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Abstract—In the past years Particle Swarm Optimization
(PSO) has gained increasing attention for engineering and real-
world applications. Among these, the design of antennas and
electromagnetic devices is a well-established field of application.
More recently, Social Network Optimization (SNO) has been
introduced, inspired by the recent explosion of social networks
and their capability to drive people’s decision making process
in everyday life. “Black-hole” is a novel operator, which is here
considered for both PSO and SNO. It is based on the concept
of repulsion among agents when they get stuck in local optima.
The design of a planar array antenna is here addressed in order
to assess its performances on a benchmark EM optimization
problem. Reported results show its effectiveness in dealing with
antenna optimization.

I. INTRODUCTION

The optimization of electromagnetic devices is usually a dif-
ficult task since the interaction of many parameters, complex
boundary conditions, and width/peak gain relation [1]. Among
these the design of antennas and micro to sub-millimetre wave
components is a potential field of application. In this field,
multi-objective problems are quite common: in these cases
there is no a single solution, but the real challenge is to find
a good trade-off solution that represents the best compromise
among the considered objectives. To address this complexity,
the use of Evolutionary Optimization algorithms it is now well
assessed also in the Antennas community [2], where the most
known procedures are Genetic Algorithms (GA) and Particle
Swarm Optimization (PSO).

In this paper a new operator suitably developed for the PSO
method, namely the Black-hole operator, is presented and its
performances are assessed over classical benchmark functions
and antennas problems. Moreover, its application is extended
also to another evolutionary algorithm, recently developed,
namely the Social Network Optimization (SNO). The new
proposed approaches are called Black-Hole PSO (bhPSO) and
Black-Hole SNO (bhSNO).

II. BASIC PSO ALGORITHM

Particle Swarm Optimization (PSO) is a well known evo-
lutionary algorithm based on a model of social interaction
between independent agents (particles) that uses social knowl-
edge (also called swarm intelligence, i.e. the experience ac-
cumulated during the evolution) in order to find the global
maximum or minimum of a function [3]. This computational

technique, adopts a pseudo-biological approach and takes its
origin from the simulation of social behaviors such as those
related to synchronous bird flocking and fish schooling; it is
similar to other population-based algorithms, like GAs, but
it operates emulating social interaction between independent
agents and utilizes swarm intelligence to achieve the goal
of optimizing a specific fitness function in a way easy to
understand and implement [4]. In fact, any set of coordinates
in the M -dimensional space is a particular position of an agent
and represents a solution; it corresponds to a particular value
of the fitness function. Each particle also has an associated
velocity, that takes into account the best position reached by
all ones and the best position, resulting in a migration of the
swarm towards the global optimum.

The standard PSO algorithm is an iterative procedure in
which a set of i = 1, . . . , Np particles, or agents, are
characterized by their position ~Xi and velocity ~Vi, defined
in the M -dimensional space domain of a cost function F ( ~X).

At the beginning positions and velocities have completely
random values ~X0

i and ~V 0
i , then they are updated iteratively

according to the rules:
~V k+1
i = ωk

~V k
i + φη1(~Pi − ~Xk

i ) + φη2(~G− ~Xk
i ) (1)

~X
(k+1)
i = ~X

(k)
i + ~V

(k+1)
i (2)

where ~Pi the best position so far attained by particle i itself
(personal knowledge) and ~G is the best position so far attained
by the whole swarm (social knowledge); ωk is a friction factor
slowing down particles (it can depend on k, as shown in [5]),
η1 and η2 are positive parameters tuning the pulls towards the
personal and global best positions and φ is a random number
of uniform distribution in the [0, 1] range.

III. BLACK-HOLE PSO
As previously reported [1], standard PSO usually gets stuck

because exploitation outperform exploration and, when a local
best is found, there is a high probability of bouncing around
this point. In fact the agent that found this point has two out
of three vectors pointing the same point, which is, indeed, its
own personal best (~Pi) and global best (~G).

In order to improve the algorithm’s exploration capability,
black-hole concept is here introduced; its main ideas (briefly
summarized in Figure 1) are the following:
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Fig. 1. A view of the black-hole operator here proposed and implemented with variable weight concept.

• Around the global best a suitable hyper-sphere can be
defined (radius ρ);

• Every particle moving within the hyper-sphere around the
global best is then randomly reinitialised in the parameter
space.

Moreover, the introduced variation affects the usual velocity
update rule: which is updated as:

~V k+1
i = ωk

~V k
i + wp(~Pi − ~Xk

i ) + wg(~G− ~Xk
i ) (3)

where ~P is the position of the best value found by the single
particle, wp is its weighting coefficient, ~G is the position
of the best value found by all agents, wg is its weight. It
is worth noticing that, since random search (i.e. exploration)
is guaranteed by the new Black-Hole operator, having other
random coefficient φ is useless.

