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Abstract—Tree based genetic programming (GP) traditionally
uses simple S-expressions to represent programs, however more
expressive representations, such as lambda calculus, can exhibit
better results while being better suited for typed GP. In this
paper we present population initialization methods within a
framework of GP over simply typed lambda calculus that can
be also used in the standard GP approach. Initializations can
be parameterized by different search strategies, leading to wide
spectrum of methods corresponding to standard ramped half-
and-half initialization on one hand, or exhaustive systematic
search on the other. A novel geometric strategy is proposed
that balances those two approaches. Experiments on well known
benchmark problems show that the geometric strategy outper-
forms the standard generating method in success rate, best fitness
value, time consumption and average individual size.

I. INTRODUCTION

Genetic programming (GP) represents an efficient method
for automatic generating of programs by means of evolutionary
techniques [1], [2]. Early attempts to enhance the GP approach
with the concept of types include the seminal work [3] where
the ideas from Ada programming language were used to define
a so-called strongly typed GP. The use of types naturally leads
to enriching S-expressions, the traditional GP representation of
individuals, with concepts from lambda calculus, which is sim-
ple yet powerful functional, mathematical, and programming
language extensively used in type theory. Such attempts has
shown to be successful [4].

In this paper we present a tree generating method suitable
both for the standard GP [1] and for the typed GP over lambda
calculus. We chose to describe the algorithm by means of
the typed lambda calculus, since the standard S-expression
representation can be understood as a special case of this
representation. However, for evaluation of our approach, we
focus more on problems from the standard GP domain. The
main reason for this is that the result of GP system depends on
the crossover operation, which still remains an open problem
for the typed GP over lambda calculus.

During the expansion phase of the term generating pro-
cedure the space of unfinished terms can be browsed with
respect to various search strategies. Our approach to this
problem aims to utilize the full arsenal given by the simply
typed lambda calculus. Thus, the natural idea is to employ an
exhaustive systematic search. On the other hand, if we were to
mimic the standard GP approach, a quite arbitrary yet common

and successful ramped half-and-half generating heuristic [5]
should probably be used. These two search methods in fact
represent boundaries between which we will try to position
our parameterized solution that allows us to take advantage of
both strategies. This design goal also differentiate our approach
from the three state of the art proposals for typed GP known
to us that are discussed in the following section. Our proposed
geometric search strategy1 described in this paper is such a
successful hybrid mixture of random and systematic exhaustive
search. Experiments show that it is also very efficient dealing
with one of the traditional GP scarecrows – the bloat problem.

The rest of the paper is organized as follows: The next
section briefly discusses related work in the field of typed GP,
while section III introduces necessary notions. Main original
results about search strategies in individual generating are
described in section IV. Section V presents results of our
method on three well-known tasks, and the paper is concluded
by section VI.

II. RELATED WORK

Yu presents a GP system utilizing polymorphic higher-
order functions2 and lambda abstractions [4]. Important point
of interest in this work is use of foldr3 function as a tool
for implicit recursion, i.e. recursion without explicit recursive
calls. The terminal set for constructing lambda abstraction
subtrees is limited to use only constants and variables of
that particular lambda abstraction, i.e., outer variables are
not allowed to be used as terminals in this work. This is
significant difference from our approach since we permit
all well-typed normalized λ-terms. From this difference also
comes different crossover operation. We focus more on term
generating process; their term generation is performed in a
similar way as the standard one, whereas our term generation
also tries to utilize techniques of systematic enumeration.

Briggs and O’Neill present technique utilizing typed GP
with combinators [7]. The difference between approach pre-
sented in this work and our approach is that in this work
terms are generated straight from library of combinators and
no lambda abstractions are used. They are using more general

1Not to be confused with geometric crossover introduced by [6].
2Higher-order function takes another function as an input parameter.
3foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
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polymorphic type system than us – the Hindley–Milner type
system. They also discuss the properties of exhaustive enu-
meration of terms and compare it with GP search. They also
present interesting concept of Generalized genetic operator
based on term generation.

Binard and Felty use even stronger type system (System F)
[8]. But with increasing power of the type system comes in-
creasing difficulty of term generation. For this reason evolution
in this work takes interesting and nonstandard shape (fitness is
associated with genes which are evolved together with species
which together participate in creation of individuals). This
differs from our approach, which tries to be generalization of
the standard GP[1].

In contrast with above mentioned works our approach uses
very simple type system (simply typed lambda calculus) and
concentrates on process of generation able to generate all
possible well-typed normalized lambda terms. In order to do
so we use technique based on inhabitation machines described
by Barendregt [9].

