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Abstract—In this work, we extend GAMI (Genetic Algorithms
for Motif Inference), a de novo motif inference system, to find
sets of motifs that may function as part of a cis-regulatory
module (CRM) using a comparative genomics approach. Ev-
idence suggests that most transcription factors binding sites
are part of a CRM, so our new approach is expected to
yield stronger candidates for de novo inference of candidate
regulatory elements and their combinatorial regulation of genes.
Thanks to our genetic algorithms based approach, we are able
to search relatively large input sequences (100,000nt or longer).
Most current computational approaches to identifying candidate
CRMs depend on foreknowledge of the processes that the genes
they regulate are involved in. In comparison with one leading
method, Cluster-Buster, our prototype de novo approach, which
we call GAMI-CRM, performed well, suggesting that GAMI-
CRM will be particularly useful in predicting CRMs for genes
whose interactions are poorly understood.

I. INTRODUCTION

A cis-regulatory module (CRM) is a region of noncoding
DNA that regulates the function of a gene. Specific transcrip-
tion factor binding sites are grouped within the region and act
together to affect gene expression [1]. This allows relatively
few transcription factors to participate in complex differential
expression patterns of a larger number of genes [2]. Therefore,
knowledge of CRMs is an important part of understanding
gene regulatory networks and disease.

In this work, we build on a motif inference system, de-
veloped in prior work, called GAMI (Genetic Algorithms
for Motif Inference) [3], [4]. GAMI is used for de novo
identification of candidate regulatory elements in noncoding
DNA. GAMI uses a genetic algorithms (GA) search to identify
patterns (motifs) that recur in multiple sequences that are being
compared. These sequences are noncoding DNA upstream
from orthologous genes in divergent species. Conservation
among species with common ancestors is often used as an
indicator of possible functional regions, since such regions
should be under selective constraint.

In this paper, we demonstrate how our new prototype tool,
GAMI-CRM, discovers clusters of motifs that can be used
to predict CRMs. In the remainder of this paper, Section
II explains relevant background, including characteristics of
CRMs and computational approaches. Section III describes
the system design of GAMI-CRM. Section IV explains our
research methodology, including the data curated for this
work and the experimental design. Section V presents the

results; Section VI discusses the implications of the results,
and Section VII describes future work.

II. BACKGROUND

A CRM acts as a unit in regulating the function of a gene
[5], and it is therefore desirable to identify a CRM as a whole,
in addition to the individual binding sites within it. However,
successful prediction requires that CRMs have features that
distinguish them from surrounding, non-regulatory, sequence.
Despite the importance of CRMs, their characteristics are not
yet well understood. The task of distinguishing noncoding
regulatory DNA from non-regulatory DNA is challenging,
from either a computational or biochemical perspective. Until
more CRMs are validated, knowing their common properties
is difficult, but without accurate predictions it is challenging
to validate more CRMs.

The largest database of validated CRMs is RedFly [1],
which contains hundreds of validated Drosophila CRMs. A
study of confirmed CRMs in the RedFly database [6] found
certain characteristics in common among many of them.
These include elevated GC content, conservation, and dense
clustering of TFBSs. Other work has shown that combinations
of biochemical markers are strong indicators of CRMs [7].

A. Approaches to Identifying CRMs

There have been numerous attempts to develop methods of
identifying CRMs, as reviewed in [8], [2], [7], in addition to
our own approach [9]. Generally speaking, these approaches
look for conservation of noncoding DNA, clustering of known
transcription factor binding sites (TFBSs), or biochemical
markers (such as histone modification) [7]. Although each of
these approaches has merit, they each have limitations.

Known CRMs tend to be more highly conserved across
related species than other noncoding DNA [2], [6]. Within
a CRM, the individual TFBSs show even higher conservation
[2]. However, CRMs vary considerably in length. Most CRM
predictors that use conservation examine a set of multiple
alignments using a fixed window size for the CRM. With
this approach, CRMs with fewer binding sites may cause a
window to have seemingly low overall conservation, when
in reality the window is too large. This may help explain
why such alignments fail to detect a number of CRMs [7].
An additional limitation of alignments is that they are unable
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to consider CRMs in which the binding sites may occur in
different orders [8].

