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Abstract—Several contemporary multi-objective surrogate-
based algorithms use some kind of local search operator.
The search technique used in this operator can largely affect
the performance of the multi-objective optimizer as a whole,
however, little attention is often paid to the selection of this
technique. In this paper, we compare three different local search
techniques and evaluate their effect on the performance of
two different surrogate based multi-objective optimizers. The
algorithms are evaluated using the well known ZDT and WFG
benchmark suites and recommendations are made based on the
results.

I. INTRODUCTION

Multi-objective evolutionary algorithms have gained a lot
of attention in the recent decades. They are considered one of
the best multi-objective optimizers and are widely used both
in theory and practice. However, their usefulness is limited
by the large number on objective function evaluations they
require. In practice, these evaluations can be rather costly,
both in terms of computational power and money.

This limitation is most often overcome by the introduction
of so called surrogate models. These are a fast approximation
of the real expensive objective function and can be used in
lieu of the real objective to reduce the number of times it
needs to be evaluated, thus decreasing the cost of the opti-
mization considerably. Most often, these models are obtained
by training a machine learning regression model. The model
is trained using the previously evaluated points in the search
space and is used to predict the values of the new points.

The surrogate model may be used in different ways during
the local search. In some cases, individuals are improved
using the models by starting a local search algorithm from
these individuals [1]. In other cases [2], [3], more individuals
are generated, evaluated by the model, and only the best of
them are selected for evaluation and inclusion in the next
generation. Yet another approach [4], [5] switches between
the optimization of the real objectives and the optimization of
the surrogate model. The algorithms used for the optimization
in both phases can be the same, or different.

If we generalize the notion of local search just a little
bit, all of the above described techniques can be viewed as
a special case of local search. When more individuals are
generated than evaluated (i.e. some filtering, or pre-screening,
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of the individuals is used), the process which generates
the individuals can be considered a local search algorithm.
Similarly, algorithms which switch between the two phases of
optimization may also be viewed as performing local search
of the model – the phase which uses only the surrogate model
evaluations is a local search.

In this work, by surrogate model based multi-objective
evolutionary algorithm we mean any evolutionary algorithm
which uses any kind of modeling of the fitness function and
uses the evaluations of the model with the goal to reduce
the overall number of evaluations of the fitness function.
Moreover, by local search we denote any way of generating
new individuals other than the usual uninformed (i.e. random)
genetic operators.

Although local search techniques are often used in
surrogate-based multi-objective algorithms, the reasoning
about the selection of a particular local search technique is
rarely discussed. However, selection of a proper local search
can improve the performance of the algorithm considerably,
as we shall see later. In this work, we compare three dif-
ferent popular local search techniques and discuss, how the
selection of a given search technique affects the performance
of the multi-objective evolutionary algorithm as a whole. For
the experiments, we use two of our surrogate-based multi-
objective EAs – ASM-MOMA and HO-MOMA.

Of course, as per the no free lunch theorem (NFL) [6]
we cannot expect that there will be a single local search
algorithm working the best for the whole range of problems
we can obtain. However, there should be at least some
identifiable classes of problems for which a given algorithm
will have the best performance. In fact, it may even be the
case, that the optimization problems which come from the
formulation of a local search are not general enough for the
no free lunch theorem to apply, and there may, in fact, be an
optimal algorithm for them.

The rest of the paper is organized as follows: in the next
section, we start by the overview of related work in the field
of surrogate based multi-objective optimization with the fo-
cus on the different local search strategies employed. Further,
we describe two of our recent multi-objective optimizers,
which we use as a testing ground for different local search
techniques. A brief overview of such techniques is provided
in a latter section. Next, the experiments we performed are
described and the results are commented on. Based on these
results, we recommend useful local search strategies and
discuss the decision which should be made while choosing
local search heuristics for the use in conjunction with a
surrogate-based multi-objective optimizers.
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II. RELATED WORK

Many surrogate-based multi-objective evolutionary algo-
rithms were proposed in the past. Among the first such
algorithms are two versions of the surrogate based NSGA-
II [4], [5]. Although there are differences in the ways the
models are trained and the types of models used, both of
these algorithms switch between two phases – one, in which
the real objectives are optimized, and one in which the
surrogate models, built for each of the objectives separately,
are optimized using NSGA-II.

