be either
charging or discharging energy at a certain period of time,
which simplifies the problem. We need to know whether the
PHESPP should be pumping the water into the reservoir or
discharging the water from the reservoir and at what rate. In
the present work, we extend the solution encoding done in
[14] to our specific case, which consists of 5 pumps and 3
Pelton turbines. The solution encoding we adopt is illustrated
in Figure 1.

For our case study, each individual is represented by means
of 24 genes, since we’re performing the day-ahead schedule
of the PHESPP using time periods of 1 hour.
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Fig. 1. Solution Encoding Used for the Present Case Study

B. Solution Decoding

In order to determine the minimum operation costs of
a transmission network under a certain PHESPP schedule,
the solution space search must return the outputs from the
energy sources during the periods of time so a fitness can be
derived, along with the costs associated to the operation of
the storage device. In the present work, during periods the
storage device is charging or discharging, we’re treating it as
a demand bus with a fixed load equal to the charging rate or
a generator bus with a fixed output equal to the discharging
rate, respectively. In the case the device is idle, we treat it as
a bus which is neither generating nor demanding energy. We
are interested in obtaining the minimum of the total cost over
sequent periods of time. Since a fixed schedule makes it such
that the generators operate independently among the different
periods, the problem formulated in (1) can be solved for each
period. Therefore, the sum of the minimum operation costs
in every period becomes the minimum operation costs over
sequent periods of time, which is what we intend to obtain.

C. GA Operators

The fact that this problem has a limited space of feasible
solutions, due to the reservoir’s capacity, some care must be
taken when performing the operations to the solutions. The
considered space of feasible solutions was every solution
that doesn’t result in having a negative amount of stored
energy, or an amount of stored energy that doesn’t exceed
the reservoir’s capacity.

1) Initial Population: An individual is created by simply
generating one gene at a time randomly, starting at the gene
corresponding to the first period of the simulation, and every
time a gene is generated, the existing partial chromosome’s
feasibility is checked. If at any time a generated gene results
in an infeasible partial chromosome, that gene is generated
again until feasibility is reached.

2) Selection Method: After evaluating the fitness of an
entire population, a new generation must be created. For this,
pairs of individuals must be selected, so that the crossover
operator must be applied. The selection method used for
individuals to mate was Tournament Selection [19], where a
number of individuals equal to a defined value s are selected
and listed in descending order of fitness. This list is run and
for each individual, a random number between 0 and 1 is
generated. If this number is lower than a defined probability,
that individual enters the mating pool and the tournament is
reset. If no individual is selected by means of this random
criteria, the last individual of the list is selected. After the
number of parents reaches the population size, we proceed
to the crossover operator.

3) Crossover: The selected operator for the problem we’re
dealing with was uniform crossover, rather than the k-
point crossover [20], since this last one doesn’t play well
with the problem we’re dealing with due to the fact that
portions of the chromosome are swapped. This most likely
would make it very difficult to create feasible children. With
uniform crossover, every time an allele swap is to happen,
the resulting children are checked for feasibility. If they don’t
pass, that swap simply doesn’t occur and we move on to the
next allele. After doing this for all the pairs of parents, we
proceed to the mutation operator.

4) Mutation: Mutation can be advantageous to avoid
convergence to a local optimum. It consists in randomly
altering a gene to a different value [20]. By doing so, bringing
the individual out of the feasible space of solutions might
occur. Therefore, to implement this operator in the problem
we’re dealing with, when mutation is to occur in an allele,
the options for feasible values for that allele to have are
checked first. Then out of those values, one of them is
selected randomly. Obviously, if there’s no possible altering
for a randomly selected allele, no mutation will occur.

5) Elitism: The odds of the individual with the best fitness
value being selected to enter the mating pool are high.
However, if selected and after applying the crossover to it,
the resulting children might possess a worse fitness value. If
so, we lose the individual and therefore there’s a chance that
none of the individuals in the new generation has a fitness
as high, or higher, than the lost individual. That’s where
the elitism operator comes in handy [20]. By defining the
number k of individuals we want to preserve, we check the
fitness of the worst k members of the new generation. Shall
it be worse than the fitness of the k best individuals of the
previous generation, a swap occurs and therefore we preserve
the individuals, making sure that potential solutions aren’t
destroyed.
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IV. CASE STUDY: TRANSMISSION NETWORK IN SÃO
MIGUEL

The intended analysis was conducted on the transmission
network in São Miguel. Data concerning the existing gene-
rators nowadays in this network can be found in Table I.