Although individual binding sites can occur at random, this
is significantly less likely to happen for clusters of binding
sites [10], making such clusters a potentially useful filter
for detecting CRMs. However, most systems that look for
clusters of TFBSs are capable of searching only for known
sites. These sites are frequently described as position weight
matrices (PWMs), which are compiled by comparing known
sites from multiple DNA sequences (often across species).
They are essentially a table of how frequently a nucleotide
occurs at each location in a transcription factor binding site
throughout the sequences. Therefore, to use a system that scans
for known TFBSs, one must obtain PWMs that describe the
sites to search for. This in turn means that one must have
some understanding, in advance, of how a gene is regulated to
use this technique. Although large databases of PWMs, such
as TRANSFAC [11], do exist, loading all available PWMs
into a system can lead to many false positives and potentially
interfere with the discovery of the true CRMs [12]. However,
if the number of PWMs used is too small, CRMs containing
some unknown sites will appear to have less dense clustering
and may not be detected. Currently, this approach has shown
limited success [2].

Biochemical prediction is based on using epigenetic features
such as histone modification marks and CHiP-seq data to
predict CRMs. When data is available, this can be highly
effective [7]. However, CHiP-seq depends on antibodies being
available for the transcription factors in question, which is
often not the case. Additionally, proteins frequently bind
only in certain tissues or at specific developmental stages,
which may require numerous experiments depending on the
research question. This means the time and cost associated
with this approach may be prohibitive unless the data are
already available. Furthermore, some criticism has emerged
that binding of a transcription factor in itself does not show
regulation of a gene and that functional elements should be
conserved as well [13].

B. Cluster-Buster

A full review of CRM prediction tools is beyond the scope
of this article. Above, we have outlined some of the general
principles and challenges of prediction. Here, we discuss a
method that is representative of the approach common to
nearly all tools: scanning sequences against a library of PWMs.

Cluster-Buster is a single sequence approach [14]. It follows
Cister [15] and COMET (Clusters of Motifs E-value Tool)
[16], which were developed by the same research group. As
its name implies, it searches for clusters of transcription factor
binding sites, attempting to find regions that can be statistically
differentiated from the background sequence using a hidden
Markov model (HMM). Cluster-Buster uses a heuristic ap-
proach that completes in time linear with the length of the
input, rather than searching for every possible cluster. Despite
the fact that its last update was in 2007, Cluster-Buster remains
a competitive choice. In a review in 2010 [8], Cluster-Buster

was one of the top performers, despite the fact that it does not
use conservation as part of its prediction.

C. De Novo CRM Inference

A few other de novo CRM inference systems do exist.
Examples include an evolutionary Monte Carlo method known
as EMCModule [17], a Gibbs sampling method [18], and a
Bayesian approach known as Cis-Module [19], in addition
to our own approach, GAMMI [9]. Each of these projects
has certain limitations that would be helpful to overcome.
EMCModule does not infer the binding sites themselves, these
are provided as input to the algorithm after running a de
novo motif inference tool, as well as downloading PWMs
from a database. However, EMCModule suffers from poor
specificity when more than about 100 motifs are searched for.
Therefore, a choice must be made before running to tool as to
which factors may be involved in regulation [17]. The Gibbs
sampling approach of Thompson et al. is designed specifically
to be used on input sequences that are likely to be co-regulated
[18]; therefore, gene expression analysis is a necessary first
step. Cis-Module requires parameters to be set for the likely
length of the CRM and the number of TFs involved [19].
Although guidance is provided on how to calculate these
parameters, they contribute significantly to the complexity of
Cis-Module. Finally, our own prior work, GAMMI, relied on
two evolutionary computation steps. Our goal is to develop
an approach to de novo CRM prediction that can search for
an unlimited variety of motifs, in a CRM of unknown size,
comprised of an unknown number of TFs, using the DNA
sequence alone.

D. The GAMI Algorithm

The target of GAMI’s search is an N-mer that appears
at least once in each input sequence. However, we allow
imperfect matches, so a motif does not need to be fully
represented in a sequence. Instead, N-mers that match more
strongly are considered stronger motifs. The N-mer itself is
a sequence of N bases from the set {A, C, G, T}. For
example, if we are search for 8-mers, possible motifs identified
include CATGCAAT, TAGGAACT, ACTTACGT, etc.

