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Abstract— In recent years, several ontology-based systems
have been developed for data integration purposes. The prin-
cipal task of these systems is to accomplish an ontology
alignment process capable of matching two ontologies used for
modeling heterogeneous data sources. Unfortunately, in order
to perform an efficient ontology alignment, it is necessary to
address a nested issue known as ontology meta-matching problem
consisting in appropriately setting some regulating parameters.
Over years, evolutionary algorithms are appeared to be the
most suitable methodology to address this problem. However,
almost all of existing approaches work with a single function to
be optimized even though a possible solution for the ontology
meta-matching problem can be viewed as a compromise among
different objectives. Therefore, approaches based on multi-
objective optimization are emerging as techniques more efficient
than conventional evolutionary algorithms in solving the meta-
matching problem. The aim of this paper is to perform
a systematic comparison among well-known multi-objective
Evolutionary Algorithms (EAs) in order to study their effects in
solving the meta-matching problem. As shown through compu-
tational experiments, among the compared multi-objective EAs,
OMOPSO statistically provides the best performance in terms
of the well-known measures such as hypervolume, Δ index and
coverage of two sets.

I. INTRODUCTION

DATA integration is concerned with unifying data that
share some common semantics but originate from dis-

tributed and unrelated sources [1]. When one works on data
integration, it is necessary to face the heterogeneity charac-
terizing data provided by different sources. In the literature,
multiple types of heterogeneity are well known and classified
in four categories [1]: (1) structural heterogeneity, involving
different data models; (2) syntactical heterogeneity, involving
different languages and data representations; (3) systemic
heterogeneity, involving hardware and operating systems;
and (4) semantics heterogeneity, involving different concepts
and their interpretations. Since the 1990s, the emergence
of distributed computing and middleware technology has
particularly supported the overcoming of the syntactic and
structural heterogeneities, and allowed us to focus on issues
at the information level [2]. Therefore, currently, one of the
most important and complex problems within data integration
is the semantic heterogeneity [1].
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Over the years, ontologies are emerging as the most useful
means to address this issue thanks to their capability of
formally describing the semantics of a particular domain of
interest. Several ontology-based systems for data integration
can be found in the literature [3][1]. Among the main
architectures that are implemented in ontology-based data
integration systems, the most popular one consists in taking
into consideration multiple ontologies, each modeling an
individual data source, and detecting a set of mappings
among them for achieving integration. This process, named
ontology alignment, requires to set some parameters in order
to correctly perform its task. Since these parameters strongly
affect the quality of the produced alignments, the selection
of their most appropriate values represents a nested issue
known as meta-matching problem.

Since the beginning, heuristic approaches, and, in par-
ticular, evolutionary algorithms, are appearing as the most
suitable methodology to address the meta-matching prob-
lem [4]. In detail, the evolutionary-based meta-matching
systems [5][6] typically use a single objective to evaluate
the alignment quality during the generation process, even
though a suitable computation of parameters could be better
performed by evaluating the right compromise among differ-
ent objectives involved in the meta-matching process. As a
consequence, approaches based on multi-objective optimiza-
tion algorithms are emerging as an innovative and efficient
methodology to face the meta-matching problem [7][8].

However, no existing works perform a formal perfor-
mance evaluation to establish the efficiency of different
multi-objective Evolutionary Algorithms (EAs) in handling
the meta-matching problem. Consequently, in this paper, a
systematic comparison among well-known multi-objective
EAs used to tune the ontology matching parameters is
carried out in terms of well-known performance indices
such as hypervolume, Δ index and coverage of two sets.
The compared EAs are an improved version of the Non-
dominated Sorting Genetic Algorithm [9] (NSGA-II), an
improved version of the Strength Pareto Evolutionary Al-
gorithm [10] (SPEA2), an improved version of the Pareto
Envelope based Selection Algorithm [11] (PESA-II), the
Optimal Multi-Objective Particle Swarm Optimization [12]
(OMOPSO), the Multi-Objective Evolutionary Algorithm
based on Decomposition [13] (MOEA/D) and the Duplicate
Elimination Non-dominated Sorting Evolutionary Algorithm
[14] (DENSEA). The experiments involve a dataset pro-
vided by OAEI commonly used for experimentation on the
ontology alignment problem. The comparison is performed
through a statistical multiple comparison procedure.
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II. THE ONTOLOGY META-MATCHING PROBLEM

