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Abstract—One of the main disadvantages of Evolutionary
Algorithms (EAs) is that they converge towards local optima for
some problems. In recent years, diversity-based multi-objective
EAs have emerged as a promising technique to prevent from local
optima stagnation when optimising single-objective problems. An
additional drawback of EAs is the large dependency between the
quality of the results provided and the setting of their parameters.
By the use of parameter control methods, parameter values
can be adapted during the run of an EA. The aim of control
approaches is not only to improve the robustness of the controlled
algorithm, but also to boost its efficiency. In this paper we apply
a novel hybrid parameter control scheme based on Fuzzy Logic

and Hyper-heuristics to simultaneously adapt several numeric and
symbolic parameters of a diversity-based multi-objective EA. An
extensive experimental evaluation is carried out, which includes
a comparison between the hybrid control proposal and a wide
range of configurations of the diversity-based multi-objective
EA with fixed parameters. Results demonstrate that our control
proposal is able to find similar or even better solutions than those
obtained by the best configuration of the diversity-based scheme
with fixed parameters in a significant number of benchmark
problems, demonstrating the advantages of parameter control
over parameter tuning for these test cases.

I. INTRODUCTION

Many optimisation problems that arise in real world appli-
cations require the use of approximation algorithms. Among
them, meta-heuristics are high-level strategies that guide a
set of heuristics in the search of an optimum. Evolutionary
Algorithms (EAs) [1] are population-based algorithms which
belong to the group of meta-heuristics. EAs have shown great
promise for calculating solutions to difficult problems. How-
ever, in some cases, EAs exhibit a tendency to converge towards
local optima. Several methods have been designed to deal with
local optima stagnation. One of the methods that has gained
some popularity in recent years is based on applying multi-
objective schemes to single-objective problems [2]. Several
ways of applying multi-objective concepts have been devised,
with diversity-based Multi-objective Evolutionary Algorithms
(MOEAs) as one of the most promising approaches. A metric
of the diversity introduced by each individual is used as an
auxiliary objective in these schemes, and therefore they can
better deal with premature convergence.

Most popular EA variants have several components and/or
parameters, such as the variation operators, or their rates,
which must be specified. Generally, the performance of an EA,
and consequently the quality of its results are highly dependent
on these components and parameters. Hence, the parameter
values of an EA must be properly selected. However, finding
appropriate parameter settings remains one of the persistent
challenges for Evolutionary Computation (EC) [1]. Parameter
setting methods are divided into two categories: parameter
tuning and parameter control. In parameter tuning the aim
is to identify the best set of values for the parameters of a
given EA, and then to execute the EA with these values, which
remain fixed during the whole run. In contrast, the aim of
parameter control is to design control strategies that select the
most suitable values for the parameters at each stage of the
search process while the algorithm is being executed.

In this paper we propose a novel control scheme based
on the usage of Fuzzy Logic and Hyper-heuristics. The main
advantage of hyper-heuristics is that they are able to control
symbolic and numeric parameters. The size of the set of low-
level configurations is generally fixed and finite, however,
meaning that in the case of controlling numeric parameters,
the number of possible values that can be assigned to them is
therefore also finite. In contrast, the main benefit of using the
FLCs is that the possible values that can be assigned to a certain
parameter are not selected from a finite set. Its main drawback
lies in the fact that it cannot be directly applied to control
symbolic parameters. In order to avoid their drawbacks, and
to profit from the strong points of the two approaches, they
are combined into a hybrid control scheme to simultaneously
adapt symbolic and numeric parameters. This hybrid approach
is applied to adapt some parameters of a diversity-based MOEA

designed for single-objective optimisation. The contributions
of this research work are:

• A novel hybrid parameter control scheme based on
fuzzy logic and hyper-heuristics applicable to both
numeric and symbolic parameters.

• First time that such a hybrid control scheme is used
to simultaneously adapt numeric and symbolic param-
eters of a diversity-based MOEA.
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• A wide comparison between control methods and
schemes with fixed parameters that highlights the
benefits of parameter control vs. parameter tuning.

The rest of the paper is organised as follows. In Section II,
some background in parameter control in EAs is given. Then,
Section III describes the diversity-based MOEA applied in this
work and provides some background in similar schemes. Our
novel hybrid control approach is explained in Section IV, while
a detailed analysis of the experimental results is exposed in
Section V. Finally, the conclusions and future lines of work
are given in Section VI.

II. BACKGROUND IN PARAMETER CONTROL IN

EVOLUTIONARY ALGORITHMS

Finding the most suitable configuration of an EA is one
of the most challenging tasks in the field of EC. In order
to completely define an instance of an EA, two types of
information are required [3]:

• Numeric—also referred to as quantitative or be-
havioural parameters—such as the population size,
and the crossover and mutation rates.

