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e-mail: chaman030687@gmail.com ccoello@cs.cinvestav.mx
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Abstract—This paper proposes a new hypervolume-based
multi-objective particle swarm optimizer (called MOPSOhv)
that uses an external archive to store the global nondominated
solutions found during the evolutionary process. The proposed
algorithm makes use of the hypervolume contribution of
archived solutions for selecting global and personal leaders for
each particle in the main swarm, and also as a mechanism
for pruning the external archive when it is updated with new
nondominated solutions. In order to increase the diversity when
particles are updated in their positions, a mutation operator is
used. The performance of the proposed algorithm is evaluated
adopting standard test problems and indicators reported in
the specialized literature, comparing its results with respect to
those obtained by state-of-the-art multi-objective evolutionary
algorithms. Our preliminary results indicate that our proposal
is competitive with respect to state-of-the-art multi-objective
evolutionary algorithms, being particularly suitable for solving
many-objective optimization problems (i.e., problems having
more than 3 objectives).

I. INTRODUCTION

There are many industrial and engineering problems

whose solution requires to simultaneously optimize several

objectives which are in conflict with each other, i.e., the

improvement of one objective implies the deterioration of

another in the problem. These are the so-called Multi-

Objective Problems (MOPs). Multi-Objective Evolutionary

Algorithms (MOEAs) have been very successful in solving

MOPs, mainly due to the following features [1]: They do

not require any specific knowledge about the problem, they

can be used as effective and robust global optimizers, they

are easy to understand and implement both in sequential

and parallel platforms and also, they can be hybridized with

mathematical programming techniques and even with other

metaheuristics. Additionally, MOEAs are less susceptible to

the shape and continuity of the Pareto front than mathema-

tical programming methods [2].

The use of MOEAs is particularly suitable for solving

MOPs since they work simultaneously with a set of potential

solutions (i.e., the swarm). This feature allows them to find

several solutions of the Pareto optimal set in a single run.

Many MOEAs have been developed to solve MOPs such as:

PAES [3], MOEA/D [4], SPEA [5], SPEA2 [6], NSGA-II [7]

and SMS-EMOA [8], just to name a few.

Particle Swarm Optimization (PSO) is a metaheuristic

inspired by the choreography of a bird flock which aims

to find food [9]. PSO can be seen as a distributed behavioral

algorithm that performs (in its more general version) a mul-

tidimensional search. The implementation of the algorithm

adopts a population of particles which are initialized with

random solutions (random positions in the design space),

and whose behavior is affected by either the best local (i.e.,

within a certain neighborhood) or the best global individual.

Over the generations, particles adapt their beliefs to the

most successful solutions found in their environment. Each

particle has a position and velocity vector that controls its

movement, and is updated according to the following general

rules:

~vt+1
i ← ω~vti +ϕ1r1

(
~pBest

t

i − ~xk
i

)
+ϕ2r2

(
~gBest

t
− ~xk

i

)
(1)

~vi ∈ [~vmin, ~vmax]

~xt+1
i ← ~xt

i + ~vt+1
i ; xi ∈ [xmin

i , xmax
i ] (2)

where ω is the velocity inertia factor, ϕ1 and ϕ2 are the

cognitive and social factors respectively, r1 and r2 are ran-

dom numbers, pBest and gBest represent the personal and

global leaders. These positions will influence the particle’s

velocity (~v) and position update. For extending PSO to deal

with MOPs, the main issues are the following:

(1) how to select particles (to be used as leaders) in order

to give preference to nondominated solutions over those

that are dominated?,

(2) how to retain the nondominated solutions found during

the search process in order to report solutions that are

nondominated with respect to all the past populations

and not only with respect to the current one?, and

(3) how to maintain diversity in the swarm in order to avoid

convergence to a single solution?

Normally, mechanisms very similar to those adopted

with MOEAs (namely, Pareto-based selection and exter-

nal archives) have been adopted in multi-objective particle

swarm optimizers (MOPSOs). However, the addition of other

mechanisms (e.g., a mutation operator) is also relatively

common in MOPSOs.