Aside from exhaustive search, there is not an algorithmic
way to calculate the best motifs for a set of sequences, and
depending on the number of sequences being examined, the
sequence length, and the motif length, exhaustive search can
be prohibitively computationally expensive. Therefore, most
approaches to motif inference use some sort of heuristic search
technique; GAMI uses a GA search. GAMI searches for motifs
on the {A, C, G, T} alphabet as described above; the
fitness function is a linear measure reflecting the quality of
the match across the input sequences [3], [4].

Although GAMI implements a relatively standard genetic
algorithm, it uses a high level of elitism (50%). Therefore, half
the population of candidate solutions is carried over from one
generation to the next. This means that when GAMI finishes
running, we are left with hundreds of candidate solutions in
the form of motifs that are ranked by strength of conservation.
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An important feature of GAMI is that it does not depend
on multiple alignment to find conserved motifs. Motifs are
evolved and ranked for conservation by the GA. Therefore,
GAMI is capable of finding conserved elements even within
noncoding regions that are widely diverged.

III. SYSTEM DESIGN

GAMI-CRM is based on GAMI, and leverages the fact that
CRMs (as well as the TFBSs within them) tend to be more
highly conserved than surrounding noncoding DNA.

As a first step, we use GAMI to look for motifs that are
somewhat longer than typical TFBSs. Here we use motifs that
are 20nt in length, although it is likely that other settings would
also perform well. As mentioned previously, GAMI will output
a ranked list of hundreds of candidate solutions. GAMI-CRM
then maps each motif onto the query sequence (the particular
sequence we are interested in finding CRMs for); in many
cases, these motifs will form overlapping regions. The best
conserved sets of overlapping solutions should be more likely
to occur within CRMs, because they will describe a region that
exhibits conserved motifs in close proximity. Additionally, in
[20] it was found that Drosophila enhancers are enriched in
ungapped conserved blocks 20nt or more in length.

After this step, GAMI-CRM will have a list of candidate
CRMs of varying length. The next step is to rank the can-
didates by their overall conservation. Although the individual
motifs have a conservation score, they are relatively short,
ungapped sequences. However, within the CRM, there is a
strong likelihood of gaps, especially between transcription
factor binding sites. For this prototype, GAMI-CRM uses
BLAST (Basic Local Alignment Search Tool) [21] to perform
this step. A BLASTN (nucleotide BLAST) query is performed
(version BLASTN 2.2.28+), which aligns the candidate CRMs
from the target species back to the input sequences given
to GAMI (excluding the target species). The score for each
candidate CRM is then taken as the sum of BLAST scores for
all significant hits.

Finally, GAMI can be run on the same input sequences to
look for shorter motifs, perhaps 10nt, and we can find the
intersection of these short motifs with our predicted CRMs in
order to predict the individual binding sites within. This makes
the system a combined de novo motif and CRM inference tool.

Briefly then, our method involves four steps:
1) Run GAMI using a set of noncoding DNA sequences

upstream of orthologous genes as input to look for
motifs that are 20nt long. Although it is somewhat
longer than a typical binding site, this length should help
GAMI-CRM find overlapping sites.

2) Find overlapping solutions and combine them into
longer subsequences.

3) Run BLASTN using the subsequences identified in the
previous step to score their conservation against the set
of input sequences.

4) Optionally, run GAMI again on the input data, to look
for motifs that are 10nt long. This may help identify
individual TFBSs within the candidate CRM.

At the end of this process we are left with a ranked set of
candidate CRMs that should avoid some of the issues faced
by other approaches. The conservation considered by GAMI
is closer to the level of the TFBS, rather than the entire CRM.
Tools that use fixed window sizes to examine alignments
can calculate mistakenly low conservation in CRMs, or low
density of sites, when forced to consider the entire window.
Our proposed solution sidesteps this issue by considering
conservation and clustering in a more dynamic fashion. We
may predict a couple of smaller CRMs that are in fact part of
a larger CRM, but our system should have better sensitivity
for such cases. It is also worth considering that the reverse
can also be a problem for systems with a fixed window size;
they may predict a single CRM that is in fact multiple CRMs.
This is currently a challenging issue in CRM prediction.