• Symbolic—also referred to as qualitative, categoric
or structure parameters—such as crossover, mutation,
and selection operators.

For both kinds of parameters, the different elements of
the domain are known as parameter values, and a parameter
is instantiated by assigning it a value. The main difference
between both types of parameters lies in their respective
domains. Symbolic parameters, such as the mutation operator,
have a finite domain in which neither order is established nor
distance metric is defined. In contrast, numeric parameters,
such as the mutation rate, have an infinite domain in which
a distance metric and an order can be defined for the values.
Thus, optimisation methods can directly be used to look for
the appropriate values of the numeric parameters of an EA.
However, in the case of symbolic parameters, distance metrics
cannot be applied between two values, meaning optimisation
schemes are not able to profit from the definition of these types
of metrics for setting such parameters.

The goal of parameter control is to design a control
strategy that selects the most suitable parameter values for
every stage of the optimisation process. The ideas of parameter
control were first incorporated in early work on EAs [4], [5].
Nevertheless, the number of recent research works considering
parameter control in EAs has increased noticeably [6]. Ad-
ditionally, parameter control methods have been successfully
applied to a wide range of EAs such as Differential Evolution
(DE) [7] and Evolution Strategies (ES) [8], among others. Given
the large number of approaches, several taxonomies have been
proposed. One of the most popular [9] considers the following
types of schemes:

• Deterministic parameter control. Parameters are modi-
fied by a deterministic rule without using any feedback
from the optimisation process.

• Adaptive parameter control. Parameters are updated
by an external mechanism that uses some feedback
from the optimisation process.

• Self-Adaptive parameter control. Parameters are en-
coded into the chromosome and their values are al-
tered by the variation operators of the EA.

The majority of the work on parameter control is focused
on the most common parameters of an EA, i.e. the variation
operators—mutation and crossover, including their rates—the
population size or combinations of all them [9]. In this paper
we describe the application of an adaptive hybrid control
approach based on Fuzzy Logic and Hyper-heuristics to adapt
the parameters of a diversity-based MOEA designed for single-
objective optimisation. A Fuzzy Logic Controller (FLC) is
used to adapt numeric parameters, while a hyper-heuristic is
used to control symbolic ones. We would like to note that
hyper-heuristics have been previously combined with other
approaches to obtain hybrid control schemes [10]. However,
as far as we know, this is the first time that FLCs and hyper-
heuristics are combined into a hybrid scheme.

III. DIVERSITY-BASED MULTI-OBJECTIVE

EVOLUTIONARY ALGORITHM

In this section we describe the evolutionary engine that
is controlled by the hybrid control scheme depicted in Sec-
tion IV. The engine is a diversity-based MOEA. In diversity-
based multi-objective schemes, a set of objectives is calculated
for each individual in the population. The first one is the
original objective of the problem being solved, i.e. the value
of the considered benchmark function in this case. Remaining
objectives—most of the proposals consider only one auxiliary
objective as in our case—are measures of the amount of
diversity introduced by an individual itself.

Some of the most frequently used auxiliary objectives were
defined in [11], [12]. In our proposal we use a variant of
the Distance to the Closest Neighbour (DCN) metric as the
auxiliary objective, which has to be maximised. It is named
DCN-THR and it was selected based on previous work by
the authors described in [13] in which it was shown that the
incorporation of a threshold ratio that penalises low quality
individuals provided significant benefits.

In general, any MOEA could be used in combination
with this auxiliary objective. There are a large number of
MOEAs described in the literature which have shown good
performance [14]. The obtained overall results might be highly
improved by analysing in a careful way the performance of
different MOEAs combined with the auxiliary objective applied
herein. However, such a study is out of the scope of this
research. Instead, we have decided to use the well-known
NSGA-II [15] as the core of the diversity-based multi-objective
scheme due to its popularity.

Regarding the variation stage, the diversity-based MOEA

relies on the application of a crossover operator and a mu-
tation operator afterwards, with rates pc and pm, respec-
tively. Three different crossover operators are tested herein:
the Simulated Binary Crossover (SBX) [16], the Arithmetical
Crossover (AX) [17], and the Parent-Centric Blend Crossover
(PBX) [18] with parameter α = 0.5. In the case of the
PBX operator, instead of returning a unique offspring as the
original proposal does, two offsprings are produced. Both
are obtained by considering one parent as the male parent
and the other one as the female parent, and vice-versa. With
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respect to the mutation operator, two different versions of
the Uniform Mutation (UM) [1] and the Polynomial Mutation
(PM) [19] are tested. The first variant only mutates one gene
of the chromosome with rate pm—UM-ONE and PM-ONE—
while the second one mutates every gene in the chromosome
with rate pm—UM-ALL and PM-ALL. In order to complete
the definition of the diversity-based MOEA, it is worth noting
that the parent selection mechanism is the well-known Binary
Tournament [1], whereas the individuals are encoded as arrays
of D real values.