A Gaussian process [7] based version of MOEA/D [8],
called MOEA/D-EGO, was also proposed [9]. MOEA/D uses
the idea of decomposition to solve multi-objective optimiza-
tion problems. It transforms the multi-objective problem into
several single-objective problems by using weighted sums of
the objectives. In MOEA/D-EGO, a Gaussian process model
is build for each of the objectives and models for the single-
objective sub-problems are derived from them. The models
are then optimized using MOEA/D with the goal to find the
largest expected improvement.

Loshchilov et al. [2], [3] also proposed two surrogate-
based algorithm. In this case, the surrogate models are
aggregated – there is only one surrogate, which predicts the
quality of the individual as a whole, instead of predicting
the values of each objective separately. In the earlier version,
the surrogate used ideas from OneClass SVM and support
vector regression [10] to characterize the areas of the search
space which can contain new non-dominated individuals. In
the later version, the model was based on ranking SVM [11]
and was trained to predict the dominance relation. In both
cases, a larger number of individuals was generated and then
only the best of them (according to the model) were evaluated
with the real objectives.

Finally, we have also proposed a surrogate-based multi-
objective algorithm with an aggregate model – ASM-MOMA
[12]. The model in the algorithm is based on the distance
to the currently non-dominated set. Individuals in this al-
gorithm are locally optimized using another single-objective
evolutionary algorithm. More details are presented in the next
section, as this is one of the algorithms we use for comparison
of the different local search strategies.

III. SURROGATE-BASED MULTI-OBJECTIVE ALGORITHMS

In this section, we describe two different multi-objective
surrogate-based evolutionary algorithms. One of them is the
multi-objective memetic algorithm with aggregate surrogate
model (ASM-MOMA), the other is a multi-objective memetic
algorithm, which is based on the optimization of the hyper-
volume contribution of each individual with respect to its
neighbors on the non-dominated front (HO-MOMA) (the
neighbors are the two individuals on the Pareto front of a
problem with two objectives which are closest to the left
and right from the optimized individual, see bellow for more
rigorous definition). The main drawback of HO-MOMA is
the fact, that it only works for bi-objective problems due to
the local search fitness construction.

Both the algorithms can be explained as a modification of
an existing multi-objective evolutionary algorithm. We use
NSGA-II here, but any other multi-objective algorithm can
be used. Both of the algorithms we used during experiments
use single-objective optimization during the local search,
however, they differ in the way the single-objective function
is constructed.

In ASM-MOMA, only one model is used. When the
training set is created, the individuals in the non-dominated
set are assigned a value of 0, while the other individuals are
assigned a value equal to the negative value of their distance
from the non-dominated set. The model is trained on this
training set, and as such, it discriminates between the areas
of the search space, which have been already explored (they
should have negative values), and the yet unexplored areas
(they should have positive values thanks to generalization
of the model), the line between these two areas should
correspond to the current non-dominated set (and the model
should predict 0 for them).

In each generation a quarter of individuals in the popu-
lation are improved using a local search procedure, which
starts with the selected individual and tries to maximize the
value of the model. The best found individual replaces the
original one in the population.

The surrogate model in ASM-MOMA is rather simple, and
therefore it is easily trained. We experimented with different
machine learning techniques to find one, which would pro-
vide the best results during the optimization, and we found
out that support vector regression based models provide the
most robust results with respect to the convergence rate and
the quality of the resulting non-dominated sets.