III. PRELIMINARIES

In this section, several notions necessary to build a typed
GP based on lambda calculus are introduced. First, let us
describe a programming language, in which the GP algorithm
generates individual programs — the so called λ-terms.

Definition 1: Let V be infinite countable set of variable
names. Let C be set of constant names, V ∩ C = ∅. Then Λ
is set of λ-terms defined inductively as follows.

x ∈ V ∪ C ⇒ x ∈ Λ (Variable or constant)
M,N ∈ Λ⇒ (M N) ∈ Λ (Function application)

x ∈ V,M ∈ Λ⇒ (λx .M) ∈ Λ (λ-abstraction)

Function application and λ-abstraction are concepts well
known from common programming languages.

For example in JavaScript term (M N) translates to
expression M(N) and (λx .M) translates to expression
function(x){return M;}. In other words, the function
application corresponds to the act of supplying a function
with an argument, and the λ-abstraction is equivalent to
anonymous function4. M1 M2 M3 . . . Mn is an abbreviation
for (. . . ((M1 M2) M3) . . . Mn) and λx1x2 . . . xn .M for
(λx1 . (λx2 . . . . (λxn .M) . . .)).

A λ-term as described above corresponds to a program
expression with no type information included. Now we will
describe types (or type terms).

Definition 2: Let A be set of atomic type names. Then T
is set of types inductively defined as follows.

α ∈ A⇒ α ∈ T
σ, τ ∈ T⇒ (σ → τ) ∈ T

Type σ → τ is type for functions taking as input something
of a type σ and returning as output something of a type τ .

4Apart from JavaScript, anonymous functions are common e.g. in Python
and Ruby, they were recently introduced to C++, and they are expected to be
supported in Java 8.

τ1 → τ2 → . . . → τn is an abbreviation for τ1 → (τ2 →
(. . . → (τn−1 → τn) . . . )). Such ”chain of arrows” types
simulate types of functions with multiple (here n− 1) inputs.
This technique is called currying. One can grasp the trick by
considering (f M1 . . . Mn) as shorthand for f(M1, . . . ,Mn)
and by observing that functions with such types have terms of
the form λx1x2 . . . xn .M .

The system called simply typed λ-calculus is now easily
obtained by combining the previously defined λ-terms and
types together.

Definition 3:

1) Let Λ be set of λ-terms. Let T be set of types. A
statement M : σ is a pair (M,σ) ∈ Λ×T. Statement
M : σ is vocalized as ”M has type σ”. The term M
is called the subject of the statement M : σ.

2) A declaration is a statement x : σ where x ∈ V ∪C.
3) A context is set of declarations with distinct variables

as subjects.

Context is a basic type theoretic concept suitable as a
typed alternative for terminal and function set in standard GP.
Notation Γ, x : σ denotes Γ ∪ {(x : σ)} such that Γ does
not contain any declaration with x as subject. We also write
x : σ ∈ Γ instead of (x, σ) ∈ Γ.

Definition 4: A statement M : σ is derivable from a con-
text Γ (notation Γ `M : σ) if it can be produced by the
following rules.

x : σ ∈ Γ ⇒ Γ ` x : σ

Γ `M : σ → τ , Γ ` N : σ ⇒ Γ ` (M N) : τ

Γ, x : σ `M : τ ⇒ Γ ` (λx .M) : σ → τ

Our goal in term generation is to produce terms M for a
given pair 〈τ ; Γ〉 such that for each M is Γ `M : τ .

Definition 5: Let V be infinite countable set of variable
names. Let C be set of constant names, V ∩C = ∅. Let T be
set of types. Let C be set of all contexts on (V ∪C, T). Then
Λ′ is set of unfinished λ-terms defined inductively as follows.

τ ∈ T,Γ ∈ C⇒ 〈τ ; Γ〉 ∈ Λ′ (Unfinished leaf)
x ∈ V ∪ C ⇒ x ∈ Λ′ (Variable or constant)
M,N ∈ Λ′ ⇒ (M N) ∈ Λ′ (Function application)

x ∈ V,M ∈ Λ′ ⇒ (λx .M) ∈ Λ′ (λ-abstraction)

Unfinished leaf 〈τ ; Γ〉 stands for yet not specified λ-term
of the type τ build from symbols of Γ.

IV. OUR APPROACH

A. Introduction

Our approach to λ-term generating is based on technique
briefly described in [9], which generates well-typed λ-terms
in their long normal form. We use this technique to perform
a systematic exhaustive enumeration of λ-terms in their long
normal form in order from the smallest to the largest. We
use well known A* algorithm [10] for this task. A* is used to
search in a given state space for a goal state. It finds the optimal
solution (in our case the smallest term) and uses ”advising”
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heuristic function. It maintains a priority queue to organize
states yet to be explored. Initially this queue contains only the
initial state.