IV. METHODOLOGY

In prior work, we established that GAMI is an effective
approach to inferring candidate regulatory elements such
as TFBSs [3], [4]. Therefore, in this work, we focus on
GAMI-CRM, and evaluate its performance as a prototype
cis-regulatory module inference system. To that end, we ran
GAMI-CRM on two benchmark datasets that are described
below and compared its performance to a well established
CRM inference system known as Cluster-Buster [14]. As men-
tioned previously, Cluster-Buster is an HMM based approach
to predicting CRMs using PWMs that has been shown to
perform well on a variety of data [8], [22]. In [8], there are two
approaches that outperform Cluster-Buster on the data used
in their evaluation, notably [23] and [24]. However, Cluster-
Buster is widely used because of its robustness in a variety of
data and its ease of use. Therefore, it is an appropriate choice
in helping us to understand the performance of our prototype
tool. We used the web interface to Cluster-Buster available at
http://zlab.bu.edu/cluster-buster/, which was released in 2007.

To evaluate the performance of the two methods (GAMI-
CRM and Cluster-Buster), we used a number of standard
performance measures for classification tasks as described in
[25]. These are based on the number of true positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN). The measures are:

• Accuracy: (TP + TN) / (TP + FP + FN + TN)
• Sensitivity: TP / (TP + FN)
• Specificity: TN / (FP + TN)
• Positive Predictive Value: TP / (TP + FP)
• Negative Predictive Value: TN / (FN + TN)
For our evaluation we will define TP as the number of

nucleotides predicted to be in a CRM and that are present
in a validated CRM, TN as the number of nucleotides in the
input that are not in a validated CRM and not in a predicted
CRM, FP as the number of nucleotides predicted to be in
a CRM but not found in a validated CRM, and FN as the
number of nucleotides in a validated CRM but not predicted
to be in a CRM. Only Accuracy uses all four values (TP, TN,
FP, FN). Therefore, it usually provides the best indication of
overall performance. However, there is no way of knowing
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what the actual number of true positives is (there is no gene
for which all regulatory elements are known to be annotated).
Although we believe there is value in this analysis regardless,
this limitation should be kept in mind.

A. Data
We curated two data sets for this preliminary work: the

noncoding sequences upstream from ADSSL1 and SMYD1.
In both cases, we used the entire sequence upstream of the
target gene to the next known gene. For ADSSL1, the human
sequence was 4586nt in length. The intergenic region upstream
of SMYD1 in humans is 12133nt in length. Both of these
genes play a role in the differentiation of skeletal muscle tissue
[2]. They each contain a functional CRM that was validated
in [2]. In that work, the CRM is identified in coordinates
relative to the hg18 assembly of the human genome available
through the UCSC Genome Browser [26]. Therefore, we
curated the two human noncoding regions from the UCSC
Genome Browser, so that we could identify the sequence of
the validated CRMs. Since GAMI is a comparative genomics
system, we also obtained sequences from all available species
through NCBI’s Entrez Gene [27]. The orthologs were identi-
fied by annotation for the above listed genes in the database.
This resulted in 13 sequences in each data set.

B. GAMI Parameter Settings
For all experiments reported here, we used a population

size of 1,000, a crossover rate of 0.8, and a mutation rate of
0.02. The number of trials was set at 200,000 (which refers
to the number of fitness function evaluations; due to elitism
and the ability to recognize when a reproduction operator has
no effect, there is not a clean mapping between the number of
trials and the number of generations). Fifty percent elitism was
used to preserve the best 500 motifs in the population every
generation. Therefore, at most 500 new motifs are created
every generation, and the result of a run can be considered
the 500 best solutions in the final population. The 80 percent
crossover rate means that 80 percent of the remaining motifs
are candidates for crossover (a total of 400). The 2 percent
mutation rate means that a nucleotide in a solution has a
2 percent chance of being set to a random value (possibly
the same as it was before). Rank-based selection was used.
The motif length was set to 20. These settings are the default
settings we generally use with GAMI.

C. Cluster-Buster Parameter Settings

For Cluster-Buster, we relied on the default settings. The
Gap Parameter was set to 35 (the expected average distance
between motifs). The Cluster Score Threshold was set to 5
(this determines which results will be reported). The Motif
Score Threshold was set to 6 (similar to Cluster Score Thresh-
old, but for motifs). Residue Abundance Range was set to 100
(this determines how far to look around a site to determine the
relative frequency of each nucleotide). Pseudocount was set to
0.375 (which is an adjustment to the counts in the PWM that
helps balance PWMs with fewer sequences). We did not filter
lower complexity regions with Dust.