Some relevant MOPSOs are the following: In [10] is

presented the use of a PSO with a weighted aggregation

technique and a fully connected topology as the neighbor-

hood for each particle in the swarm. In [11], PSO is provided
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with a dynamic neighborhood strategy, particle memory

updating, and the process corresponds to a one-dimension

optimization, i.e., one objective is optimized at a time. Other

MOPSOs make use of several sub-populations or subswarms,

to increase the covering of the Pareto front approxima-

tion [12], adopt a decomposition method [13], or solve the

MOP using a parallel platform [14]. In other approaches,

the use of a leader selection scheme based on Pareto

dominance is adopted [15]. In some other research works,

traditional MOEAs’ mechanisms for keeping diversity such

as the crowding operator [16], [17], and niching [18] are

adopted. Parallel implementations of MOPSOs have also

been proposed using Grid Computing [14], the Master-Slave

model [19], and GPUs [17]. For a more thorough review of

different MOPSOs see [20]

It is important to emphasize that most of the previously

indicated approaches, incorporate a dynamic scheme, which

updates the velocity inertia factor (ω), make use of an exter-

nal archive and introduce a turbulence factor for increasing

the diversity of solutions.1 In this work, we propose the

use of the hypervolume contribution of archived solutions

for selecting each particle’s global and personal leaders,

and also as a mechanism for updating the external archive

when inserting new non-dominated solutions into it. These

mechanisms, acting together, had not yet been explored

in the context of MOPSO’s design to the authors’ best

knowledge. In reference [21] a hypervolume contribution is

proposed for guide selection only, while in [22] is used for

pruning archive solutions in the context of an ǫ-MOPSO.

Also, and in order to increase the diversity of solutions when

updating their positions, a mutation operator is adopted in

our proposed approach.

The remainder of this paper is organized as follows.

Section II presents some basic concepts of multi-objective

optimization. The proposed algorithm, called MOPSOhv, is

described in Section III. Section IV, defines the experimental

design used for validating our proposal. Section V reports the

validation of our proposed approach adopting standard per-

formance measures reported in the specialized literature. In

this section, we perform a small scalability study to analyze

the behavior of our proposed MOPSO when solving many-

objective optimization problems (i.e., MOPs with more than

3 objectives). Finally, Section VI provides our conclusions

and some possible paths for future research.

II. BASIC CONCEPTS

When solving MOPs, the aim is to find a set of decision

variable vectors which represents the best possible trade-

offs among all the objetives. The most commonly adopted

approach for solving MOPs is to compare solutions (i.e.,

decision variables) by using the Pareto dominance relation.

Some concepts regarding Pareto dominance are briefly de-

scribed next.

1This is helpful in terms of preventing premature convergence in the
presence of local Pareto fronts in MOPs.

Definition 1. Dominance: Given two decision variable vec-

tors ~x, ~y ∈ Rn and a function F : Rn → Rk, ~x dominates

~y (~x � ~y) if and only if ∀i ∈ {1, . . . , k}, fi(~x) ≤ fi(~y) and

∃j ∈ {1, . . . , k}fj(~x) < fj(~y), otherwise ~x � ~y

Within Pareto dominance, we can distinguish between

strong dominance and weak dominance.

Definition 2. Strong dominance: A solution ~x strongly

dominates ~y if ~x is strictly better than ~y in all objectives.

Definition 3. Weak dominance: A solution ~x weakly domi-

natess ~y if ~x is better than ~y in at least one objective and

is as good as ~y is all other objectives.

Neither type of Pareto dominance induces a total order in

Rk since some solutions may be incomparable. Therefore,

MOPs normally do not have a single solution but a set of

incomparable solutions which is called the Pareto optimal

set.

Definition 4. Pareto optimal set: In a MOP, the Pareto

optimal set P is defined as:

P =
{
~x ∈ Rk| ∀~y ∈ Rk~y � ~x

}
Definition 5. Pareto front: Given a MOP and its Pareto

optimal set P , the Pareto front is defined as:

PF = {~u = (f1 (~x) , . . . , fk (~x)) |~x ∈ P}

The Pareto front of a MOP is bounded by the ideal and

nadir objective vectors.

Definition 6. Ideal and nadir vectors: Given a MOP and its

Pareto optimal set P , the ideal objective vector is defined

as:

fideal =
(
inf

~x∈P
f1 (~x) , . . . ,

inf

~x∈P
fk (~x)

)
If the ideal objective vector represents an existing solution,

then the solution of the MOP is unique.