Our state space to search in is the space of unfinished λ-
terms. The initial state is the unfinished term 〈τ ; Γ〉, where τ is
the desired type of terms to be generated and Γ is the context
representing the set of building symbols to be used in construc-
tion of terms (it corresponds to the set T ∪ F in standard GP
enriched with types). The process of determining successors of
a state described below is designed so it constructs well-typed
λ-terms and omits no λ-term in its long normal form. A state
is considered a goal state if it contains no unfinished leaf, i.e.,
it is a finished λ-term.

Our generating method is based on simple modification of
the standard A*, which we call forgetful A*. This modification
consist in additional parameter for the A* algorithm – the
search strategy. It is a simple filtration function (along with
initialization procedure) that is given the set of all successors
of the state that is being examined and returns a subset of
this input. This subset is added to the priority queue to be
further explored. In this way the search space may be reduced
as the filtration function may forget some successors. If the
queue becomes empty before the desired number of λ-terms
is generated, then the initial state is inserted to the queue
and the process continues. For the standard A* this would be
meaningless, but since our A* is forgetful this kind of restart
makes sense.

A* keeps a priority queue of states during the generation
process, on the other hand the ramped half-and-half method,
the standard GP algorithm for generating individuals, keeps
only one individual which is gradually constructed. This be-
havior is easily achieved by use of suitable search strategy that
returns subset consisting of only one successor. The systematic
search is obtained by search strategy that returns whole input
set. Our novel geometric strategy can be understood as point
somewhere between those two extremes.

B. Algorithm

Let us look on the proposed generating procedure in a
grater detail sufficient as guide for implementing it. The inputs
for the term generating algorithm are following:

1) Desired type τ of generated terms.
2) Context Γ representing the set of building symbols.
3) Number n of terms to be generated.
4) Search strategy S.

Essential data structure of our algorithm is priority queue
of unfinished terms. Priority of an unfinished term is given
by its size5. At the beginning, the queue contains only one
unfinished term; 〈τ ; Γ〉. The search strategy S also initializes
its internal state (if it has one).

5A* heuristic function is hidden in method of computing size of unfinished
leafs 〈τ ; Γ〉. Our algorithm uses trivial estimate |〈τ ; Γ〉| = 1 which is trivially
admissible. This heuristic is not as naive as it might seem since it is quite usual
to have x such that x : τ ∈ Γ. Since the true value of |〈τ ; Γ〉| depends only
on τ and types in Γ (the signature), no matter how many variables/constants
of each type there are, it should by pretty effective to compute this value
precisely and store them for later.

At each step, the term M with the smallest size is pulled
from the queue. According to the number of unfinished leafs
in M one of the following actions is performed:

1) If the term M has no unfinished leaf (i.e., it is a
finished term satisfying Γ `M : τ ), then it is added
to the result set of generated terms.

2) Otherwise, successors of the unfinished term M are
filtered out by search strategy S and those successors
that outlast the filtration are inserted into the queue.

Successors of an unfinished term M are obtained by
expansion of the DFS-first unfinished leaf L (i.e., the leftmost
unfinished leaf of M ).

Expansion of the selected unfinished leaf L leads to
creation of one or many (possibly zero) successors. In this
process, L is replaced by a new subterm defined by the
following rules6:

1) Function rule:
If L = 〈ρ1 → . . . → ρn → α; Γ〉, where α
is atomic type and n ≥ 1, then L is replaced by
(λx1 . . . xn . 〈α; Γ, x1 : ρ1, . . . , xn : ρn〉). Thus this
expansion results in exactly one successor.
In other words, a function type is replaced by a new
anonymous function, and for each of its inputs is
added a fresh variable into the context of its body
– which results in possibility of using those new
variables inside the body of the anonymous function.
Notice that this rule is never used in problems satis-
fying the closure requirement.

2) Atomic rule:
If L = 〈α; Γ〉 where α is atomic type, then for each
f : (τ1 → . . .→ τm → α) ∈ Γ, m ≥ 0 the unfin-
ished leaf L is replaced by ( f 〈τ1; Γ〉 . . . 〈τm; Γ〉 ).
Thus this expansion results in many (possibly zero or
one) successors.
In other words, an atomic type is replaced by a
constant symbol (for m = 0) or function symbol
(for m > 0) from the local context. Unfinished leafs
〈τi; Γ〉 correspond to the argument subtrees yet to be
generated – precisely as in S-expression generation.
Notice that for problems satisfying closure require-
ment only this rule is applicable; therefore standard
S-expressions are generated for such a problem.