According to the most common definition [15], an on-
tology is an explicit specification of a conceptualization,
i.e., the formal specification of concepts and objects within
a given domain application, and the relationships existing
between them. All components of an ontology (concepts,
objects and relationships) are generally denoted with the term
entity. Given a pair of ontologies 𝑂1 and 𝑂2, an ontology
alignment process is a function 𝑓 which returns an alignment
𝐴, i.e., a set of correspondences, each one of them relates
two entities of the ontologies under alignment which are
considered similar semantically.

Traditionally, ontology alignment processes produce an
alignment by computing a so-called confidence value 𝜂 for
all possible pairs of entities belonging to the ontologies to
be aligned. In detail, the confidence value 𝜂 (typically in the
[0, 1] range) represents the similarity level existing between
the two entities composing the correspondence. In order to
compute the confidence value for each correspondence, the
common technique is to perform a similarity aggregation
procedure which computes a real value for each correspon-
dence by combining different similarity measures belonging
to various categories: lexical, linguistic and structural. In
detail, lexical measures compute a string distance-based
similarity between two entities by taking into account the
morphology of the words which characterize them (such
as names, comments, etc.); a linguistic one determines a
similarity value between two entities by taking into account
semantic relations such as synonymy and hypernymy; struc-
tural ones compute a similarity value between two entities by
considering their kinship (parents and children). In this work,
we consider the following similarity measures extracted by
[16]: Entity Name Distance Measure and Comment Distance
Measure among lexical similarity measures, Hierarchy Dis-
tance Measure and Domain and Range Restrictions Distance
Measure belonging to structural ones and the linguistic Word
Net Synonymy Name Distance Measure. Since the application
of a single measure is often not enough to produce an
acceptable output alignment, the common technique is to
combine different matchers to compute a single aggregated
similarity value. Formally, let us consider an alignment 𝐴,
a correspondence 𝑐 belonging to the alignment 𝐴 and ℎ
similarity measures, the confidence value 𝜂 for 𝑐 can be
defined as follows:

𝜂(𝑐) =

ℎ∑
𝑖=1

𝑤𝑖 × 𝑠𝑖𝑚𝑖(𝑐) subject to
ℎ∑

𝑖=1

𝑤𝑖 = 1 (1)

where 𝑤𝑖 is the weight associated to the 𝑖𝑡ℎ similarity
measure and 𝑠𝑖𝑚𝑖(𝑐) is the similarity value computed by
the 𝑖𝑡ℎ similarity measure. Only correspondences with a
confidence value greater than a given threshold value 𝑡 ∈
[0, 1] are considered valid and can be inserted in the output
alignment 𝐴 (filter operation).

From this description of an ontology alignment process,
it is evident that the quality of the produced alignments is

strongly dependent on the specification of similarity mea-
sures, weights and thresholds used as matching parameters.
Therefore, this specification represents a crucial issue in the
ontology alignment scenario known as the nested ontology
meta-matching problem [4].

The aim of this work is to compare a set of well-known
multi-objective EAs to optimize the combination of the
weights 𝑤𝑖 (with 𝑖 = 1, . . . , ℎ) and the threshold value for
the ontology meta-matching problem.

III. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

FOR THE ONTOLOGY META-MATCHING PROBLEM

This paper aims at addressing the meta-matching problem
as a multi-objective optimization problem and comparing
different existing algorithms for solving it. In detail, in our
vision, the meta-matching problem is solved as an optimiza-
tion one where (1) the outcome solutions represent the most
appropriate specifications of the set of matching parameters
and (2) the search is guided by the exploitation of two
objectives evaluating the alignment quality during the gen-
eration process. As fully described later, the two considered
objectives take into account the number of correspondences
composing the alignment and the average of similarities
characterizing them. Since it is often complex to weight these
objectives “a priori”, in this paper, we investigate the effects
of different “a posteriori” multi-objective EAs.

In general, a multi-objective optimization problem can be
described as a vector function 𝑓 that maps a tuple of 𝑚
parameters (decision variables) to a tuple of 𝑛 objectives.
Formally:

min y = 𝑓(x) = (𝑓1(x), 𝑓2(x), . . . , 𝑓𝑛(x))

subject to x = (𝑥1, 𝑥2, . . . , 𝑥𝑚) ∈ 𝑋

y = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ 𝑌

where x is called the decision vector, 𝑋 is the parameter
space, y is the objective vector and 𝑌 is the objective
space. The set of solutions of a multi-objective optimiza-
tion problem consists of all decision vectors for which the
corresponding objective vectors cannot be improved in any
dimension without degrading in another - these vectors are
known as Pareto optimal. Mathematically, the concept of
Pareto optimality is as follows. Let us consider a minimiza-
tion problem and two decision vectors a,b ∈ 𝑋 . Then, a is
said to dominate b (also written as a ≺ b) iff

∀𝑖 ∈ {1, 2, . . . , 𝑛} : 𝑓𝑖(a) ≤ 𝑓𝑖(b) ∧

∃𝑗 ∈ {1, 2, . . . , 𝑛} : 𝑓𝑗(a) < 𝑓𝑗(b)

Additionally, a is said weakly dominate b (also written as
a ⪯ b) iff a ≺ b or 𝑓(a) = 𝑓(b). All decision vectors which
are not dominated by any other decision vector of a given
set are called non-dominated regarding this set. The decision
vectors that are non-dominated within the entire search space
are referred to Pareto optimal and constitute the so-called
Pareto-optimal set or Pareto-optimal front.
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By analyzing the general structure of a multi-objective
problem, it is clear that in order to formulate the meta-
matching problem as a multi-objective one, it is necessary
to define the decision vector and the used objectives. Here-
after, these points will be deepened before describing the
considered multi-objective EAs.

A. Decision vector

Each decision vector contains the values for the set of
weights, indicating the contribution of each similarity mea-
sure, and the threshold value 𝑡, used to decide if a pair of
entities must belong to alignment or not. Since all decision
values (weights and threshold) are real numbers in the unit
interval [0, 1], the decision vector is defined as a real vector in
the unit hypercube. When we have ℎ similarity measures, the
decision vector has ℎ weights and a single threshold value.
Thus, it is coded as a real number string of length ℎ + 1.
However, since the sum of all weights has to be equal to 1,
a further step is needed in order to obtain the weight values,
which can be used in the similarity aggregation step. In detail,
each one of the first ℎ values of the decision vector is scaled
conforming to the sum of all the first ℎ values. Formally:

𝑤𝑖 =
𝑔𝑖∑ℎ
𝑖=1 𝑔𝑖

(2)

where 𝑔𝑖 is the 𝑖𝑡ℎ value of the decision vector and 𝑤𝑖 is the
𝑖𝑡ℎ weight used to perform the similarity aggregation task.

B. Objectives

The objectives evaluate the quality of the alignment cor-
responding to a decision vector. In detail, starting from a
decision vector 𝜎, it is possible to create an alignment by
following two steps:
∙ the computation of the confidence value 𝜂 (as shown

in equation 1) for each pair of entities between the two
ontologies to be aligned by considering the weights 𝑤𝑖,
with 𝑖 = 1, 2, . . . , ℎ, composing the decision vector 𝜎
after the scaling operation;

∙ the selection of pairs of entities with a confidence value
greater than or equal to the threshold value 𝑡 contained
in the decision vector 𝜎.