In particular, in our black-hole implementation, a variable
weight system can be introduced: since global best stagnation
is avoided by the black hole it is better to use an high value
for wg , but this is not good at an early stage of search. In fact
only “stable” best should attract the particles. So it is good
having a low wg value in the beginning and then making it
increase with iterations. After a certain number of iterations
in which the global best is stable, we can assume that all the
information linked to that point has been used, so we should
explore other parts of the domain, similarly to the concept
of implicit restart introduced firstly in [6]. To help this, the
global best weight starts lowering and becomes negative, thus
rejecting other particles from its region. Every time a new
global best is found the cycle starts over.

Of course, a new randomly generated position can easily be
slightly worst than the best one found so far; nevertheless, it
could contain more useful information than the current global
best, thus we should give a chance to these new points to be
considered. This is provided by increasing (or decreasing if
we are founding a maximum) the value of the stored global
best cost by a small percentage during the last part of the
procedure shown in Figure 1.

In the following figures, a preliminary analysis of the per-
formances of bhPSO compared to traditional PSO is presented:
in particular, the considered functions are Ackley (Figure 2)
and Rastrigin (Figure 3) with a M = 10 dimension space
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Fig. 2. bhPSO and PSO performances over the Ackley benchmark function
(Average over 20 independent trials; M = 10).

and 50 individuals. The benchmark functions are those made
available on Prof. D. Simon’s website [7].

IV. BASIC SNO ALGORITHM

In the last decade, the diffusion of multimedia platforms
Internet connection and Social Networks have dramatically
modified the human life style with a direct impact on everyday
life behavior and decisional process. This context has affected
different research fields as for example computer science,
economy and sociology creating novel paradigms inspired by
social networks with interesting results related to pervasive
diffusion of heterogeneous data and an increasing capacity in
computation and information exchange.

To address this complexity, after creating a hybrid method
between GAs and particle swarms ten years ago, the authors
recently created the SNO algorithm as a population based
algorithm inspired to the social network knowledge sharing
and decision making process.

The optimization process of engineering problems in many
fields of science is a complex task since the interaction
between multiple physical parameters and not trivial boundary
conditions affect the structure of the objective function and
related algorithm convergence. In order to face this complexity,
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Fig. 3. bhPSO and PSO performances over the Rastrigin benchmark function
(Average over 20 independent trials; M = 10).

the authors introduced a new algorithm called SNO, first
presented in [8] in a simplistic way and further developed
to enhance its performance, essentially built as a population
based algorithm inspired to the social network knowledge
sharing and emulating the decision making process recently
introduced by these networks.

In this algorithm in fact, each individual represents a social
network member characterized by a proper social environment
(a specific position in the solution space), a proper character,
a personal reputation recognized by his group and a personal
interest which can be compared to a sort of taste or liking
shared among his relational network. The personal interest can
be seen as preferred direction in the space domain due to both
stronger and weaker characters or particular opinion leaders.

In the SNO population, each single individual has his per-
sonal life style as in the any day life of every people. Besides,
any single person, which accumulates experience during his or
her life, can be influenced by interaction with other members
of the social network, in particular by some opinion leader
that frequently have eccentric characters. Thus each person
is described by the surrounding social environment and its
personal character, and both these elements change during the
time due to aging and multiple interactions. The combination
of social environment and personal propensity or taste can be
considered as experience which leads actions in all our lives
and can certainly evolve during time in a dynamic context.
Moreover, nowadays this lived experience is often shared in
social networks in order to avoid mistakes, suggest places to
visit, express likes and dislikes.

Therefore the social network has two main impacts: the
knowledge sharing and the influence on other peoples choice:
this means that in the social network environment all the
situations shared and previously evaluated by other people
can influence the way a person choose and act in the future.
The SNO operators emulates also the past experiences that
are published on common social networks and we call this

Fig. 4. A flowchart description of basic SNO operators

characteristic as memory.
The flow chart in Figure 4 represent how SNO change the

characteristics of the agents during run time. It also summarize
the main aspect of SNO such as situation, memory, ranking
groups and influencers, explained in detail in [9].

V. BLACK-HOLE SNO

To emulate social networks’ behavior different operators
have been previously introduced in SNO algorithm [9], [10]. In
this section we describe the option of an additional one in order
to test the relative algorithm behavior. The most important
operator for SNO was the personal character c whose role
explains the interaction between people among a social group,
but in this paper a Black-Hole operator was introduced and
tested to be compared with the PSO case.

When in SNO algorithm a black-hole operator is introduced
to test its efficiency a potential improvement can be found in
the performance. The operator changes the rule of attraction
towards solutions that are stored since more than an arbitrary
value of t1 iterations. Normally the rule of attraction for a
specific solution can be written as:

att = pinfl − p (4)
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where att is the attraction operator, p the position of attracted
solution in the domain and pinfl the position of influencer.
The Black-Hole operator modifies the eq. 4 in:

att = − cr

pinfl − p
(5)

A full simulation campaign was performed with different
values of cr and t1 and in some cases the introduction of BH
operator improved the overall performance even if the authors
observed its efficiency is greater in PSO case.