Analogously, the Nadir objective vector is defined as:

fnadir =
(
sup

~x∈P f1 (~x) , . . . ,
sup

~x∈P fk (~x)
)

III. OUR PROPOSED APPROACH

In our proposed approach, which is called Multi-Objective

Particle Swarm Optimizer based on hypervolume (MOP-

SOhv), the hypervolume contribution of archived solutions

(At) is incorporated first, to select the individuals that will

be considered as the global and personal leaders for each

particle in the swarm, and then, as a mechanism for inserting

new non-dominated solutions in the external archive, i.e.,

particles with the highest hypervolume contribution are kept

in the archive At, while particles with the least contribution

are deleted. We also adopt a mutation operator in order to

maintain diversity in the swarm when the position of the

particles is updated. This condition is meant to prevent the

swarm from prematurely converging to a single solution or

to a local Pareto front.
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A. The Algorithm

Algorithm 1 presents the pseudocode for our proposed

approach.

Algorithm 1: MOPSOhv

1 N , Swarm size ;
2 Gmax, maximum number of generations ;
3 PMUT mutation probability;
4 ω velocity inertia factor;
5 ϕ1 cognitive factor;
6 ϕ2 social factor;
7 t← 0 ;

8 Random Initialize ~x0

i
and ~v0

i
, i = 1, 2, . . . , N in swarm ;

9 Evaluate fj(~x
0

i
) , j = 1, 2, . . . , k ; i = 1, 2, . . . , N ;

10 A0 ← InitializeExternalArchive() ;
11 while t < Gmax do

12 HvContribution(At) ;

13 SortDecreasingHv(At) ;
14 for i = 1 to N do

15 gBestt
i
← RandomSelect(At, TOP ) ;

16 pBestt
i
← RandomSelect(At, BOT ) ;

17 ~vt+1

i
← UpdateV el(vt

i
, ω, ϕ1, ϕ2, gBestt

i
, pBestt

i
) ;

18 ~xt+1

i
← UpdatePos(xt

i
, vt+1

i
) ;

19 BoundParticle() ;
20 if t < (Gmax · PMUT ) then

21 MutateParticle(xt+1

i
) ;

22 end if ;

23 Evaluate fj(~x
t+1

i
) , j = 1, 2, . . . , k ;

24 end for ;
25 for i = 1 to N do

26 At+1 ← UpdateExternalArchiveHv(At, xt+1

i
) ;

27 end for ;
28 t← t+ 1 ;
29 end while

30 return Nondominanted solutions in external archive AGmax ;

The N particles that constitute the swarm are randomly

initialized in their positions and velocities and are eval-

uated in the k objective functions defined in the prob-

lem. From the initial swarm, the nondominated solutions

are copied and inserted into the initial external archive

A0 (procedure InitializeExternalArchive()). The main

loop of our proposed approach consists of the following

steps: The hypervolume contribution for each particle con-

tained in the external archive is first determined (procedure

HvContribution(At)). Then, these particles are sorted in

decreasing order with respect to their hypervolume con-

tribution (procedure SortDecreasingHv(At)). Once the

external archive is sorted, the global (gBestti) and personal

(pBestti) leaders are selected for each particle in the swarm.

The global leader is chosen from the top portion particles

(i.e., from the top 2%) of the sorted external archive At,

while the personal leader is chosen from the bottom portion

particles (i.e., the bottom 98%). With these leaders, each

particle in the swarm is updated in its velocity (procedure

UpdateV el()) and position (procedure UpdatePos()). The

new particle’s position must be bounded with respect to

the design space (procedure BoundParticle()). For this,

if particle xt+1
i goes beyond a boundary in any decision

variable, then it is reinserted into the design space by making

the decision variable to take the value of its corresponding

lower or upper boundary value and its velocity is multiplied

by -1 so that it searches in the opposite direction. The

final step in updating each particle is to apply a mutation

operator, which depends on a certain mutation probability

PMUT and the time in the evolutionary process (t). Once

all the particles have been updated in position and velocity,

they are evaluated in the objective functions defined in

the problem, and the new nondominated solutions in the

swarm are selected for updating the external archive At+1

(procedure UpdateExternalArchive()). In this final step,

it might happen that new solutions dominate existing archive

solutions, in which case the latter are deleted. However,

it might also happen that new solutions are nondominated

with respect to the entire external archive, and inserting a

new solution will overfill the predefined size of it. In this

later case, new nondominated solutions are inserted into

the external archive, which is then pruned to its maximum

allowable size, by deleting the particles which contribute less

to the hypervolume.