Then, the evaluation of the created alignment is computed
by considering these two observations:
∙ a lower average of the dissimilarity of the pair of entities

corresponds to a better alignment;
∙ by considering the same average of the dissimilar-

ity, a lower difference between the number of cor-
respondences composing the evaluated alignment and
the number of correspondences composing the optimal
alignment Ω reflects a better alignment.

These two observations lead to the definition of two objec-
tives, 𝑦1 and 𝑦2, formally defined as follows. Let us consider
a decision vector 𝜎 with the corresponding alignment 𝐴, the
first objective 𝑦1 is defined below:

𝑦1 =

∑∣𝐴∣
𝑖=1 𝜂(𝑐𝑖)

∣𝐴∣
(3)

where 𝜂(𝑐𝑖) is the confidence value of the 𝑖𝑡ℎ correspondence
belonging to the alignment 𝐴 and ∣𝐴∣ is the number of
correspondences composing the alignment under evaluation.

The second objective 𝑦2 is defined as follows:

𝑦2 = Φ(𝑎𝑏𝑠(∣𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙∣ − ∣𝐴∣)) (4)

where ∣𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙∣ represents the number of correspondences
composing the optimal alignment 𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙, ∣𝐴∣ is the number
of correspondences composing the alignment under evalua-
tion, 𝑎𝑏𝑠 is a function which computes the absolute value
and Φ is a function of normalization in range [0, 1]. In
particular, the function Φ is introduced to allow the eval-
uation of the objective 𝑦2 in a range which does not change
according to the ontologies under alignment and the size
of the corresponding 𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙. In detail, let us consider
diff = 𝑎𝑏𝑠(∣𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙∣ − ∣𝐴∣), the function Φ follows the
following formula:

Φ(diff ) =
diff

diffMax

where diffMax represents the max number of correspon-
dences for which 𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙 and 𝐴 may differ.

In order to conclude, it is worth noting that the value
∣𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙∣ is not known, and, hence, it is approximated as
follows:

∣𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙∣ = 𝑚𝑖𝑛(∣𝑂1∣, ∣𝑂2∣)

where ∣𝑂1∣ and ∣𝑂2∣ represent, respectively, the cardinality of
ontologies 𝑂1 and 𝑂2 and 𝑚𝑖𝑛 is a function which computes
the minimum between two values.

C. Six existing multi-objective evolutionary approaches

In this section, we present the compared multi-objective
EAs in our study. We consider six state-of-the-art algorithms:

1) NSGA-II: it is an improved version of NSGA proposed
by Deb et al. [17]. The principal features of this algorithm are
the exploitation of elitism and the crowded tournament se-
lection. In detail, crowded tournament selection is a selection
mechanism based on tournament selection whereby, a group
of individuals takes part in a tournament and the winner
is judged by the fitness levels that each individual brings
to the tournament. In NSGA-II, the most fit individuals are
determined by a ranking mechanism (or crowded comparison
operator) composed of two parts. The first part ‘peels’ away
layers of non-dominated fronts, and ranks solutions in earlier
fronts as better. The second one computes a dispersion
measure, the crowding distance, to determine how close a
solution’s nearest neighbors are, with larger distances being
better. At each generation, the best solutions with regard to
these two measures are saved as the next population, and
genetic operators are applied to form a new child population.

2) SPEA2: it is an enhancement version of that origi-
nally proposed in [18]. It is characterized by storing non-
dominated solutions externally in a second, continuously
updated population named archive. At each generation, it
determines the most fit individuals within the union of
archive and child populations by computing a fitness value
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composed of two parts. The first part is a raw fitness value
based on how many solutions it dominates, and the second is
a density estimate based on its proximity to other solutions
in the objective space. The computed most fit solutions
are saved as the next population, and genetic operators are
applied to form a new child population. In particular, as
in NSGA-II, it uses the binary tournament as the selection
operator.