The other algorithm we used for experiments (HO-
MOMA) is currently under development, however, it can be
used for these experiments (although, it is possible, some
aspects of the algorithm will change slightly before it will
be published). In fact, the comparison of the local search
techniques was partially inspired by the need to choose one
for this algorithm.

In HO-MOMA the construction of the model is different.
First, based on previously evaluated values of the objective
function, a surrogate model is build for each of the objectives.
Let us denote the individuals in the sorted (by the values
of the first objective) non-dominated set as 𝑥1, . . . , 𝑥𝑛. For
each individual 𝑥𝑖 a single-objective the following function
is optimized:

max
𝑥

(𝑓2(𝑥𝑖−1)− 𝑓2(𝑥))(𝑓1(𝑥𝑖+1)− 𝑓1(𝑥)),

where 𝑓1 and 𝑓2 are the two objective functions and 𝑓1 and
𝑓2 are their models. A negative value is taken in cases 𝑥
where both 𝑓1(𝑥) > 𝑓1(𝑥𝑖+1) and 𝑓2(𝑥) > 𝑓2(𝑥𝑖−1), so that
the equation is positive only if the point 𝑥 contributes to the
hyper-volume of the non-dominated points. After the local
search completes, the individual 𝑥𝑖 is replaced by the vector,
which maximizes the above equation according to the model
– i.e. it has the largest hyper-volume contribution.
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The algorithm runs in two phases which switch after each
generation. In one of them, one iteration of NSGA-II is
performed, in the other, the local search is executed for
individuals in the non-dominated front.

The fact that the hyper-volume contribution is computed
with respect to the neighbors of the individual ensures that
the optimized individuals will be well spread over the whole
current non-dominated set.

IV. LOCAL SEARCH ALGORITHMS

We compare different local search algorithms in this work.
Most of them are well-known and often used, but for the
sake of self-containedness and also to define them more
precisely (which is especially needed in the case of the simple
evolutionary algorithm), we briefly present them here.

A. Random search

Random search is the most simple search heuristic. It is
quite often used in algorithms which tend to generate much
larger populations of pre-offspring and then use a surrogate
model to select only the promising ones. It generates a
number of individuals around the optimized one, and the one
with the best fitness (according to a surrogate model) is then
selected as the new individual.

B. Gradient search

Gradient search is one of the most basic continuous
optimization algorithms. As it requires the gradient of the
optimized function, it is generally not usable for black-box
optimization. However, when surrogate models are used,
it is possible to obtain the gradient of the model, either
numerically, or, in some cases, even analytically. In this work,
we choose the numerical way which is more general.

The gradient search algorithm works by iteratively moving
the individual towards the areas with better fitness – it uses
the gradient information to find such areas. For maximization,
the creation of the individual 𝑥𝑡+1 from individual 𝑥𝑡 can be
expressed as:

𝑥𝑡+1 = 𝑥𝑡 + 𝜆∇𝑓(𝑥𝑡),

where 𝜆 is the step size parameter, and∇𝑓(𝑥𝑡) is the gradient
of the function (model) 𝑓 in the point 𝑥𝑡.

This step is repeated for several iterations and the indi-
vidual from the last iteration is used as the new, optimized
one.

C. Simple evolutionary algorithm

Evolutionary algorithms have a large number of variants.
In this work, by a simple evolutionary algorithm we denote
an algorithm which is basically NSGA-II [13] with only
a single objective. It uses the same operators – i.e. SBX
crossover [14] and polynomial mutation [15]. The envi-
ronmental selection merges the populations of parents and
offspring, sort them according to the (surrogate-based) fitness
function, and selects the best half of the individuals to fill
the parent population in the next generation. The operators
of the algorithm are separable – each of the variables in

the individual are optimized independently of the others.
This may lead to problems when optimizing non-separable
functions.

We used such a simple evolutionary algorithm in our
original work with ASM-MOMA and its later variants.