B. Hypervolume Contribution

For our proposed MOPSOhv, it is required to compute the

hypervolume contribution for each particle in the swarm. We

present next the definition of the hypervolume:

Definition 7. Hypervolume (Hv): Given a Pareto approx-

imation set PFknown, and a reference point in objective

space zref , the hypervolume estimates the non-overlaping

volume of all the hypercubes formed by the reference point

and every vector in the Pareto set approximation. This is

mathematically defined as:

HV = {∪ivoli|veci ∈ PFknown} (3)

veci is a nondominated vector from the Pareto set approx-

imation, and voli is the volume for the hypercube formed by

the reference point and the nondominated vector veci.

In the context of MOPs, the hypervolume measure is used

to assess both convergence and maximum spread of the

solutions for the approximation of the Pareto front obtained

with any MOEA. High values of this measure indicate that

the solutions are closer to the true Pareto front and that they

cover a wider extension of it.

The hypervolume contribution for a nondominanted solu-

tion in the approximated Pareto front can be estimated based

on its closest neighbors in each objective dimension [23].

Figure 1 shows an example of the hypervolume contribution

for a set of solutions in two dimensions. In this figure, the

dominated shaded area adjacent to each solution is defined

as the solution’s hypervolume contribution.

A naive way to compute the hypervolume contribution

for each solution, is to first compute the hypervolume of

the whole Pareto set approximation, and then compute the

correspondig hypervolume without the solution which the

contribution is computed for. It is important to note that

the extreme solutions are assigned an ∞-value contribu-

tion; otherwise, they are discarded in the selection process.

The hypervolume contribution calculation has a very high
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Fig. 1. Example of Hypervolume contributions.

computational cost with an increasing number of objectives

and with a high number of particles in the swarm. In this

regard, different alternative approaches have been proposed

to overcome this drawback. In our proposal we adopted the

algorithm for estimating the hypervolume contribution using

Monte Carlo simulations incorporated in HypE [24].

C. Reference point construction

The estimation of the hypervolume contribution needs a

reference point zref in objective space. Obvious options for

this point are the ideal and nadir vectors for a maximization

and minimization MOP, respectively. Since, in general we

do not know a priori these points for any given MOP,

it is common to approximate them, based on the current

approximation that we have of the Pareto front.

The approximation for the ideal vector is the minimum of

each objective:

(zref )ideal =
(
min
~x∈PFknown

f1 (~x) , . . . ,
min
~x∈PFknown

fk (~x)
)

where PFknown contains all the known nondominated

solutions to the MOP. The approximation for the nadir vector

is the maximum of each objective, and is obtained by taking

into account only the nondominated solutions in the current

Pareto front approximation:

(zref )nadir =
(
max
~x∈PFknown

f1 (~x) , . . . ,
max
~x∈PFknown

fk (~x)
)

During the evolutionary process, either the ideal or the

nadir reference points must be updated, whenever the Pareto

front approximation changes.

D. Selection of leaders

The selection of the global leader (gBest) for each particle

in the swarm’s primary population is considered to be a

crucial step in the design of any MOPSO, since it has

effects both in the convergence performance as well as

on the good spreading of nondominated solutions in the

Pareto front approximation for the algorithm. As indicated

Fig. 2. Sorted repository based on decreasing hypervolume contribution

values.

before, in MOPSOhv, a bounded external archive stores the

nondominated solutions found in previous iterations. We

note that any of these solutions can be used as the global

leader (gBest) for the particles in the swarm. However,

in our case, we wanted to ensure that the particles in the

primary population move towards the highest quality regions

of the search space. Thus, the global leader in MOPSOhv

is selected from the nondominated solutions having the

highest hypervolume contributions values. An ilustration of

this process is shown in Figure 2,

Another important aspect when designing a MOPSO is the

selection of personal leaders (pBest) for each particle in the

swarm. In MOPSOhv, the design motivation is to promote

better interaction for each particle by using the bottom part

of the sorted external archive repository, i.e., the selection

for the personal leader aims to promote the movement of

particles towards different regions with respect to the best

global solution.