3) PESA-II: It uses different mechanisms than SPEA2 and
NSGA-II. In detail, the main differences are that its archive
population is not of fixed size and only allows non-dominated
solutions to be members. If the archive ever exceeds the
number of solutions in a population, a squeeze factor is
calculated for all members of the archive and used to reduce
the size of the archive (the solutions with the highest squeeze
factor are removed). Genetic operators are then applied to
archive members to form a new child population.

4) OMOPSO: it uses an adaptive mutation operator and
an adaptive inertia weight to improve the searching capacity.
Besides, a new crowding operator based on level sorting is
used to improve the distribution of non-dominated solutions
along the Pareto front and maintain the population diversity.
The new crowding distance does not need to sort order for
every objective and, as a consequence, it has less complexity
than that used by NSGA-II. Finally, the 𝜖-dominance is used
to keep the size of the external archive of the non-dominated
solutions.

5) MOEA/D: it differs from the other EAs because it is
based on a decomposition approach. In detail, it decomposes
the multi-objective problem in a set of scalar subproblems
and solves them simultaneously. At each generation, the
population is composed of the best solution found so far for
each subproblem. The neighborhood relations among these
subproblems are defined based on the distances between
their aggregation coefficient vectors. The optimal solutions
of neighboring subproblems should be very similar. Each
subproblem is optimized by using information only from its
neighboring subproblems. This approach aims to facilitate
the diversity maintenance. In detail, the decomposition is
performed by using the Tchebycheff approach in this paper.

6) DENSEA: it is based on the non-domination sorting
criterion selection and has incorporated some elitism, but it
is characterized by offering population diversity maintenance
based on deletion and replacement of duplicate solution.
In detail, the implemented deletion operator for duplicate
solutions works as follows: the algorithm deletes the accumu-
lated duplicate solutions due to the reduced non-dominated
solutions quantity in the objective space and replaces each
deleted solution by inserting the individual that has the
same ordering in the second half of the population until
the completion of 50% of the population size (N/2). In that
way, the inclusion of diverse solutions replacing duplicates
is fostered, helping to maintain the population diversity.

IV. EXPERIMENTS AND RESULTS

This section is devoted to study the effects of the six
considered multi-objective evolutionary algorithms (NSGA-

II, SPEA2, PESA-II, OMOPSO, MOEA/D and DENSEA)
on solving the ontology meta-matching problem. In the
performed experiments, each compared algorithm ends after
250 evaluations of fitness and runs by using the following
parameters: population size equals to 50 and crossover and
mutation rates equal to, respectively, 0.8 an 0.01. As for
the genetic operators, all multi-objective EAs use the Simu-
lated Binary Crossover (SBX) and the Polynomial Mutation.
Regarding selection, each multi-objective EA uses its own
selection operator (see section III-C).

Hereafter, more details about the performed comparison
are given after a description of the exploited dataset and
performance metrics.

A. Dataset

In all our experiments, we have exploited a well-known
dataset, named benchmark track1, provided by OAEI and
commonly used for experiments on ontology alignment
problems. In detail, the dataset deals with the topic of
scientific publications and it is composed of a set of 50
test cases organized in five groups (see Table I). Each test
case represents a specific alignment task devoted to align a
reference ontology with its artificially built variation, except
for the last four test cases which are aimed at matching the
reference ontology to four real ontologies.

TABLE I

BENCHMARK TRACK DESCRIPTION

Test case # Test
Description

Id Range cases

101-104 3
The ontologies under alignment are the
same or the first one is the “OWL Lite
restriction” of the second one.

201-210 10
The ontologies under alignment have the
same structure, but different lexical and
linguistic features.

221-247 18
The ontologies under alignment have the
same lexical and linguistic features, but dif-
ferent structure.

248-266 15
The ontologies under alignment have differ-
ent lexical, linguistic and structure features.