TABLE I
TRANSMISSION NETWORK IN SÃO MIGUEL - GENERATOR NODES [21]

Generator Energy Generator Capacity
Node Source Groups (MW)

CTCL Thermal 4 67.28
(Fuel Oil) 4 30.784

CGRG Geothermal 4 16.6
CGPV Geothermal 1 13
PEGR Wind 10 9

Judging by the information present in [22] regarding the
geothermal energy production during 2012, output fluctua-
tions from the geothermal energy sources were neglected,
meaning that for this case study, the power injections from the
generator nodes CGRG and CGPV were considered constant.
As for the output of the thermal power plant (CTCL), it was
considered that its minimum output is 12 MW, which is also
assumed in [22]. The actual network is to be expanded to the
configuration shown in Figure 2.

Fig. 2. Transmission Network in São Miguel with Energy Storage [21]

The upgrades to the existing network include:
• A waste-to-energy power plant (CVE node, see Figure

2), which is meant to inject a constant power of 6.84
MW in the network during high demand periods of
the day and 4.33 MW during low demand periods and
during the whole weekend [22].

• Construction of a PHESPP (CHR node, see Figure 2),
with a maximum pumping capacity of 10.5 MW, a
maximum generation capacity of 11.5 MW and 57 MWh
storage capacity [22].

• Construction of the substation SEPG (see Figure 2) to
be part of the transmission network. [21].

• Construction of a transmission line to connect SEPG to
CGRG [21].

Data concerning the distances between linked nodes, as
well as their per unit parameters, can be found in Table II.

TABLE II
DATA CONCERNING THE CONNECTIONS BETWEEN NODES [21]

Bus Bus R X Cap.
i j p.u. p.u. (MW)

CTCL

SEMF 0.0158 0.061 56.12
SELG(1) 0.0318 0.0641 37.41
SELG(2) 0.0318 0.0641 37.41

SEFO 0.0559 0.1128 37.41
SEAE 0.0262 0.1012 56.12
SESR 0.0226 0.0457 37.41
CVE 0.0233 0.0084 14.81

CGRG SEFO 0.0255 0.0515 37.41
SEPG 0.0448 0.0904 37.41

CGPV SEFO 0.0176 0.0168 12.47
PEGR SEPG 0.071 0.1433 37.41

SEMF
SEPD(1) 0.0056 0.0216 56.12
SEPD(2) 0.0112 0.0226 37.41

SESR 0.0361 0.0729 37.41
SELG SEFO 0.048 0.097 37.41
SEPG CHR 0.026 0.0565 37.41

In the present work, the generation costs were assumed to
be linear and time invariant. The thermoelectric power plant
in the transmission network under study operates by means of
combustion diesel engines. According to estimates derived in
[23], the production cost of electricity for such power plants,
considering moderate fuel prices, ranged between 100 and
125 e/MWh in 2007. As for wind on-shore, generation costs
ranged from 75 to 110 e/MWh. Such costs from this source
include investment costs, fixed and variable operating costs
and, when applicable, fuel and emissions related costs. In
the transmission network under consideration, the thermal
power plant is significantly old, while the wind power plant
is relatively recent. Therefore, for the thermal energy source,
we’re neglecting the costs related to the investment and a cost
of 93e/MWh is being used. For the wind energy generator, a
cost of 90e/MWh is being utilized, so as to keep it lower than
that for the thermal energy and to make both these sources
cost competitive at the same time. As for the remaining
generators, since the power output from the geothermal and
waste-to-energy power plants is the same throughout the days
regardless of the power demand, their generation costs are the
same either with or without storage and they are not being
included in the operation costs.