E. Mutation operator

In our MOPSOhv, a mutation operator is included. This

operator was introduced due to its exploratory capability.

In our approach, the mutation operator acts by performing

more mutations at the early stages of the search process,

and we rapidly reduce its use over time. This sort of

mutation operator has been found to be very effective in

other MOPSOs [15], [16].

IV. PERFORMANCE ASSESSMENT

Our proposed MOPSOhv was validated using 12 test

problems from the Zitzler-Deb Thiele (ZDT) [25] and the

Deb-Thiele-Laumanns-Zitzler (DTLZ) [26] test suites. These

MOPs were adopted with the settings shown in Table I.

We compared our approach with respect to NSGA-II [7]

(which is a Pareto-based MOEA), SMS-EMOA [8] (which is

a hypervolume-based MOEA) and MOPSOcd [16] (which is

a Pareto-based MOPSO representative of the state-of-the-art

in the area).
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TABLE I
TEST PROBLEM SETTINGS.

Problem # variables # objetives

ZDT1-3 30 2

ZDT4,6 10 2

DTLZ1 13 3

DTLZ2-6 12 3

DTLZ7 22 3

A. Parameters Settings

We performed 20 independent runs for each algorithm

with the parameters shown in Table II. The four MOEAS

adopted a population size of 100 individuals, an archive size

with 100 solutions and were run for 1200 generations.

TABLE II
PARAMETERS USED FOR EACH MOEA.

MOPSOcd MOPSOhv NSGA-II SMS-EMOA

ω = 0.4 ω = 0.4 Pc = 0.9 —

pm = 0.5 pm = 0.5 Pm = 1

~x
Pm = 1

~x

ϕ1 = 1 ϕ1 = 1 nc = 20 nc = 20
ϕ2 = 1 ϕ1 = 1 nc = 20 nc = 20

The algorithm MOPSOcd selects the global leader from

the top 10% sorted archive and replaces one of the non-

dominated solutions in the bottom 10% of the archive.

Our proposed MOPSOhv selects the global leader from

the top 2% portion of the archive, and the local leader

from the remaining 98% sorted archive. Particle replacement

in the archive deletes the least hypervolume contributing

particle when the maximum allowable size of the archive

is exceeded. The outcome sets for the diferent MOEAs

were compared using the following performance measures:

spread [7] (Is), inverse generational distance IGD [27]

(IGD), and hypervolume [28] (Ihv) The reference points

adopted for the hypervolume indicator are shown in Table III

for each of the MOPs solved.

TABLE III
REFERENCE POINTS USED FOR COMPUTING THE HYPERVOLUME.

Problem Reference point (zref )

ZDT1-3 6 (1.1, 1.1)
ZDT4 (0.9, 1.1)
DTLZ1,2,4-6 (1.1, 1.1, 1.1)
DTLZ3 (5.0, 5.0, 5.0)
DTLZ7 (1.1, 1.1, 7.0)

V. ANALYSIS OF RESULTS

In this section, we present the comparison of the results

obtained by the different MOEAs previously indicated in

the selected MOPs. A summary of our results is shown in

Tables IV, V and VI for the different performance indicators

adopted. In these tables, the mean and standard deviation are

reported for each performance measure and for each MOP.

Regarding spread (Is), lower values indicate better per-

formance for a given MOEA. From Table IV, it can be

observed that SMS-EMOA is the best performer, obtaining

the best value in eleven of the twelve MOPs adopted in our

study. Our proposed approach ranks second in six MOPs, it

ranks third in four MOPs, and it ranks fourth in only two

MOPs. From these results and with respect to the spread of

solutions, we can conclude that our proposed approach is

competitive with respect to SMS-EMOA and is better than

NSGA-II and MOPSOcd.