At this point, we should note that the crossover and
mutation operators are symbolic parameters, while pm is a
continuous numeric parameter. The most suitable values for
these parameters could depend on the problem and/or instance
being solved or even on the current stage of the optimisation
process, and therefore modifying them during the execution
might be beneficial. Consequently, the application of parameter
control techniques to automatically adapt these parameters may
significantly improve both the behaviour and the robustness of
the whole diversity-based MOEA.

IV. PARAMETER CONTROL SCHEME BASED ON FUZZY

LOGIC AND HYPER-HEURISTICS

In this section we describe our novel hybrid control pro-
posal based on fuzzy logic and hyper-heuristics. In addition,
the components of both the hyper-heuristic and the FLC are
detailed. The hybrid scheme is used to simultaneously adapt
the crossover and mutation operators, and the mutation rate
pm of the diversity-based MOEA described in Section III.

Figure 1 shows the multi-level architecture of the hy-
brid control scheme. In the first level, a selection hyper-
heuristic [20] is used to control symbolic parameters. For doing
that, it selects the most promising low-level configuration—
among a set of candidate ones—depending on their past
performance. A low-level configuration in this case refers to an
instance of the diversity-based MOEA depicted in Section III
with a particular setting for the crossover and mutation oper-
ators. All other parameters of the algorithm remain constant,
with except to the mutation rate pm, which is adapted by the
FLC located at the second level. Once a low-level configuration
is selected, only that configuration is executed until the local
stopping criterion established by the hyper-heuristic is satis-
fied. When this happens, another low-level configuration—
which could be the same of the last execution—is selected and
executed. The final population of the last low-level configura-
tion used becomes the initial population of the new low-level
configuration. This process is repeated until a global stopping
criterion is reached.

In the second level, an FLC is used to adapt numeric
parameters. Particularly, the mutation rate pm of the diversity-
based MOEA is adapted herein. The FLC performs its decisions
by considering historical information about the values of the
parameters inferred in past executions. It is important to recall
that, at this level, the low-level configuration is executed until
the local stopping criterion established by the hyper-heuristic
is achieved. Nevertheless, the FLC also infers changes over the
parameter pm periodically, so another local stopping criterion
is established by the FLC. In order to clarify this fact, for
instance, consider a global stopping criterion equal to 2.5 ·106

Figure 1. Multi-level architecture of the hybrid control scheme

function evaluations, and 2.5 · 104 function evaluations for
the local stopping criterion established by the hyper-heuristic.
This means that the hyper-heuristic is able to carry out 1 · 102

decisions during the whole optimisation process, changing the
values for the variation operators, and that every selected low-
level configuration is executed for 2.5·104 function evaluations.
If the local stopping criterion established by the FLC is equal
to 5 · 102 function evaluations, then the FLC infers 50 changes
over the parameter pm during every execution of a low-level
configuration.

Finally, it is worth pointing out that not only the parameters
of the diversity-based MOEA considered in this work can be
controlled by our hybrid proposal, but also other numeric and
symbolic parameters belonging to other meta-heuristics.

A. Hyper-heuristic

In this work, a variant of the selection hyper-heuristic
proposed in [21] is applied so as to control some symbolic
parameters of a diversity-based MOEA. This hyper-heuristic
has been successfully applied in previous works [13] and is
based on using a scoring and a selection strategy for choosing
the most appropriate low-level configuration. The low-level
configuration that must be executed is selected as follows.

First, the scoring strategy assigns a score to each low-
level configuration. This score estimates the improvement that
each low-level configuration can achieve starting from the
current population. Thus, larger values are assigned to more
promising schemes considering their historical performance.
In order to calculate this estimate, the previous improvements
in the original objective value achieved by each configuration
are used. The improvement γ is defined as the difference,
in terms of the original objective value, between the best
achieved individual and the best initial individual. Considering
a configuration conf that has been executed j times, the score
s(conf) is calculated as a weighted average of its last k
improvements—Eq. (1).

s(conf) =

min(k,j)
∑

i=1

(min(k, j) + 1 − i) · γ[conf ][j − i]

min(k,j)
∑

i=1

i

(1)
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In Eq. (1), γ[conf ][j − i] represents the improvement
achieved by configuration conf in execution number j − i.
The adaptation level of the hyper-heuristic, i.e. the amount of
historical knowledge considered to perform its decisions, can
be varied depending on the value of k. Finally, the weighted
average assigns a greater importance to the latest executions.