As for the PHESPP, the project option for the network in
São Miguel was obtained from [24], which operates by means
of five pumps and three Pelton turbines, with efficiencies
of 89% and 88% for charging and discharging, respectively.
The results obtained by the author for a 10MW generation
application with an 8 hour generation cycle (close to the case
under study) and operating 250 days a year (assumed to be
the same in our case) are nearly 0.05 USD/kWh. Therefore,
the cost considered in this case study was 40e/MWh. Since
in this particular case the pumps and turbines have a consi-
derably low maximum power, start up costs for the charging
and discharging cycles were neglected.
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V. RESULTS

The data used for the power demand evolution during a
day was the one occurred in 2012 for different typical days.
We are presenting the results referring to the load curves
occurred in a specific day both in the Summer and Autumn
seasons, because these curves have different demand levels,
thus originating different outcomes for the network operating
with energy storage. In the simulations performed, the GA
was run 30 times. For each iteration, the stop criterion was
established as 400 generations or 100 generations without
fitness improvement.

Table III contains the results obtained by the day-ahead
schedule for the Summer day, for different values of po-
pulation size (Pz), mutation rate (Mr), crossover rate (Cr)
and elitism. They are expressed in terms of cost savings
yielded by the usage of the storage device in the network.
The time consumed by all the 30 simulations for each
combination of parameters is also presented.

TABLE III
GA STATISTICAL RESULTS FOR SUMMER DAY

Pz Mr Cr

Elitism = 1 Elitism = 2
Cost Savings (e) Time Cost Savings (e) Time

Max Mean σ (min) Max Mean σ (min)

80
0.15 0.6 1290 969 183 12.06 1192 907 236 12.11

0.9 1187 929 214 11.65 1285 1000 179 12.73

0.25 0.6 1307 1136 146 16.41 1317 1160 146 17.4
0.9 1318 1186 109 15.07 1316 1190 87 15.84

100
0.15 0.6 1227 995 179 16.48 1279 1004 166 15.75

0.9 1218 1028 193 15.34 1194 1053 123 15.83

0.25 0.6 1316 1213 70 19.2 1318 1180 106 17.89
0.9 1314 1169 82 17.86 1317 1183 76 18.8

150
0.15 0.6 1287 1125 115 25.07 1315 1122 174 27.08

0.9 1313 1117 135 25.03 1318 1113 111 24.23

0.25 0.6 1318 1218 77 26.77 1318 1212 97 25.03
0.9 1318 1208 86 30.13 1318 1239 65 27.87

200
0.15 0.6 1318 1205 70 32.96 1317 1161 107 34.47

0.9 1317 1189 96 35.31 1318 1173 89 37.94

0.25 0.6 1318 1237 71 36.36 1318 1234 75 35.02
0.9 1318 1239 68 36.49 1318 1250 76 35.43

It can be noticed that the population size has a considerable
influence on the mean of the cost savings obtained. Another
relevant parameter is the mutation rate, since taking such
a rate of 0.25 yields better results in terms of mean and
standard deviation, regardless of the other parameters. As
for the crossover rate, it doesn’t appear to be very relevant,
according to the results obtained for this day. The elitism
value is also not very relevance. Selecting the parameters
Pz = 200, Mr = 0.25, Cr = 0.9 and elitism = 2 would
make it such that the maximum found lies within the standard
deviation centred at the mean. However, for a matter of
computational effort reduction, Pz = 150 should be taken
into consideration, keeping the remaining parameters the
same.

Statistical results obtained for the Autumn day can be
found in Table IV. For this day, the solution is more trivial
than that for the Summer day. It can be noticed that the set
of parameters Pz = 80, Mr = 0.25, Cr = 0.9 and elitism
= 1 performs well enough, judging by the maximum found,
mean and standard deviation obtained.

The schedules found that yielded the results just presented
are shown in Figures 3 and 4, for the Summer and Autumn

TABLE IV
GA STATISTICAL RESULTS FOR AUTUMN DAY

Pz Mr Cr

Elitism = 1 Elitism = 2
Cost Savings (e) Time Cost Savings (e) Time

Max Mean σ (min) Max Mean σ (min)

80
0.15 0.6 1052 826 190 9.89 1052 788 188 9.1

0.9 1052 845 122 7.82 1052 849 164 9.43

0.25 0.6 1052 978 77 9.57 1052 975 95 9.98
0.9 1052 989 72 9.55 1052 972 84 9.2

100
0.15 0.6 1052 849 169 9.23 1052 818 194 11.4

0.9 1052 863 142 9.98 1052 927 125 12.87

0.25 0.6 1052 974 126 12.07 1052 999 69 12.25
0.9 1052 970 74 11.41 1052 993 91 12.92