With respect to the inverted generational distance (IGD),

lower values also indicate better performance for a given

MOEA. From Table V, we can observe that NSGA-II ranks

first in seven MOPs, SMS-EMOA in three MOPs, and

MOPSOcd in two MOPs. Our proposed approach ranks third

in seven MOPs. Since the IGD indicator measures conver-

gence for a given MOEA, we can conclude that our approach

is not better than the others in terms of convergence, but the

values that it reached are reasonably good. So, we claim that

it is competitive in terms of convergence.

Finally, with respect to the hypervolume indicator (Ihv),

higher values indicate better performance for a given MOEA.

From Table VI, it can be observed that SMS-EMOA ranks

first in nine of twelve MOPs. Our proposed approach ranks

second in four MOPs, third in three MOPs, and fourth in

four MOPs. These results somehow reinforce our previous

claims, since hypervolume assesses both convergence and

spread. The resuls obtained by our approach indicate that it

is competitive with respect to the other MOEAs adopted for

our comparative study.

It is important to note that in our approach, the hyper-

volume is estimated, and not calculated in an exact manner

as done by SMS-EMOA. Because of this, it was expected

that our proposed approach would have a lower performance

than SMS-EMOA. These hypervolume estimations, however,

produce important savings in terms of computational time,

as will be seen next.

We illustrate this reduction in performance by showing

two graphical approximations for the Pareto fronts in solving

DTLZ2, DTLZ4, and DTLZ7. In Figure 3, correspondig to

DTLZ2, we can observe that SMS-EMOA attains a good

convergence and distribution of solutions along the Pareto

front. Our approach has a better convergence as compared

to MOPSOcd, and is able to cover a wider area of the

Pareto front as compared to NSGA-II. In Figure 4, we also

observe that SMS-EMOA is able to attain good convergence

and a good distribution of solutions along the Pareto front

approximation. For this MOP, our approach performed worst

in terms of the spread of solutions as compared to MOPSOcd

and NSGA-II. However, our proposed approach has a better

convergence ability, but solutions are clustered toward the

boundaries of the true Pareto front. A similar behavior is

observed in other MOPs such as DTLZ7 (see Figure 5).

This reduced performance in solving some MOPs deserves

a further investigation, and will be part of our future work.

It is well-known that the exact computation of the hy-

pervolume contribution used in SMS-EMOA hinders its use

in many-objective optimization problems (i.e., in problems

having more than 3 objectives), due to its unaffordable com-

putational cost in those cases. In this regard, our approach,
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TABLE IV
COMPARISON OF THE RESULTS OBTAINED FOR Is BY NSGA-II, SMS-EMOA,

MOPSOCD AND OUR PROPOSED MOPSOHV FOR THE ZDT AND DTLZ TEST

PROBLEMS.

Problem

MOPSOhv MOPSOcd NSGA-II SMS-EMOA

mean mean mean mean

(σ) (σ) (σ) (σ)

ZDT1
0.003524 0.006962 0.007020 0.002320

(0.000305) (0.000362) (0.000447) (0.000270)

ZDT2
0.004679 0.007014 0.006956 0.004063

(0.000217) (0.0005170) (0.000610) (0.000543)

ZDT3
0.006248 0.007656 0.007875 0.002209

(0.000328) (0.000425) (0.000565) (0.000165)

ZDT4
0.004679 0.007014 0.008052 0.002492

(0.000217) (0.000517) (0.000616) (0.000240)

ZDT6
0.001975 0.115691 0.007055 0.000603

(0.000324) (0.053160) (0.000437) (0.000181)

DTLZ1
0.081790 0.974734 0.019360 0.006947

(0.045829) (0.295577) (0.002384) (0.001461)

DTLZ2
0.056173 0.052077 0.055460 0.042716

(0.012780) (0.005154) (0.005003) (0.001942)

DTLZ3
1.759328 2.143857 0.056032 0.043889

(1.322038) (0.915538) (0.004531) (0.009394)

DTLZ4
0.047999 0.056542 0.051862 0.042030

(0.021016) (0.002922) (0.013087) (0.001928)

DTLZ5
0.016552 0.008436 0.009727 0.008763

(0.005419) (0.000610) (0.000757) (0.000463)

DTLZ6
0.158278 0.343938 0.020970 0.013185

(0.026187) (0.052728) (0.004354) (0.002414)

DTLZ7
0.085100 0.114527 0.068548 0.057420

(0.025882) (0.112693) (0.009758) (0.005603)

TABLE V
COMPARISON OF THE RESULTS OBTAINED FOR IIGD INDICATOR BY NSGA-II,

SMS-EMOA, MOPSOCD AND OUR PROPOSED MOPSOHV FOR THE ZDT AND

DTLZ TEST PROBLEMS.