Algorithm 2 summarizes this key phase of generating
procedure by pseudocode.

Now that we have all possible successors of M , we are
about to apply the search strategy S. A search strategy is a
procedure which takes as input a set of unfinished terms and
returns a subset of the input set. Therefore, search strategy acts
as a filter reducing the search space.

If the queue becomes empty before the desired number n
of terms is generated, then the initial unfinished term 〈τ ; Γ〉

6For the sake of simplicity it is presented as two separate rules. Since the
first rule results in exactly one successor it is smarter to combine those two
rules into one resulting in that unfinished leafs have only atomic types. At the
beginning we transform the initial type into atomic by first rule (if necessary).
After that only second rule is applied, but if it results in creation of some
unatomic 〈τi; Γ〉, then first rules are applied, but during the same successor
creation This step eliminates all unatomic unfinished leafs.
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Algorithm 1: Individual generating procedure.
function generate(Type τ , Context Γ, Int n, Strategy S)

results← empty set
while |results| < n do

S.init()
open← empty priority queue
start← 〈τ ; Γ〉
start.G ← 0
start.F ← 1
open.insert(start)
while ¬ open.isEmpty() do

term← open.popTermWithLowestF()
if numUnfinLeafs(term) = 0 then

results.insert(term)
if |results| = n then

return results

else
nexts←expand(term)
depth← term.depthOfExpandedLeaf()
nexts′ ← S.filter(nexts, depth)
for next ∈ nexts′ do

heur ←numUnfinLeafs(next)
next.G ← term.G+1
next.F ← next.G+heur
open.insert(next)

return results

Algorithm 2: Expansion (successor) procedure.
function expand(UnfinishedTerm term)

nexts← empty set
〈σ; Γ〉 ← DFS-first unfinished leaf of term
switch σ do

case ρ1 → . . .→ ρn → α : n ≥ 1, α atomic
t← (λx1 . . . xn . 〈α; Γ, x1 : ρ1 . . . xn : ρn〉)
next← replace 〈σ; Γ〉 in term with t
nexts.insert(next)

case α: α atomic
for f : τ1 → . . .→ τm → α ∈ Γ, m ≥ 0 do

t← ( f 〈τ1; Γ〉 . . . 〈τm; Γ〉 )
next← replace 〈σ; Γ〉 in term with t
nexts.insert(next)

return nexts

Algorithm 3: Geometric strategy.
function Geometric.filter(UnfinTerms nexts, Int depth)

nexts′ ← empty set
for next ∈ nexts do

with probability qdepth do nexts′.insert(next)
return nexts′

is inserted to the queue, search strategy S again initializes its
internal state and the process continues. The whole generating
procedure is summarized by Algorithm 1.

Let us now discuss three such search strategies.

Systematic strategy: If we use trivial strategy that returns
all the inputs, then the algorithm systematically generates first
n smallest lambda terms in their long normal form.

Ramped half-and-half strategy: This is generalization
of the standard ramped half-and-half method described in
[1]. If applied to context satisfying closure requirement (all
constants/variables are of the same type, all functions are
operations on this type), it will behave in the same way as the
standard method. The internal state of this strategy consists of
two variables. It is the only one strategy described here that
uses an internal state.

1) isFull - A boolean value, determining whether full or
grow method will be performed.

2) d - An integer value from {2, . . . , Dinit}, where
Dinit is predefined maximal depth (e.g. 6).

This strategy returns precisely one randomly (uniformly)
selected element from the selection subset of input set (or zero
elements if the input set is empty). The selection subset to
select from is determined by depth, d and isFull. The depth
parameter is the depth (in the term tree) of the unfinished
leaf that was expanded. Those elements of input set whose
newly added subtree contains one ore more unfinished leafs are
regarded as non-terminals, whereas those whose newly added
subtree contains no unfinished leaf are regarded as terminals.
If depth = 0, then the subset to select from is set of all non-
terminals of the input set. If depth = d, then the subset to
select from is set of all terminals of the input set. In other cases
of depth it depends on value of isFull. If isFull = true, then
the subset to select from is set of all non-terminals of the input
set. If isFull = false, then the subset to select from is the
whole input set.