301-304 4
The ontologies under alignment are real
world cases.

In particular, in our comparison, we have randomly chosen
25% of test cases in each group. This is a reasonable
choice because the test cases belonging to the same group
are characterized by the same features and complexity. The
selected test cases are: 103, 201, 209, 230, 238, 240, 247,
251, 254, 257, 265 and 301.

B. Performance metrics

The quality of an obtained solution set for a multi-
objective optimization problem can be evaluated by consid-
ering the following three aspects: (1) the distance of the
resulting non-dominated front to the Pareto-optimal front
should be minimized; (2) a good (in most cases uniform)

1http://oaei.ontologymatching.org/2011/
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distribution of the solutions is desirable; (3) the spread of
the obtained non-dominated front should be maximized, i.e.,
for each objective a wide range of values should be covered
by the non-dominated solutions [19]. Since these three tasks
cannot be measured adequately with one performance metric,
over years, many performance metrics have been introduced
for evaluating the quality of the non-dominated fronts for
multi-objective optimization problems. In particular, in [20],
all existing Performance Indices (PIs) are categorized in three
groups: cardinality-based PIs, accuracy PIs and distribution
and spread PIs. In our comparison, we evaluate the consid-
ered algorithms by using a metric for each one of the defined
groups:

∙ Hypervolume [18] (accuracy PI): this metric takes into
consideration the size of the dominated volume in the
objective space. In the two-dimensional (2-D) case, this
metric is mathematically described as follows:

𝐻 = {
∑
𝑖

𝑆𝑖∣𝑥𝑖 ∈ 𝑃}

where 𝑃 is the non-dominated solution set under evalua-
tion and 𝑆𝑖 is the area dominated by the solution 𝑥𝑖. The
areas 𝑆𝑖 are computed with respect to a reference point
in the objective space which typically is assumed to be
composed of the maximum value for each objective. A
greater value of 𝐻 indicates both a better convergence
to as well as a good coverage of the evaluated front
[21].

∙ Δ index [9] (distribution and spread PI): this metric is
based on distance and includes information about both
spread and distribution. The Δ index is computed by
the following formula:

Δ =
𝑑𝑓 + 𝑑𝑙 +

∑∣𝑃 ∣−1
𝑖=1 ∣𝑑𝑖 − 𝑑∣

𝑑𝑓 + 𝑑𝑙 + (∣𝑃 ∣ − 1) ⋅ 𝑑

where 𝑃 is the front to be evaluated, 𝑑𝑓 and 𝑑𝑙 are
the Euclidean distances between the extreme solutions
and the boundary solutions of 𝑃 , 𝑑 is the average
of all distances 𝑑𝑖, 𝑖 ∈ [1, ∣𝑃 ∣ − 1], representing the
Euclidean distance between consecutive solutions. It is
worth noting that the denominator is the value of the
numerator for the case when all solutions lie on one
solution. In addition, it is interesting to note that this is
not the worst case spread of solutions possible. Indeed,
we can have a scenario in which there is a large variance
in 𝑑𝑖, obtaining a value for the metric greater than one.
A good distribution, instead, would make all distances
𝑑𝑖 equal to 𝑑 and would make 𝑑𝑓 = 𝑑𝑙 = 0 (with
existence of extreme solutions in the non-dominated
set). Thus, for the most widely and uniformly spreadout
set of nondominated solutions, the numerator would be
zero, making the metric to take a value zero [9].