Problem

MOPSOhv MOPSOcd NSGA-II SMS-EMOA

mean mean mean mean

(σ) (σ) (σ) (σ)

ZDT1
0.017014 0.017173 0.017011 0.017009

(0.000003) (0.000036) (0.000003) (0.000001)

ZDT2
0.027391 0.027497 0.027387 0.027386

(0.000001) (0.000015) (0.000001) (0.000000)

ZDT3
0.011198 0.011492 0.011166 0.019892

(0.000012) (0.000064) (0.000016) (0.000001)

ZDT4
0.027391 0.027497 0.017011 0.017011

(0.000001) (0.000015) (0.000002) (0.000004)

ZDT6
0.027434 0.000281 0.026356 0.027395

(0.000046) (0.000000) (0.003115) (0.000002)

DTLZ1
0.013359 0.269641 0.001261 0.006088

(0.011381) (0.080597) (0.001148) (0.001259)

DTLZ2
0.000806 0.000383 0.000380 0.005000

(0.000611) (0.000022) (0.000018) (0.000000)

DTLZ3
0.594644 0.630432 0.001235 0.016425

(0.302257) (0.323953) (0.000083) (0.003406)

DTLZ4
0.006694 0.001208 0.001875 0.015606

(0.002366) (0.000037) (0.003071) (0.000000)

DTLZ5
0.000439 0.000054 0.000069 0.009901

(0.000390) (0.000002) (0.000005) (0.000000)

DTLZ6
0.009931 0.036889 0.000648 0.010786

(0.002293) (0.012547) (0.000236) (0.000231)

DTLZ7
0.002800 0.001558 0.001123 0.015064

(0.001392) (0.000205) (0.000957) (0.002691)

which uses a Monte Carlo estimation of the hypervolume

contribution could be a viable choice for dealing with such

many-objective problems. In order to assess this, we present

next a small scalability test.

A. Many-objetive Optimization: A Case Study

In order to evaluate the ability of our proposed approach to

deal with many-objective optimization problems, we scaled

the DTLZ2 test problem from 2 to 10 objectives. As before,
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Fig. 3. Graphical results for DTLZ2.
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TABLE VI
COMPARISON OF THE RESULTS OBTAINED FOR Ihv BY NSGA-II, SMS-EMOA,

MOPSOCD AND OUR PROPOSED MOPSOHV FOR THE ZDT AND DTLZ TEST

PROBLEMS.

Problem

MOPSOhv MOPSOcd NSGA-II SMS-EMOA

mean mean mean mean

(σ) (σ) (σ) (σ)

ZDT1
0.871849 0.864645 0.870461 0.872129

(0.000095) (0.001562) (0.000206) (0.000006)

ZDT2
0.538568 0.532098 0.537424 0.538872

(0.000058) (0.000882) (0.000148) (0.000015)

ZDT3
0.952907 0.941991 0.953912 0.522464

(0.000452) (0.002510) (0.000145) (0.000001)

ZDT4
0.328971 0.324090 0.653614 0.654940

(0.000052) (0.000668) (0.000237) (0.000165)

ZDT6
0.512122 0.383107 0.519667 0.503956

(0.002083) (0.076527) (0.117011) (0.000093)

DTLZ1
0.838140 N/A 1.270538 1.295857

(0.351522) (N/A) (0.016839) (0.039586)

DTLZ2
0.626972 0.669615 0.697212 0.758091

(0.046583) (0.019100) (0.007736) (0.000047)

DTLZ3
N/A N/A 123.673815 124.221079

(N/A) (N/A) (0.295556) (0.878873)

DTLZ4
0.548703 0.688920 0.674632 0.758069

(0.117426) (0.010033) (0.127135) (0.000050)

DTLZ5
0.428426 0.438852 0.437990 0.439374

(0.010028) (0.000056) (0.000223) (0.000011)

DTLZ6
0.000391 N/A 0.361529 0.340557

(0.000277) (N/A) (0.028920) (0.024323)

DTLZ7
2.608814 2.648845 2.974631 5.456793

(0.123164) (0.072522) (0.091615) (0.168653)

we compared the performance of our proposed approach

with respect to NSGA-II, SMS-EMOA and MOPSOcd. The

parameters used in this case are the same values reported in

Section IV-A.