V. EXPERIMENTAL SETUP

The algorithms are evaluated using the well-known ZDT
[16] and WFG [17] benchmark suites.

In the experiments, the multi-objective algorithms use 100
individuals in the population and were given the computa-
tional budget of 30,000 objective function evaluations. They
use the SBX crossover with probability 0.9, and polynomial
mutation with probability 1/𝑁 , where 𝑁 is the number of
variables for each of the problems (𝑁 = 30 for ZDT1, ZDT2,
and ZDT3, 𝑁 = 10 for ZDT4 and ZDT6, and 𝑁 = 24
for all the WFG problems – 4 of these are position related
and 20 are distance related parameters). The algorithms use
NSGA-II selection with the hyper-volume contribution as the
secondary sorting criterion.

The SVM-based surrogate model was based on support
vector regression from the Weka [18] toolbox. It uses the
Gaussian kernel with bandwidth parameter 0.01. The com-
plexity parameter was set to 𝐶 = 1.

We also use a “perfect model” in some of the experiments
– it is, in fact, not a model at all. It uses the real objective
functions instead of any model. However, these evaluations
are not included in the overall evaluation count. In a sense,
it presents and ideal model, one which has zero error and
learned the objectives perfectly. It is useful as a comparison
to the SVM model and also allows us to evaluate the
performance of the local search algorithms from a different
– more theoretical – point of view. Moreover, it may be also
interesting to observe the differences in the performance of
the SVM model and the perfect model.

The random search samples 1,000 individuals around the
optimized one – a number from normal distribution with the
standard deviation equal to 𝜎 = 0.01(𝑢𝑖− 𝑙𝑖), is added to the
𝑖-th variable, where 𝑢𝑖 and 𝑙𝑖 are the lower and upper bound
of the 𝑖-th variable respectively.

The gradient search adds 0.01∇𝑓 to the values of the
variables in each iteration, where ∇𝑓 is the (numerically)
computed gradient of the fitness. It is executed for 10
iterations. We experimented with larger number of iterations
in preliminary test, but we did not observe any significant
difference.

The simple evolutionary algorithm uses the SBX crossover
and polynomial mutation with the same probabilities as the
external algorithm. It has a population of 50 individuals,
generated around the optimized one by cloning the individual
and applying the polynomial mutation 100 times to each of
the clones. It runs for 30 generations.

All the local search algorithms use only surrogate model
evaluations and no evaluations of the real objective functions.

The algorithms are evaluated using the ΔH metric – it
expresses the difference between the hyper-volume of the
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𝜇-optimal distribution [19] for 𝜇 = 100 and the hyper-
volume found by the algorithm. The value of the metric
was recorded after each generation and used to create the
graphs in the following section. We executed the algorithms
for 15 independent runs for each of the configurations and
provide the median of the performance, together with the
first and third quartile in the graphs presented in this paper.
We obtained a large number of data during the experiments,
and all the data would not fit in the paper due to the space
limitation. However, all the data is available on the author’s
web page as supplementary material1. The supplementary
material also contains numerical and statistical comparison
of the different algorithms which is evaluated with the Mann-
Whitney U-test (Wilcoxon rank-sum test).

VI. RESULTS AND DISCUSSION

In all the graphs presented in the following sections the
names of the algorithm consist of two parts – the first part
expresses the type of algorithm (ASM for ASM-MOMA, and
svmHO and pmHO for HO-MOMA with SVM based model
and perfect model respectively). The second part, separated
by a dash from the first part, denotes the type of local search
(“Grad” for gradient search, “Rand” for random search, and
“EA” for simple evolutionary algorithm). When we say, some
algorithm is significantly better than another one, it means
the 𝑝-value of the Mann-Whitney U-test (Wilcoxon rank-sum
test) is less than 0.001.