∙ Coverage of two sets [18] (binary cardinality-based PI):
this metric is a binary one because it is computed by
considering two fronts to be compared one against the
other. It is also referred as 𝐶 metric and it is computed

by the following formula:

𝐶(𝐴,𝐵) =
∣{𝑦 ∈ 𝐵 : ∃𝑥 ∈ 𝐴 t.c. 𝑥 ⪯ 𝑦}∣

∣𝐵∣
where 𝐴 and 𝐵 are the two fronts to be compared
and ⪯ represents the weak dominance relation. The
function 𝐶(⋅, ⋅) maps the ordered pair (A,B) to the
[0,1] interval. In detail, the value 𝐶(𝐴,𝐵) equal to 1
means that all the solutions in 𝐵 are dominated by the
front 𝐴. As opposite, 𝐶(𝐴,𝐵) equal to 0 represents the
situation where none of the solutions in 𝐵 is dominated
by the front 𝐴. It is worth mentioning that 𝐶(𝐴,𝐵)
does not have to be equal to 1 − 𝐶(𝐵,𝐴). Thus,
both 𝐶(𝐴,𝐵) and 𝐶(𝐵,𝐴) should be computed for
evaluation. In particular, we consider that A outperforms
B if 𝐶(𝐴,𝐵) > 𝐶(𝐵,𝐴).

To represent the spread and the shape of the distribution
for the values obtained by the comparison of the proposed
algorithms in terms of the aforementioned performance in-
dices, we exploit a graphical method, called box plot. In
detail, the upper and lower ends of the box are the upper and
lower quartiles, while a thick line within the box encodes the
median. Dashed appendages summarize the spread and shape
of the distribution, and crosses represent outside values.

C. Comparison among the considered multi-objective EAs

This section is devoted to compare the considered multi-
objective EAs to identify the best performer for the ontology
meta-matching problem. The experiments consist of running
each algorithm 30 times on each one of the considered test
cases and storing the resulting non-dominated set as the
outcome of each optimization run. The comparison is carried
out by using the aforementioned metrics of performance:
hypervolume, Δ index and coverage of two sets (𝐶).

Figs. 1, 2, 3 show, respectively, the hypervolume, the Δ
index and 𝐶 values for each algorithm and for each test case
by using the aforementioned boxplot diagrams. By analyzing
them, OMPSO seems to provide the best performance among
all compared multi-objective algorithms. Indeed, the median
of the hypervolume values is for each test case greater than
the corresponding medians of the other three EAs except for
the test case 103 where OMPSO has the same performance
of NSGA-II, SPEA2 and PESA-II. In addition, on ten of
the twelve test cases, OMOPSO outperforms the other EAs
in terms of the median of the Δ index values. Finally,
OMOPSO covers 100% of the fronts computed by DENSEA
in all test cases, and, on eleven of the twelve test cases,
OMOPSO covers more than 88% of the fronts computed by
MOEA/D, more than 80% of the fronts computed by SPEA2
and NSGA-II and more than 70% of the fronts computed by
PESA-II. In contrast, DENSEA covers 0% of the OMOPSO
outcomes in all test cases, and, on eleven of the twelve test
cases, MOEA/D covers less than 5%, SPEA2 covers less than
10%, NSGA-II covers less than 20%, PESA-II covers less
than 25% of the OMOPSO outcomes.

In order to examine the existence of statistical significance
in the performance difference among the considered algo-
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Fig. 1. Box plots based on the hypervolume metric. Each rectangle contains six box plots representing the distribution of the hypervolume values for
each algorithm for a specific test case.

rithms, we use a statistical multiple comparison procedure
for each metric. In detail, the considered statistical multiple
comparison procedure is composed of two steps: in the first
one, a statistical technique such as the Friedman’s test is used
to determine whether the results provided by the considered
algorithms present any inequality; in the second one, which
is performed only if in the first step an inequality is found, a
post-hoc test such as Holm’s test is led in order to determined
which algorithm better outperforms.

In the case of the hypervolume and Δ index metrics, the
samples used to perform Friedman’s test are composed of the
medians of the values for each test case. Instead, as for the
𝐶 metric, the sample of each algorithm is composed of the
integer values representing the number of the algorithms that
it outperforms in each test case. Table II shows the ranking
obtained by all compared EAs during the Friedman’s tests
performed for hypervolume, Δ index and 𝐶 metrics. The
computed Friedman’s statistics are, respectively, 53.810, 44.1
and 52.048. Since they are greater than the critical value for
five degrees of freedom 𝜒20,1 = 9.2364 (to be considered
being six the number of compared algorithms), the null
hypothesis is rejected for each metric and it is possible to
assess that there is a significant difference between at least
two of the compared algorithms as for all considered metrics.