The outcome sets for the algorithms were compared using

the hypervolume (Ihv) indicator, using ~1.1 as the reference

vector (zref ). Additionally, the running time for different

MOEAs compared is reported. We can see in Table VII

and in Figure 6 how, as expected for Pareto-based MOEAs,

NSGA-II and MOPSOcd have both a quick performance

degradation (with respect to the hypervolume) as we increase

the number of objectives. This does not occur with SMS-

EMOA nor with our proposed MOPSOhv. SMS-EMOA at-

tains better solutions than our proposal, but at a much higher

computational cost, see Figure 7. In these experiments, the

use of SMS-EMOA was limited to four objectives, due to

the exponential increase in its computational cost. From

these results, we can see how our proposed MOPSOhv is

a viable alternative for solving many-objective optimization

problems, since its computational cost remains affordable

even when dealing with ten objectives. In fact, our approach

was able to improve the quality of the solutions obtained as

the number of objectives was increased.

VI. CONCLUSIONS AND FUTURE WORK

Since the leaders selection strategy strongly influence the

performance of multi-objective particle swarm optimizers,

we have proposed here a mechanism based on the hypervol-

ume contribution of the archived particles for this sake. Also,

and due to the high computational cost involved in evaluating

exact hypervolume contributions we approximated them

using Monte Carlo simulations. From the experiments per-

TABLE VII
COMPARISON OF THE RESULTS OBTAINED FOR Ihv BY NSGA-II, SMS-EMOA,

MOPSOCD AND OUR PROPOSED MOPSOHV FOR DTLZ2 USING FROM 2 TO 10

OBJECTIVES. THE AVERAGE EXECUTION TIMES ARE ALSO REPORTED.

Objectives

MOPSOhv MOPSOcd NSGA-II SMS-EMOA

mean mean mean mean

(σ) (σ) (σ) (σ)

avg time (s) avg time (s) avg time (s) avg time (s)

2

0.420962 0.420372 0.419588 0.421023

(0.000031) (0.000037) (0.000323) (0.00003)

150.6620 87.2790 1.4545 75.2620

3

0.644946 0.667862 0.697689 0.758071

(0.030303) (0.024190) (0.009213) (0.000056)

241.3620 106.2830 1.6804 1066.4680

4

0.649871 0.000000 0.834518 1.044734

(0.046065) (0.000000) (0.019843) (0.000030)

239.3730 145.4090 1.8407 11149.0560

5

0.686608 0.000000 0.806271 N/A

(0.091850) (0.000000) (0.075088) (N/A)

280.1500 170.2110 2.0637 N/A

6

0.768027 0.000000 0.195606 N/A

(0.106912) (0.000000) (0.133364) (N/A)

327.2390 247.5470 2.2874 N/A

7

0.897171 0.000000 0.146724 N/A

(0.059289) (0.000000) (0.119704) (N/A)

529.7890 288.0450 2.5823 N/A

8

0.923948 0.000000 0.185958 N/A

(0.098939) (0.000000) (0.088435) (N/A)

582.9530 325.6510 2.8558 N/A

9

0.894945 0.000000 0.212041 N/A

(0.098291) (0.000000) (0.124973) (N/A)

653.3080 395.4500 3.0805 N/A

10

1.080952 0.000000 0.224003 N/A

(0.085351) (0.000000) (0.127577) (N/A)

382.7230 335.1710 3.2584 N/A
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formed, it can be seen that our proposed approach produces

competitive results in low dimensionality and it outperforms

state-of-the-art MOEAs in high dimensionality while keep-

ing a low computational cost. Thus, we suggest its use

mainly for solving many-objective optimization problems.

As part of our future work, we plan to test different

schemes and topologies for the global and local leader

selection schemes of our approach. We would also like to use

different density estimators in the deletion process adopted in

the external archive update mechanism. Finally, we are also

interested in analyzing the reasons for which our approach

has problems to converge in some test problems.
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