The score s(conf) is used to calculate the probability that
a particular low-level configuration is selected. However, the
stochastic behaviour of the low-level configurations involved
may lead to variations in the results they yield. Hence, the
probability calculation also enables a fraction of selections
based on a random scheme. Specifically, the hyper-heuristic
can be tuned by means of a parameter β, which represents
the minimum selection probability that should be assigned to
a low-level configuration. If nh is the number of low-level
configurations involved, a random selection based on a uniform
distribution is performed in β · nh percentage of the cases.
Therefore, the probability of selecting each configuration conf
is defined by Eq. (2).

prob(conf) = β + (1 − β · nh) ·















s(conf)
n
h
∑

i=1

s(i)















(2)

B. Fuzzy Logic Controller

This section describes the FLC used to control the mutation
rate pm of the diversity-based MOEA. It incorporates a set of
different rule bases that are enabled depending on historical
information extracted from the optimisation process. This
historical data is used to guide the adjustment of pm. The
pseudocode of this FLC is shown in Algorithm 1.

It is important to remark that the initialisation and learn-
ing stages—lines 1–4—are only executed the first time that
each low-level configuration is selected by the hyper-heuristic.
Moreover, if the low-level configuration had been previously
selected, its state after finishing its last execution—including
the state of the FLC—is restored before the new run starts.
Thus, when the local stopping criterion established by the
hyper-heuristic is reached, the state of the current low-level
configuration has to be stored for future executions. For the
fuzzy inference process—lines 9–11—we note that Mamdani’s
fuzzy inference method is used. Furthermore, the fuzzy logic
operator AND 1 and the implication method apply the minimum
T-norm, the aggregation method applies the maximum S-
norm, and the centroid algorithm is used as the defuzzification
method. All of these components were selected because they
are usually implemented together with Mamdani-type FLCs.

The input variables of the FLC—line 7—are as follows:

• IMP. Calculated as the improvement of the original
objective value of the best individual achieved by the
diversity-based MOEA—line 14 of Algorithm 1—over
the last numEvals evaluations. This input variable is
delimited to the range [0, 1]. Note that the FLC local
stopping criterion is given by numEvals.

1Only the fuzzy logic operator AND is considered.

Algorithm 1 Pseudocode for the fuzzy logic controller

1: Initialisation: Generate sample values for the parameter pm distributed uniformly

in its corresponding range considering a certain value ∆ as the difference between

two consecutive samples

2: for (each generated sample value of the parameter pm) do

3: Learning: Execute the diversity-based MOEA with this value of pm during

numEvals evaluations in order to gather knowledge

4: end for

5: while (Hyper-heuristic local stopping criterion is not satisfied) do

6: Transformation of the parameter pm. If the range of the parameter pm is

different from the range [0, 1], the current value of this parameter is scaled to

the range [0, 1] and named p′
m

7: Calculation of input variables. Set the values for the input variables IMP, VAR,

PM-IN

8: Selection of the rule base. Select the most suitable rule base considering the last

k decisions carried out by the FLC and the scoring function shown in Eq. (4)

9: Fuzzification. Transform the crisp values of the input variables to fuzzy sets using

the fuzzification interface

10: Mamdani’s Fuzzy inference. Apply the fuzzy operator AND (min), the impli-

cation method (min) and the aggregation method (max) using the selected rule

base to obtain the fuzzy set of the output variable PM-OUT

11: Defuzzification: Transform the fuzzy set of the output variable PM-OUT to a

crisp value ∆pm
using the defuzzification interface (centroid method)

12: Parameter update: p′
m

= p′
m

+ ∆pm
. The value of p′

m
is enclosed in the

range [0, 1]
13: Transformation of the parameter p′

m
. If the range of the parameter pm is

different from the range [0, 1], the current value of p′
m

is scaled to the range of

the parameter pm

14: Execution: Execute the diversity-based MOEA with the new value of pm during

numEvals evaluations.

15: end while

• VAR. A measure of the diversity of the population. The
higher its value, the more diverse the population. The
calculation of this input variable with no normalisation
is shown in Eq. (3). The values of the decision variable
i of individuals j and k are given by xj [i] and xk[i].
The total number of decision variables is represented
by D and N is the population size. The value of VAR∗

is normalised to enclose VAR in the range [0, 1].

VAR
∗ =

D−1
∑

i=0





N−1
∑

j=0

[

xj[i] −
1

N
·

(

N−1
∑

k=0

xk[i]

)]2


 (3)

• PM-IN. Defined as the current value of the parameter
pm within the range [0, 1].