Attending to this result, a post-hoc statistical analysis is
needed to conduct pairwise comparisons to detect concrete

TABLE II

FRIEDMAN’S TEST RANKING FOR ALL CONSIDERED METRICS.

algorithm hypervolume Δ index C

NSGA-II 2,708 3,083 2,667

SPEA2 3,792 2,5 4

PESA-II 2,458 3,75 2,75

OMOPSO 1,125 1,167 1

MOEA-D 4,917 5,083 4,583

DENSEA 6 5,417 6

differences among compared algorithms. Holm’s procedure
is a multiple comparison method that works by setting a
control algorithm and comparing it with the remaining ones.
Normally, the algorithm which obtains the lowest value of
ranking in the Friedman’s test is chosen as control algorithm.
In our experimentation, as shown in Table II, OMOPSO
is characterized by the lowest value of ranking for each
metric, and, hence, it represents the control algorithm for the
Holm’s test for all considered metrics. All data computed
by the Holm’s procedure for each metric are displayed,
respectively, in Tables III, IV and V. By analyzing them,
Holm’s procedure rejects all hypothesis for each metric. As a
consequence, it is possible to state that OMOPSO statistically
outperforms the other considered EAs at 90% confidence
level (𝛼 is set to 0,1) for each one of the considered metrics.
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Fig. 2. Box plots based on the Δ index metric. Each rectangle contains six box plots representing the distribution of the Δ index values for each algorithm
for a specific test case.

TABLE III

HOLM’S TEST FOR HYPERVOLUME METRIC

𝑖 algorithm 𝑧 value unadjusted 𝑝-value 𝛼
(𝑘−𝑖)

, 𝛼 = 0, 1

5 PESA-II 1,745743 0,080856 0,1

4 NSGA-II 2,07307 0,038166 0,05

3 SPEA2 3,491486 0,00048 0,033333

2 MOEA-D 4,964457 6,89E-07 0,025

1 DENSEA 6,382873 1,74E-10 0,02

TABLE IV

HOLM’S TEST FOR Δ INDEX METRIC

𝑖 algorithm 𝑧 value unadjusted 𝑝-value 𝛼
(𝑘−𝑖)

, 𝛼 = 0, 1

5 SPEA2 1,745743 0,080856 0,1

4 NSGA-II 2,509506 0,01209 0,05

3 PESA-II 3,382377 0,000719 0,033333

2 MOEA-D 5,12812 2,93E-07 0,025

1 DENSEA 5,564556 2,63E-08 0,02

V. CONCLUSIONS

Ontology alignment and the linked meta-matching prob-
lem are relevant issues for the data integration domain. Over
years, evolutionary algorithms have emerged as the most
suitable method for addressing these issues. In this paper,
we perform a systematic study consisting in the comparison

TABLE V

HOLM’S TEST FOR 𝐶 METRIC

𝑖 algorithm 𝑧 value unadjusted 𝑝-value 𝛼
(𝑘−𝑖)

, 𝛼 = 0, 1

5 NSGA-II 2,182179 0,029096 0,1

4 PESA-II 2,291288 0,021947 0,05

3 SPEA2 3,927922 8,57E-05 0,033333

2 MOEA-D 4,691685 2,71E-06 0,025

1 DENSEA 6,546537 5,89E-11 0,02

of six well-known multi-objectives EAs to address the meta-
matching problem in particular. The comparison is carried
out in terms of popular performance indices such as hyper-
volume, Δ index and 𝐶 metric. As shown by a statistical
procedure, OMOPSO outperforms the other considered EAs
in solving the meta-matching problem.
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