D. Experimental Design

For each dataset, GAMI was run twenty times and the best
results from all runs were combined. This is our standard
method of running GAMI to account for the stochastic nature
of genetic algorithms. GAMI-CRM was run on the full dataset
of noncoding sequences described above, while Cluster-Buster
was run on the human sequence only. We compared the top
three candidate CRMs from our results to those from Cluster-
Buster. Cluster-Buster never reported more than three results
with these data and settings, but our method tends to report
more candidate CRMs.

As mentioned previously, Cluster-Buster requires the addi-
tional input of position weight matrices. For each dataset, we
ran it in two ways and compared the results to our method.
The first approach was simply to select the 16 PWMs that
are provided with Cluster-Buster by default. These are: TATA,
Sp1, CRE, ERE, NF-1, E2F, Mef-2, Myf, CCAAT, AP-1,
Ets, Myc, GATA, LSF, SRF, Tef. We did not expect that
this approach would work particularly well, because it has
been observed that using too many PWMs can cause enough
false positives to interfere with accurate identification [12].
The second approach was to use PWMs for TFs known to
play a role in muscle differentiation. These were: Sp1, Mef-
2, Myf, SRF, and TEAD as identified in [2]. Sp1, Mef-2,
Myf, and SRF were already available from Cluster-Buster. The
PWM for TEAD was retrieved from the JASPAR database of
transcription factor PWMs [28].

GAMI-CRM does not use a hard-wired cutoff to reduce
the number of candidate solutions; this is a user parameter.
Candidates are scored and ranked and the user is left to decide
how many of the solutions merit further investigation. Cluster-
Buster produces far fewer predictions. This makes is difficult
to compare its results directly to Cluster-Buster. However, we
will assume that the validated CRM in each data set is the
easiest to identify (and should therefore receive the highest
scores). Therefore, we compared the number of results from
each system that is equal to the highest number of clusters
identified by one of the Cluster-Buster runs. For example, if
Cluster-Buster with the muscle transcription factors identified
3 clusters and Cluster-Buster with the default PWMs identified
2 clusters, we will compare these results to the top 3 GAMI
results.

V. RESULTS

In this work, we have developed a prototype approach to ex-
tending GAMI to predict cis-regulatory modules in noncoding
DNA, called GAMI-CRM. This approach uses conservation
of noncoding regions upstream of orthologous genes and
adjacency of conserved elements to make its predictions,
and entails post processing the GAMI motifs to identify the
candidate CRMs.

A. Benchmark Results

For the ADSSL1 data set, Cluster-Buster was run twice,
once with the set of default PWMs and once with the set of
PWMs of transcription factors known to play a role in muscle
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System Best Location Length in CRM
(from TSS)

GAMI-CRM -2050..-1951 99 yes
Cluster-Buster w/ Muscle PWMs -2639..-1935 704 partly
Cluster-Buster w/ Default PWMs -2016..-1906 110 yes

TABLE I
ADSSL1 RESULTS - GAMI-CRM VS. CLUSTER-BUSTER

Fig. 1. Results for GAMI-CRM (red), Cluster-Buster with Muscle PWMs
(yellow), and Cluster-Buster with Default PWMs (orange): Accuracy (Acc),
Sensitivity (Sn), Specificity (Sp), Positive Predictive Value (PPV), and Neg-
ative Predictive Value (NPV)

System Acc Sn Sp PPV NPV

GAMI-CRM 0.91 0.20 1.00 1.00 0.91
Cluster-Buster w/ Muscle PWMs 0.86 0.56 0.90 0.40 0.94
Cluster-Buster w/ Default PWMs 0.91 0.22 1.00 1.00 0.91

TABLE II
ADSSL1 CRM RECOVERY - GAMI-CRM VS. CLUSTER-BUSTER

differentiation. Cluster-Buster with or without muscle PWMs
both identified a single cluster, so we compared them to the
single top result obtained from GAMI-CRM. These results are
shown in Table I and Figures 1 and 3.

For the SMYD1 data set, again Cluster-Buster was run
twice. Cluster-Buster with the muscle PWMs identified 3
clusters and with the default PWMs identified 2 clusters.
Therefore, the top 3 results from GAMI-CRM were used in
the comparison shown in Table III and Figures 2 and 4. The
accuracy and other results for each method are additionally
shown in Table II and Table IV.

VI. DISCUSSION

A few things are immediately apparent from these results:
• With these data, both GAMI-CRM and Cluster-Buster

were able to identify the validated CRM with a high
degree of accuracy.