Only one output variable is defined for the FLC, referred to
as PM-OUT, which represents the increment or decrement to
be applied to the parameter pm in order to alter its value. The
membership functions for both the input and output variables
are shown in Figure 2. Due to the computational simplicity and
efficiency advantage they offer, triangular-shaped membership
functions were selected for the input and output variables. The
linguistic terms represented by the membership functions—
from left to right in Figure 2—are as follows:

• Input variables IMP, and VAR: LOW (L), MEDIUM (M),
and HIGH (H).

• Input variable PM-IN: LOW (L), LOW-MEDIUM-
B (LMB), LOW-MEDIUM-A (LMA), MEDIUM (M),
MEDIUM-HIGH-A (MHA), MEDIUM-HIGH-B (MHB),
and HIGH (H).

• Output variable PM-OUT: NEG-GIANT (NG), NEG-
HUGE (NU), NEG-HIGH (NH), NEG-MEDIUM (NM),
NEG-LOW (NL), ZERO (Z), POS-LOW (PL), POS-
MEDIUM (PM), POS-HIGH (PH), POS-HUGE (PU), and
POS-GIANT (PG).
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Figure 2. Membership functions for the input and output variables of the fuzzy logic controller

Different rule bases are defined for the FLC. The reason
for using different rule bases is that different fuzzy rules will
be applicable depending on the behaviour exhibited during
the previous execution. For instance, if the best results were
historically obtained by low values of the parameter pm, the
fuzzy rules should promote the usage of such low values. Every
rule base is composed of different IF-THEN fuzzy rules. Table I
shows one of the rule bases defined for the FLC. The remaining
rule bases are not shown due to space constraints. Only the
fuzzy logic operator AND is used in the antecedents of these
fuzzy rules. In general, every fuzzy rule considers three input
variables and one output variable. In those cases where a ‘-’
is shown, the corresponding fuzzy rule has no dependency on
the corresponding variable.

In order to select the most suitable set of rules, a scoring
function that relies on a weighted mean is used. It considers
historical data on both the improvement in the original objec-
tive and on the degrees of membership of the parameter pm to
each term defined for the input variable PM-IN. The value of
k is defined as the amount of historical knowledge considered
by the FLC, i.e. information on the latest k decisions inferred
by the FLC is taken into account. On the other hand, d is
the total number of decisions that the FLC has carried out,
and numTerms is the number of terms defined for the input
variable PM-IN. The score assigned to each linguistic term
i ∈ [0, numTerms− 1] is given by Eq. (4). The improvement
achieved during execution d−j of the diversity-based MOEA—
line 14 of Algorithm 1—is given by γ[d− j]. In addition, the
degree of membership of parameter pm to the linguistic term
i during execution d − j is represented by δ[i][d − j]. Thus,
the linguistic term i will be assigned a higher score if the
values of parameter pm have larger degrees of membership
to said linguistic term, and if, at the same time, the values
of parameter pm are able to achieve higher improvements in
the original objective. Finally, note that the scoring function
assigns more importance to the latest decisions.

score[i] =

min(k,d)
∑

j=1

γ[d− j] · δ[i][d − j] · (min(k, d) − j + 1)

min(k,d)
∑

j=1

δ[i][d− j] · (min(k, d) − j + 1)

(4)

Note that if numTerms linguistic terms are defined for
the variable PM-IN, numTerms rule bases have to be im-
plemented such that the FLC works with the proposed scoring
function. Figure 2 shows that seven linguistic terms are defined

Table I. DEFINITION OF ONE OF THE RULE BASES FOR THE FLC

Rules Inputs Output

ID PM-IN IMP VAR PM-OUT

1 L L - PG

2 L M - PL

3 L H - Z

4 LMB L - PG

5 LMB M - PL

6 LMB H - Z

7 LMA L - PG

8 LMA M - PL

9 LMA H - Z

10 M L - PU

11 M M - PL

12 M H - Z

13 MHA L - PH

14 MHA M - PL

15 MHA H - Z

16 MHB L - PM

17 MHB M - PL

18 MHB H - Z

19 H L L PL

20 H L M PL

21 H L H NL

22 H M - Z

23 H H - Z

for the input variable PM-IN, so seven different rule bases
are implemented. We tested different numbers of fuzzy rule
bases and found that the higher the number of rule bases, the
smoother the variations of the parameter pm inferred by the
FLC, and thus the steadier the FLC. However, when considering
more than seven fuzzy rule bases, the performance started to
degrade somewhat, as it also did with a lower number of rule
bases. For the remaining input variables, three linguistic terms
are used so as to maintain the rule bases as simple as possible.