A. ASM-MOMA

First, there is almost no difference among the different
local search strategies when employed in ASM-MOMA (cf.
Figure 1). In fact, we have not observed any statistically
significant difference among the different local search al-
gorithms (their performance was statistically evaluated after
1,000; 5,000; 10,000; 20,000; and 30,000 evaluations of the
objectives). The small differences among the algorithms is
mainly due to the fact that the surrogate model in ASM-
MOMA – based only on the distance of points from the non-
dominated set – is rather simple, without local optima. Thus,
it is easily optimized by all the local search algorithms.

B. HO-MOMA with SVM model

For HO-MOMA, with its more complicated, hyper-volume
contribution based model, the situation is different. The
differences among the local search heuristics (see Figure 3)
are much larger and thus the choice of a good local search
heuristic is more challenging

For the ZDT problems, we can see that the gradient-
based local search is able to converge quicker than the other
local search heuristics in most cases. The ZDT problems are
quite easy, with one of the objectives being a linear function
of the first variable (except for ZDT6, where the objective
is more complicated). This of course translates to simpler
models for the objectives and thus easier optimization of
such models. Therefore, the gradient search is significantly

1http://martinpilat.com/images/pdf/cec2014-supplementary.pdf

better in the first few thousands of evaluations than the other
local searches on the ZDT benchmarks. ZDT4 is the only
exception, in this case, the performance of all the optimizers
is almost the same, none of them is able to converge in the
30,000 objective evaluations the algorithms were given. The
evolutionary algorithm has the slowest convergence rate in
this case. We can also see an interesting behavior for ZDT6,
here, the evolutionary algorithm is the only one, which is not
able to converge to values of ΔH lower than 0.01. All the
other local search algorithms find better approximations. It
is possibly due to the fact that the algorithm uses the same
operators as the external NSGA-II algorithm, whereas the
other algorithms work differently. The different operators, or
local search techniques, may hybridize better with NSGA-II
and are able to better exploit the information provided by
the model. The value of approx. 0.01 (found by the EA local
search), is also the value towards which the NSGA-II without
surrogate converges.

The WFG problems are much more complicated and it
can also be observed in the results. The gradient search is
no longer the best among the tested algorithms, in fact, it
struggles to optimize the more complicated objective func-
tions with lots of local optima, and is often the slowest of
the algorithms, often even slower than the random search.
An interesting situation is observed for the WFG2 function,
where the EA local search performs much better than the
other algorithms (EA is able to obtain almost ΔH = 0.1,
while the other algorithms are around ΔH = 1).

C. HO-MOMA with perfect model

The version of HO-MOMA with perfect model is rather
a theoretical one, as the perfect model uses the evaluations
of the real objectives (which are not included in the overall
count). However, the results (see Figure 3) are interesting and
show how the choice of model can affect the performance.
One could expect that the results with the perfect model
should be better than the ones with the SVM model, but
this is not always the case. In some cases, the results of the
SVM models are better.

For ZDT problems, the results of the perfect model roughly
correspond to the results with the SVM models. The con-
vergence is little slower, but the order of the local search
algorithms stays the same. Gradient search is again the fastest
of the tested algorithms, especially in the earlier phases of
the evolution, and all the local search algorithms converge to
similar values of ΔH. In this case, even the EA of ZDT6 is
able to find the same quality of resulting Pareto sets as the
other local search algorithms (although we observe slower
convergence and rather large plateau around the value of
ΔH = 0.01 – the one the algorithms was able to obtain
with the SVM model). For ZDT4, the EA is the fastest of the
algorithms during the first 15,000 function evaluations, where
the gradient search starts to win (before they converge to the
same value around the 25,000 mark). The random search is
the slowest of the algorithms in all cases, except ZDT6 as
already mentioned.
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Figure 1. The performance of the different local search heuristics when used with ASM-MOMA. Median of fifteen runs together with first and third
quartile.
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For the WFG benchmark, the EA local search is in almost
all cases the best among the local searches. For some of
the problems (WFG1, WFG3, WFG4, WFG7, WFG9 and
partially also WFG5) the difference between the EA search
and the others is rather large. Most of these problems
are separable (WFG1, WFG4, WFG5, and WFG7) and the
evolutionary algorithm uses operators which can exploit the
separability. For WFG3 the convergence of EA is faster
mainly in the beginning, and the difference between the
algorithms stays almost the same later in the evolution – it
has approximately 10 times lower value of ΔH for numbers
of evaluations between 5,000 and 30,000.