• The muscle PWMs enabled Cluster-Buster to predict
the validated CRMs with greater sensitivity than either
GAMI-CRM or Cluster-Buster with the Default PWMs.

• The accuracy and specificity of GAMI-CRM was greater
with these data.

• Cluster-Buster with default PWMs was unable to identify
the validated CRM in the SMYD1 data.

System Location Length in CRM
(from TSS)

Best Result

GAMI-CRM -442..-389 53 yes
Cluster-Buster w/ Muscle PWMs -2692..-2522 170 no
Cluster-Buster w/ Default PWMs -2696..-2518 178 no

2nd Best Result

GAMI-CRM -530..-479 51 yes
Cluster-Buster w/ Muscle PWMs -8211..-8029 182 no
Cluster-Buster w/ Default PWMs -8211..-7988 223 no

3rd Best Result

GAMI-CRM -7501..-7444 57 no
Cluster-Buster w/ Muscle PWMs -587..-91 496 partly
Cluster-Buster w/ Default PWMs – 0 no

TABLE III
SMYD1 RESULTS - GAMI-CRM VS. CLUSTER-BUSTER

Fig. 2. Results for GAMI-CRM (red), Cluster-Buster with Muscle PWMs
(yellow), and Cluster-Buster with Default PWMs (orange): Accuracy (Acc),
Sensitivity (Sn), Specificity (Sp), Positive Predictive Value (PPV), and Neg-
ative Predictive Value (NPV)

System Acc Sn Sp PPV NPV

GAMI-CRM 0.97 0.26 1.00 0.65 0.98
Cluster-Buster w/ Muscle PWMs 0.96 1.00 0.96 0.47 1.00
Cluster-Buster w/ Default PWMs – – – – –

TABLE IV
SMYD1 CRM RECOVERY - GAMI-CRM VS. CLUSTER-BUSTER

As we note above, the muscle PWMs improved the sensi-
tivity, but not the specificity, of Cluster-Buster on these data.
However, by looking at Figure 1 and Figure 2 we can see that
the increased sensitivity comes at a price. Cluster-Buster with
muscle PWMs has a much higher false positive rate (reflected
in its lower PPV score). This is particularly apparent in Figure
3. The green bar represents the CRM identified by Cluster-
Buster, and the brown bars represent the individual motifs
identified by Cluster-Buster. The blue and red bars represent
the results from GAMI-CRM. By comparing these regions
to the black bar labeled “ValidatedCRM”, it is obvious that
Cluster-Buster identified a region that extends well beyond
the validated CRM. The region may include multiple CRMs,
which may also have been identified by GAMI-CRM, but we
are only considering the top result. The same effect can be
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seen in Figure 4 to a lesser extent, where the region identified
by Cluster-Buster extends beyond the validated CRM.

We compared GAMI-CRM’s single best result against
Cluster-Buster’s best result on the ADSSL1 data, because
Cluster-Buster only identified a single cluster. However, if we
had included the top two results from GAMI, its sensitivity
would have increased to 0.37 with no drop in its specificity.
This would additionally have increased its accuracy to 0.93.

Clearly, the issue of how many of the top results to consider
for further analysis is not only difficult to decide but has
a significant impact on the results. However, it also raises
another issue. By examining Table III we can see that the
top two results are both included within the validated CRM.
They are also very close to each other. Currently our prototype
has no means of connecting these solutions, but this may be
possible by making the method slightly more sophisticated.
As we mentioned earlier, the conservation of the CRM as a
whole is often elevated in comparison to surrounding regions,
as well as the GC content. Possibly we can take these into
account when creating candidate solutions. Had we connected
these regions together, the sensitivity of the SMYD1 results
would have increased to .35, with no drop in specificity. If
we had done the same for the top two results in the ADSSL1
data, the sensitivity would have been 0.62, with no drop in
specificity. This would have increased the accuracy to 0.96.
This just goes to show that these sorts of figures are quite
dependent on how we define our solutions.