Once scores are calculated, the term with the maximum
score is selected. This means that those values of parameter
pm with a large enough degree of membership to this linguistic
term should provide better performance than other values.
Therefore, if the linguistic term i is selected as the most
proper one, rule base i is enabled. This rule base is responsible
for adapting the value of parameter pm so that it approaches
the values represented by term i. For instance, assume that
the current value of parameter pm is 0.01 and the most
suitable rule base—considering the scoring function—is the
one represented by the linguistic term HIGH of the input
variable PM-IN. This means that historically high values of
parameter pm have yielded good improvements in the original
objective value. Thus, the rule base to be applied in this case
is precisely the one shown in Table I. If a fuzzy set for the
variable IMP, which has a large degree of membership to the
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Table II. PARAMETERISATION OF THE DIVERSITY-BASED MOEA

Parameter Value Parameter Value

Stopping criterion 2.5 · 106 evals. Crossover rate (pc) 1

Population size (N ) 5 individuals Mutation rates (pm) – UM-ONE, PM-ONE 0.2, 0.36, 0.52, 0.68, 0.84, 1
Crossover operators SBX, AX, PBX Mutation rates (pm) – UM-ALL, PM-ALL 0.0002, 0.00056, 0.00092, 0.00128, 0.00164, 0.002
Mutation operators UM-ONE, PM-ONE, UM-ALL, PM-ALL Auxiliary objective DCN-THR

Table III. PARAMETERISATION OF THE HYPER-HEURISTIC

Parameter Value Parameter Value

Local stopping criterion 2.5 · 104 evals. Minimum selection rate (β) 0.1

Number of low-level configs. (nh) 12 configs. Historical knowledge (k) 5

Table IV. PARAMETERISATION OF THE FUZZY LOGIC CONTROLLER

Parameter Value Parameter Value

Local stopping criterion (numEvals) 5 · 102 evals. Difference among samples (∆) 0.1

Number of linguistic terms (numTerms) 7 Historical knowledge (k) 5

Range of the parameter pm – UM-ONE, PM-ONE [0.2, 1] Range of the parameter pm – UM-ALL, PM-ALL [0.0002, 0.002]

term LOW, since PM-IN—with value 0.01—is represented by a
fuzzy set with a large degree of membership to the term LOW,
then the output fuzzy set—the one corresponding to PM-OUT—
will have a large degree of membership to the linguistic term
POS-GIANT (PG). Thus, the value of the parameter pm will be
increased so that it will tend towards higher values.

V. EXPERIMENTAL EVALUATION

In this section, the experiments conducted with the
diversity-based MOEA and the hybrid parameter control
scheme presented in Sections III and IV are described.

a) Experimental Method: Both the diversity-based
MOEA and the hybrid control approaches were implemented
using METCO (Meta-heuristic-based Extensible Tool for Co-
operative Optimisation) [22]. The compiler was the GCC

4.6.3, while the FLC was implemented using the fuzzylite 3.1
library [23]. As all experiments used stochastic algorithms,
each execution was repeated 32 times. Comparisons were
performed applying the following statistical analysis. First, a
Shapiro-Wilk test was performed to check whether the values
of the results followed a normal (Gaussian) distribution or
not. If so, the Levene test checked for the homogeneity of
the variances. If the samples had equal variance, an ANOVA

test was done. Otherwise, a Welch test was performed. For
non-Gaussian distributions, the non-parametric Kruskal-Wallis
test was used. A significance level of 5% was considered.

b) Problem Set: Experiments were carried out using
a set of 19 single-objective benchmark problems—F1–F19—
proposed in [24]. The set defines a number of scalable
continuous optimisation problems, which combine different
properties regarding the modality, the separability, and the
ease of optimisation dimension by dimension, i.e. whether the
objective value can be optimised by independently adjusting
each decision variable or not. In the current work, D—the
number of decision variables—was fixed to 500.

c) Parameters: Table II shows the parameterisation of
the diversity-based MOEA. In the first experiment, 72 different
configurations of the diversity-based MOEA with fixed values
for the parameters were executed for each benchmark function.
The configurations were obtained by combining the values

shown in Table II for the crossover and mutation operators,
as well as for the mutation rate pm. Depending on the applied
mutation operator, the values assigned to pm were different.
In addition, note that the population size was fixed to 5
individuals. In previous research, the application of diversity-
based MOEAs to this set of benchmarks reported the best
results when using low population sizes [13]. Finally, since the
evaluation of an individual is one of the most computationally
expensive operations, the different stopping criteria were set
in terms of the total amount of evaluations performed. In the
second experiment, the hybrid control scheme was executed
to adapt the values of the crossover and mutation operators,
and the mutation rate pm of the diversity-based MOEA. The
remaining parameters of the MOEA were kept as shown in
Table II. The hyper-heuristic and the FLC parameterisations
are shown in Tables III and IV, respectively. It can be noted
that the hyper-heuristic of the hybrid scheme had to select
among nh = 12 low-level configurations. This is because
twelve possible combinations were defined considering three
crossover operators and four mutation operators—Table II.
Therefore, the differences among the low-level configurations
lied in the particular values given to the crossover and mutation
operators. Lastly, depending on the mutation operator defined
for each low-level configuration, the range of possible values
that the FLC was able to infer for pm was different.