VI. ELECTROMAGNETIC APPLICATION AND CONCLUSION

In this paper, the proposed algorithm has been used for the
optimization of the array factor of a planar array. The con-
sidered geometry consists of (2Ne + 1)× (2Ne + 1) identical
elements whose position and excitation (both amplitude and
phase) are free to vary.

As shown in [1], each element is characterized by its
excitation Ii,j and position (xi,j , yi,j), with i = −Ne, . . . , Ne

and j = −Ne, . . . , Ne.
The array is considered symmetrical both on x and y,

therefore Ii,j = I−i,j = I−i,−j = Ii,−j , xi,j = −x−i,j =
−x−i,−j = xi,−j , and yi,j = y−i,j = −y−i,−j = −yi,−j .

For what concerns position optimization constraints, we
chose xi ∈ [xmin

i , xmax
i ] with:

xmin
i = i · λ/2 (6)

xmax
i = i · λ (7)

The central element is taken as a reference and is characterized
by x0 = 0, a0 = 1 and β0 = 0.

The aim of the optimization is to design a 11×11 BS array
(Ne = 6) with a θ3dB/2 = 3.8◦ and a side lobe level (SLL)
envelope below -20 dB for θ > 9◦. This is of course a multi-
objective problem and the cost function has been defined to
take into account both objectives by considering 90 sampling
points in the far-field pattern.

Dealing with the planar array optimization, Figure 5 shows
the array factor of an optimized configuration in φ = 0◦ and
45◦ planes. The array factor in the φ = 90◦ plane is identical
to the one in the φ = 0◦ plane due to symmetry reasons, as
shown in Figure 6.

It is worth noticing that trying to achieve this array pattern
with only 11 × 11 elements leads to a total number of
elements equal to 121, much lower than the number of 144
requested by an equivalent Tseng-Cheng array [11], as shown
in [1], with a corresponding significant reduction in array
and feeding network complexity. These preliminary reported
results confirm the effectiveness of the application to PSO
of the newly developed Black Hole operator in addressing
complex EM optimization problems.
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Fig. 5. Resulting array factor

Fig. 6. 3D array factor

REFERENCES

[1] S. Selleri, M. Mussetta, P. Pirinoli, R.E. Zich, L. Matekovits, “Differ-
entiated meta-PSO methods for array optimization”, IEEE Transactions
on Antennas and Propagation, Vol. 56, No. 1, 2008, pp. 67–75.

[2] M. Mussetta, F. Grimaccia, R.E. Zich, “Comparison of different op-
timization techniques in the design of electromagnetic devices”, 2012
IEEE Congress on Evolutionary Computation (CEC), Brisbane, QLD,
June 2012.

[3] J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kaufmann: San
Francisco, CA, 2001.

[4] R.C. Eberhart, Y. Shi, “Comparison between genetic algorithms and
particle swarm optimization”, Proc. of 7th Annual Conf. Evol. Program,
pp. 611–616, Mar. 1998.

[5] R.C. Eberhart, Y. Shi, “Particle swarm optimisation: developments,
applications and resources”, Proc. of Congress on Evolutionary Compu-
tation, pp. 81-86, 2001.

[6] L. Matekovits, M. Mussetta, P. Pirinoli, S. Selleri, R.E. Zich, “Particle
swarm optimization of microwave microstrip filters”, 2004 IEEE AP-S
Symposium Digests, Monterey (CA), 20–26 June 2004.

[7] D. Simon, “Biogeography-Based Optimization,” IEEE Transactions on
Evolutionary Computation, Vol. 12, No. 6, pp. 702–713, December
2008.

1915



[8] R. Albi, F. Grimaccia, M. Mussetta, A. Niccolai, R.E. Zich, “A new
algorithm for antenna optimization in aerospace applications: The sound-
ing rocket test case”, International Conference on Electromagnetics in
Advanced Applications, ICEAA 2013, pp.1537–1540, 9–13 Sept. 2013.

[9] F. Grimaccia, M. Mussetta, A. Niccolai, P. Pirinoli, R.E. Zich, “Recently
Developed Social-based Algorithms for Antennas Optimization”, IEEE
International Conference on Numerical Electromagnetic Modeling and
Optimization, Pavia (Italy), 14–16 May 2014.

[10] R. Albi, F. Grimaccia, M. Mussetta, A. Niccolai, R.E. Zich, “SNO
Design of Microstrip Antennas for an Experimental Rocket”, Proc. of
the 8th European Conference on Antennas and Propagation (EuCAP),
The Hague, NL, April 2014.

[11] F.I. Tseng, D.K. Cheng, “Optimum scannable planar arrays with an
invariant side lobe level,” IEEE Proc., Vol. 56, Nov. 1968, pp. 1771–
1778.

1916