Another factor to consider is that there is only a single
validated CRM for each gene, however, genes are frequently
regulated by multiple CRMs. One way to think about this
is to include epigenetic data in the analysis. In Figure 3
and Figure 4 we have visualized the results in the UCSC
Genome Browser. The bottom three tracks of each image show
a selection of epigenetic data that could be used as part of the
analysis (there is more available). Third from the bottom is a
track showing the H3K27Ac histone modification mark, which
is often found in conjunction with active regulation. Second
from the bottom is a track displaying DNase hypersensitive
site (DHS) clusters, which are region of accessible chromatin
within which transcription factors are often bound. Finally, the
bottom track shows regions where transcription factors have
been found to be bound through CHiP-Seq assay. It is worth
keeping in mind that these data are measured within certain
cell lines, sometimes a fairly limited set. They do not provide
a complete picture of biochemical activity. Nevertheless, some
interesting observation can be made in relation to our results.
In Figure 3, the validated CRM overlaps only a single cluster
of DHSs. Furthermore, that cluster is active in more cell
lines than the other nearby clusters. Although the Cluster-
Buster CRM overlaps all three DHS clusters in the figure, this
may lend weight to the idea that multiple CRMs are present
in the region. In Figure 4, CRMs were predicted by both
GAMI-CRM and Cluster-Buster far upstream of the validated
CRM (to the left of the figure). GAMI-CRMs prediction in
this area overlaps a region that was shown to be bound by
transcription factors in some cell lines (the bottom track). This

may imply that the CRM is indeed functional. Similarly, the
CRM predicted by Cluster-Buster in the middle of the figure
overlaps a region with the H3K27Ac mark, which may lead
one to consider that candidate as being plausible. Interestingly,
in both data sets, the strongest epigenetic data is associated
with the validated CRM (and the predictions of both systems).

It is probably no surprise that both GAMI-CRM and
Cluster-Buster identified the validated CRMs with such a high
degree of accuracy. The regions were originally identified for
study using a variety of measures including conservation and
clustering of transcription factor binding sites [2]. Neverthe-
less, our results suggest that both GAMI-CRM and Cluster-
Buster are able to accurately identify CRMs when they exhibit
these characteristics. However, the fact that Cluster-Buster
failed to identify the validated CRM in the SMYD1 dataset
when using the default PWMs shows an important difference
between the two systems. GAMI-CRM is a de novo CRM
predictor. In these experiments, GAMI-CRM had no need to
know processes these genes were involved in in order to suc-
cessfully identify validated CRMs that regulate them. This is
not true of Cluster-Buster. One must have an understanding of
how a gene might be regulated, in order to successfully predict
CRMs using systems that depend on scanning with PWMs.
The default PWMs included 4 of the 5 muscle-related PWMs,
but even so, Cluster-Buster failed to identify the known CRM
in the SMYD1 data. In addition, the PWMs must be available
and a reasonably good fit for the transcription factor binding
sites in question. When examining poorly understood genes,
or particular tissues for which interaction data is unavailable,
this is likely to be a significant limitation.

GAMI-CRM identified both known CRMs in these data
with high accuracy. Thanks to its de novo inference, it did this
without prior knowledge of the processes the CRM is involved
in. Although Cluster-Buster performed well, the correct combi-
nation of matrices is necessary for accurate identification. Our
results suggest that GAMI-CRM will be particularly useful
in predicting CRMs for genes whose interactions are poorly
understood.

VII. FUTURE WORK

The prototype we developed in this work performed well
on the benchmark data sets, but we must validate on a greater
number of data sets with known CRMs. Additionally, since
genes are frequently regulated by more than one CRM, we
will investigate GAMI-CRM’s ability to detect such CRMs.
Additionally, we will compare our approach to additional
extant methods.

One limitation of our current approach is GAMI-CRM’s
reliance on BLAST for ranking the candidate CRMs. Although
BLAST performs well, the use of alignment means that a
candidate CRM may be scored low if the sites within it are
in a different order than those in other sequences. However,
this does not necessarily mean the CRM is not conserved. We
will investigate the ramifications of this approach and possible
alternatives in the future.
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In previous work [9], we developed GAMMI, an
evolutionary-computation approach to construct CRMs from
a library of candidate motifs. This work was evaluated on
artificial datasets. While the candidate motifs can come from
GAMI or another motif inference system (and do not need
to be verified PWMs), the system required a fixed window
size. A stronger system can be expected to be realized by
integrating these two approaches, using the candidate CRM
window identification process described here to identify the
windows, and GAMMI to identify the CRMs within these
windows. We expect that this will make the use of BLAST
tools unnecessary in this process. Additionally, GAMMI does
not require the motif sites to be in the same order in the CRMs
in different contexts, so this approach can be expected to have
greater flexibility.
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