The main aim of the experiments was twofold. Firstly, to
study the performance of our novel hybrid control scheme
here proposed. Secondly, to analyse if parameter control gives
some benefit with regard to tuning the crossover and mutation
operators, and the mutation rate pm.

Table V shows, for each benchmark function, the parameter
values of the best configuration—the one that achieved the
lowest median of the error—of the diversity-based MOEA

executed with fixed parameters. Remember that 72 different
configurations of the diversity-based MOEA were executed
for each function. With regard to parameter tuning, the PBX

crossover operator seems to be the most suitable, while the
most appropriate values for the mutation operator and its rate
pm seem to be the UM-ALL operator and 0.0002, respectively,
for a wide range of benchmark functions. Nevertheless, the
most appropriate values for the crossover and mutation op-
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Table V. PARAMETERISATION OF THE BEST FIXED CONFIGURATION OF

THE DIVERSITY-BASED MOEA

Problem Crossover Mutation pm

F1 SBX UM-ALL 0.0002

F2 PBX UM-ALL 0.00092

F3 PBX UM-ALL 0.00056

F4 SBX UM-ONE 0.68

F5 SBX UM-ONE 0.2

F6 PBX PM-ALL 0.00056

F7 PBX PM-ALL 0.0002

F8 AX PM-ALL 0.00128

F9 PBX UM-ALL 0.0002

F10 SBX UM-ALL 0.0002

F11 PBX UM-ALL 0.0002

F12 PBX UM-ALL 0.0002

F13 SBX UM-ALL 0.0002

F14 PBX UM-ALL 0.0002

F15 PBX PM-ALL 0.0002

F16 PBX UM-ALL 0.0002

F17 SBX UM-ALL 0.0002

F18 PBX UM-ALL 0.0002

F19 SBX UM-ALL 0.0002

erators, and for the mutation rate pm change depending on
the considered benchmark function. Therefore, it would be
interesting to check whether our hybrid control approach is
able to provide similar results without the need of executing
a large amount of configurations of the diversity-based MOEA

in order to look for its best parameter values. For benchmarks
where different parameter values are the most appropriate
depending on the stage of the search process, the hybrid control
scheme could provide even better results than those given by
the best fixed configuration of the diversity-based MOEA.

Table VI shows, for each problem, the median of the
error achieved by the hybrid parameter control scheme and
by the best fixed configuration of the diversity-based MOEA—
the one shown in Table V. For benchmarks where differ-
ences were statistically significant—following the statistical
procedure explained above—data belonging to the approach
that obtained the lowest median and mean of the error is
shown in bold. On the contrary, if differences between the
hybrid control scheme and the best fixed configuration were
not statistically significant, data of both approaches is not
shown in bold. This last fact happened for benchmark functions
F5, F6, and F17. Moreover, for each benchmark, the hybrid
control scheme was statistically compared to the 72 fixed
configurations of the diversity-based MOEA. Thus, Table VI
also shows the number of fixed configurations which were
statistically outperformed 2 (↑) by the hybrid scheme, the
number of fixed configurations that statistically outperformed
the hybrid scheme (↓), and the number of fixed configurations
which did not present statistically significant differences with
the hybrid method (↔). Finally, for test cases where an ‘*’ is
shown, some fixed configurations of the diversity-based MOEA

presented statistically significant differences with the hybrid
scheme. However, one of both approaches obtained the lowest
mean of the error, while the other obtained the lowest median
of the error, so we could not determine the winning approach.

We would like to mention that for eight benchmark
functions—F2, F4, F7, F9, F11, F14, F16, and F18—the
hybrid control scheme was able to statistically outperform
every fixed configuration of the diversity-based MOEA. This

2The approach A statistically outperforms the approach B if both present
statistically significant differences, and A obtains a lower median and mean
of the error than B.

Table VI. MEDIAN OF THE ERROR FOR THE HYBRID CONTROL SCHEME

AND THE BEST FIXED CONFIGURATION OF THE DIVERSITY-BASED MOEA

Problem Hybrid Scheme Best Fixed Conf. ↑ ↓ ↔
F1 1.3281037e-06 3.4106051e-13 66 5 1