150
0.15 0.6 1052 957 96 15.72 1052 964 60 16.77

0.9 1052 978 70 15.41 1052 938 102 15.01

0.25 0.6 1052 1006 68 14.24 1052 1027 53 17.16
0.9 1052 1026 55 16.16 1052 1023 50 14.6

200
0.15 0.6 1052 997 84 21.22 1052 986 64 24.17

0.9 1052 982 59 18.84 1052 1000 69 23.16

0.25 0.6 1052 1040 37 19.42 1052 1045 27 22.04
0.9 1052 1036 44 17.5 1052 1041 34 19.69

days, respectively. The power demand curve and the power
outputs from the thermal and wind generators are also
presented, with and without energy storage.

The more inferior the load is during low demand periods,
the more energy can be charged without raising the thermal
or wind generators’ output, to posteriorly be delivered to
the network during high demand periods. By comparing the
demand profiles of both presented cases, it can be inferred
that the Autumn day has more potential to store energy in
comparison to the Summer day. However, the Autumn day
has a limited need for energy supply during high demand
periods (both thermal and wind generators are reduced to
their minimum outputs). The need to store energy during
this day becomes reduced in comparison to the Summer day,
making this last one more profitable, even though it has less
potential to store energy.
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Fig. 3. Best Schedule Found for Summer Day

It’s interesting to notice, however, that the usage of storage
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capabilities in the network under analysis makes it such
that the output from the wind energy source is lowered in
some intervals, rather than having solely the thermal energy
source output diminished. This happens because the cost for
wind energy generation used for the simulations is not low
enough, compared to the thermal energy generation cost.
The geographical configuration of the network (see Figure
2) implies that considerably larger power losses occur when
transmitting power from the wind source to most of the
network substations, in comparison to transmitting the same
power from the thermal source, making both these sources
cost competitive.
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Fig. 4. Best Schedule Found for Autumn Day

It can also be noticed in Figure 3 that there is a pre-
ference in turbining at higher rates for the demand peaks
and therefore reducing the thermal generator output by a
larger quantity during the respective periods, rather than just
uniformly reduce such output by the same quantity over the
whole curve. The power transmission between two buses is
proportional to the difference in voltage angles between them.
Then, the higher the power transmission between buses,
the larger the voltage angle between them. However, the
losses associated to these power flows are proportional to
the square of the difference between voltage angles. This
means that by diminishing the power flow between buses for
high demand periods results in a greater reduction of power
losses, in comparison to doing so for low demand periods,
yielding greater cost savings. This is especially notorious in
the thermal source output curve, since there is a considerable
variation in its power intensity throughout the day. Since the
wind source power output remains at low values the whole
day, the difference in power losses avoided throughout the
day is not as significant.

What was presented in Figures 3 and 4 confirms that the

Autumn day has a more trivial solution in terms of search
than the Summer day, which justifies the need of a bigger
population size required for good statistic results for this case
(see Tables III and IV).

VI. CONCLUSIONS

The developed work consisted in obtaining the optimal
financial outcome yielded by the correct usage of a storage
device in a transmission network, by searching the possible
schedules using Genetic Algorithms, considering both the
generation costs and the costs to store energy, and taking
into account the losses across the transmission lines.

The results obtained have shown that by using storage
capabilities in a network may lead a renewable energy source
to have a lower penetration, which in our case was due to the
inclusion of power losses, making it cost competitive with a
non renewable source. Such consideration of power losses
has also proven to influence the scheduling problem in terms
of turbining rates. Nonetheless, it was shown that for the
particular network under analysis, the good usage by means
of scheduling of the storage device yields significant daily
cost savings. It can also be concluded that the choice of the
appropriate GA parameters strongly depends on the shape
of the curves, particularly the population size, which is the
parameter of most relevance not only in the computational
effort, but also in the quality of the statistical results.

For the same time horizon, the GA solution encoding
employed in the present work can be extended to longer
periods of time (less genes), naturally leading to a lower
computational effort, but also to less accurate results. The
selection of the appropriate period length must be a trade off
between these facts.
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