As already mentioned, the situation on WFG2 is the most
interesting, mainly when compared with the SVM based
models. For the SVM based models, the EA local search is
the best among the tested, however, with the perfect model,
the evolutionary algorithm does not work better than the
other local search techniques. This shows, that the surrogate
modeling can improve the convergence rate of the algorithm
even when compared with the perfect model. The reasons for
this performance difference should be further studied in the
future. In WFG2, one of the objectives is uni-modal, while
the other is multi-modal, both are non-separable functions. It
seems the SVM models are able to grasp the global structure

of the multi-modal WFG2 objective better and make it more
easily exploitable by the EA.

VII. CONCLUSIONS

We compared three widely used local search algorithms
– random search, gradient search, and simple evolutionary
algorithm. These algorithms were employed as local search
in two surrogate based multi-objective algorithms.

The results indicate that for algorithms with simpler mod-
els (ASM-MOMA) the choice of the local search does not
affect the result – every local search algorithms is able to
exploit the surrogate model. However, with more compli-
cated local surrogate models (HO-MOMA) the local search
algorithms can greatly affect the performance. Therefore, the
choice of the local search (and also of the surrogate model)
shall be carefully considered when designing new surrogate-
based multi-objective algorithms, not only with regard to the
type of model used but also with regard to the complexity of
optimized functions.

Moreover, we have shown that surrogate models can im-
prove the convergence rate of the algorithm even more than
a “perfect model” – a “model” which uses the objectives
directly. The models can grasp the global structure of the
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Figure 2. The performance of the different local search heuristics with HO-MOMA with SVM-based model. Median of fifteen runs, together with the first
and third quartile.

0.0001

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25 30

Δ
H

Function evaluations (×10−3)

ZDT1

svmHO-Rand
svmHO-Grad

svmHO-EA

1

10

100

0 5 10 15 20 25 30
Δ
H

Function evaluations (×10−3)

WFG1

svmHO-Rand
svmHO-Grad

svmHO-EA

1e-005

0.0001

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25 30

Δ
H

Function evaluations (×10−3)

ZDT3

svmHO-Rand
svmHO-Grad

svmHO-EA

0.1

1

10

0 5 10 15 20 25 30

Δ
H

Function evaluations (×10−3)

WFG2

svmHO-Rand
svmHO-Grad

svmHO-EA

1e-005

0.0001

0.001

0.01

0.1

1

10

100

0 5 10 15 20 25 30

Δ
H

Function evaluations (×10−3)

ZDT6

svmHO-Rand
svmHO-Grad

svmHO-EA

0.1

1

10

0 5 10 15 20 25 30

Δ
H

Function evaluations (×10−3)

WFG6

svmHO-Rand
svmHO-Grad

svmHO-EA

2177



Figure 3. The performance of the different local search heuristics with HO-MOMA with SVM-based model. Median of fifteen runs, together with the first
and third quartile.
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problem and remove some of the local optima, thus making
the optimization easier.

In the future, these results can be used in the design of new
surrogate-based multi-objective algorithms. They can also
lead to the improvement of some of the existing algorithms
– i.e. if the local search algorithm they use is replaced by a
more suitable one.

We would like to work on ways, which would provide the
possibility for automated selection of local search algorithm
in run-time. This selection might be based on the evaluation
of the different local search algorithms and their performance
while solving the problem at hand, e.g. each of the local
searches can be used in some generations, with the ones with
faster improvement being used more often.
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