F2 7.6975000e+00 1.0592500e+01 72 0 0

F3* 9.4457000e+02 2.9075500e+02 40 18 13

F4 3.0795973e-05 7.8476094e-04 72 0 0

F5* 2.6413124e-07 8.3753093e-10 68 0 2

F6 8.3838312e-05 7.5147903e-05 71 0 1

F7 1.6071950e-04 2.1048950e-04 72 0 0

F8 4.7819750e+04 3.2891500e+04 55 15 2

F9 3.5459550e+00 5.5819750e+00 72 0 0

F10 1.5165250e-06 5.1276500e-13 65 5 2

F11 3.6804850e+00 5.6666000e+00 72 0 0

F12 1.5824200e-01 1.1245450e-01 71 1 0

F13* 7.8921500e+02 2.9386450e+02 62 2 4

F14 5.1547950e-02 7.4521000e-02 72 0 0

F15 1.3515900e-04 9.6688000e-05 71 1 0

F16 1.0623750e+00 1.7717600e+00 72 0 0

F17 9.0679350e+01 7.1111250e+01 67 0 5

F18 4.2261050e-01 6.4425800e-01 72 0 0

F19 3.0685100e-05 3.0367050e-08 67 5 0

could be explained by the fact that depending on the stage
of the optimisation process, the most appropriate values for
the controlled parameters are different, and the hybrid control
scheme is able to detect these changes. Hence, the hybrid
scheme provides better results since it is able to adapt the
parameters of the diversity-based MOEA while it is being
executed, whereas the fixed configurations are executed with
the same parameter values during the whole run, without
considering any adaptation.

In contrast, it can be noted that for eight test cases—
F1, F3, F8, F10, F12, F13, F15, and F19—some fixed con-
figurations of the diversity-based MOEA obtained statistically
significant better results than the hybrid parameter control
scheme, indicating that, for these benchmarks, there exist some
fixed values for the parameters which are suitable during
the whole optimisation process. An alternative explanation
however might lie in the fact that adapting these parameters
may improve the behaviour of the diversity-based MOEA but
that the changes in the values of its parameters take place
so fast that the hybrid control scheme is not able to detect
such changes at the rate required. In this case, fixing the
parameters to suitable values produce more robust behaviour
in the diversity-based MOEA. Despite this fact, the results
obtained by the hybrid control scheme were also competitive
for this set of eight problems.

Finally, we should note that the benefits of using the
hybrid control approach are even higher if we consider that
72 different configurations of the diversity-based MOEA were
executed to look for the best set of values for its parameters,
while only a single run of the hybrid control scheme was
performed. Hence, besides the fact that the hybrid scheme
obtains high quality results on most problems, the savings in
computational resources and time required to produce good
solutions are significant across all benchmarks when using it.

VI. CONCLUSIONS AND FUTURE WORK

One of the most common disadvantages of EAs—and other
meta-heuristics—is that they have a tendency to converge
towards local optima for some optimisation problems. Several
methods have been designed with the aim of dealing with local
optima stagnation. However, during last years, diversity-based
MOEAs have been applied as a promising approach to prevent
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from local optima stagnation when optimising single-objective
problems. In order to apply a diversity-based MOEA to a single-
objective problem, a metric of the diversity introduced by each
individual is used as an auxiliary objective, besides the usage
of the original objective of the problem which is being solved.

On the other hand, another drawback of EAs is that they
have a noticeable number of parameters that must be set
properly in order to improve their performance. Parameter
tuning approaches attempt to find an optimal set of parameter
values that remain fixed during the course of the optimisation
process. In contrast, parameter control schemes attempt to
adapt the values of a parameter during the course of the
optimisation based on the assumption that different values are
better suited at different points in the search. In this paper a
novel hybrid control scheme based on an FLC and a hyper-
heuristic is proposed to simultaneously adapt several numeric
and symbolic parameters of a diversity-based MOEA designed
for single-objective optimisation. Particularly, the crossover
and mutation operators, as well as the mutation rate pm, are
controlled. To the best of our knowledge, this is the first time
that different numeric and symbolic parameters of a diversity-
based MOEA are simultaneously adapted by the use of a control
scheme like the one proposed herein.

The extensive experimental evaluation carried out over a set
of 19 well-known benchmark functions revealed that the novel
hybrid control scheme is able to obtain similar or even better
results than those provided by a wide range of configurations
of the diversity-based MOEA executed with fixed parameters.
The fact that better results are returned by the hybrid parameter
control approach as compared to the fixed configurations of
the diversity-based MOEA also highlights the advantage to be
gained by adapting the parameters over the course of the run,
i.e. in parameter control rather than in parameter tuning.

Finally, we should note that other numeric and symbolic
parameters belonging to other meta-heuristics could be con-
trolled with our novel hybrid control scheme. Both main
components of the hybrid control approach—the FLC and
the hyper-heuristic—have been designed so that the hybrid
parameter control scheme can be applied to different meta-
heuristics. An interesting line of future work could therefore
be the adaptation of other numeric and symbolic parameters
belonging to some state-of-the-art algorithms.
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