Geometric strategy: We can see those two previous strate-
gies as two extremes on the spectrum of possible strategies.
Systematic strategy filters no successor state thus performing
exhaustive search resulting in discovery of n smallest terms
in one run. On the other hand, ramped half-and-half strategy
filters all but one successor states resulting in degradation of
the priority queue into ”fancy variable”. Geometric strategy is
simple yet fairly effective term generating strategy somewhere
in the middle of this spectrum. It is parameterized by parameter
q ∈ (0, 1), its default well-performing value is q = 0.75. For
each element of the input set it is probabilistically decided
whether it will be returned or omitted. A probability p of
returning is same for all elements, but depends on the depth,
which is defined in the same way as in previous strategy. It is
computed as follows.

p = qdepth

This formula is motivated by idea that it is important to
explore all possible root symbols, but as the depth increases
it becomes less ”dangerous” to omit an exploration branch.
We can see this by considering that this strategy results in
somehow forgetful A* search. With each omission we make
the search space smaller. But with increasing depth these
omissions have smaller impact on the search space, i.e., they
cut out lesser portion of the search space. Another slightly
esoteric argument supporting this formula is that ”root parts”
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of a program usually stand for more crucial parts with radical
impact on global behavior of a program, whereas ”leaf parts”
of a program usually stand for less important local parts (e.g.
constants). This strategy also plays nicely with the idea that
”too big trees should be killed”. Algorithm 3 summarizes the
filtration procedure performed by the geometric strategy.

Furthermore, our system utilizes generalization of the stan-
dard tree-swapping crossover operator. Since it is beyond the
scope of this paper we mention it only briefly. Two main
concerns with swapping typed subtrees are types and free
variables. Well-typed offspring is obtained by swapping only
subtrees of the same type. Only subtrees with corresponding
counterpart in the second parent are randomly chosen from.
More interesting problem lies in free variables, which may
cause trouble if swapped somewhere where it is suddenly
not bounded. In order to circumvent this difficulty we utilize
technique called abstraction elimination[11] that transforms
an arbitrary λ-term into λ-term that contains no lambda ab-
stractions and no bound variables. After the initial population
is generated, it is transformed by abstraction elimination.
Another possible transformation taking place after initializa-
tion is η-normalization shortening rather long long normal
form into shorter βη-normal form. Another performance en-
hancing transformation is option of using ”applicative” tree
representation (coming directly from inductive definition of λ-
terms) instead of more traditional S-expression representation.
Favorable properties of applicative tree representation are also
reported in [12].

A remarkable benefit of parameterizing the generating
method by a search strategy taking the form of a simple
filtration function is that such a function can be expressed
by functional language in a very economical way. Take for
instance a search strategy that behaves same as the geometric
except that when it comes to situation where all the elements
are filtered out it acts as the ramped half-and-half. Such
strategy composition is easily describable as a higher order
function. Thus comes to mind the possibility of using our
system to come up with new search strategies on its own.

V. EXPERIMENTS

We made three experiments comparing the performance
of standard ramped half-and-half strategy with our geometric
strategy (with default parameter value q = 0.75).

Despite the fact that the geometric strategy was designed
for typed GP over lambda trees, it works well also for standard
GP problems satisfying the closure requirement. Furthermore,
for such problems our approach generates the standard S-
expressions only. Another reason for including standard GP
benchmarks in our experiments is the fact that the results
are seriously affected by the choice of a crossover operator.
Design of a good crossover for typed GP remains an open
problem. Our crossover design for typed GP is quite technical
and beyond the scope of this paper, but for problems satisfying
the closure requirement it behaves exactly the same as the
standard GP crossover.

Three well known benchmark problems (Simple symbolic
regression, Artificial ant and Even parity problem) were chosen
for our experiments. The first two satisfy the closure require-
ment, whereas the third one does not. In order to ensure that

TABLE I. STANDARD GP PARAMETERS.

Population size 500
Number of generations 51
Probability of crossover 90%
Probability of reproduction 10%
Probability of mutation 0%
Max depth (initial) 6
Max depth (crossover) 17
Representation S-expressions
Crossover Standard tree swapping (90-10)
Selection Fitness-proportionate

Generating method Ramped half-and-half / geometric s.

the experiments are replicable we chose to use the standard
GP system described in [1], with all the parameters set to
their default values (which are summarized in table I), with
the following exceptions:

1) In the second and third experiment the preservation
of the best individual into the next generation is
performed.

2) In the third experiment we use our crossover op-
eration briefly mentioned above together with the
appropriate tree representation.

For problems satisfying closure requirement our generating
method generates S-expressions. Therefore it can be directly
plugged into the standard GP system. Each experiment con-
sisted of 50 independent runs of a GP algorithm. Each run
had a limit of 51 generations, and the population size was 500
individuals. In the experiments we analyze the fitness of the
best individual, the average size of an individual, the ability of
the system to produce a correct solution and the computational
cost estimates throughout generations. For the last two metrics
we use the popular measurement methods within the GP
field — the performance curves described in [1] — P (M, i)
(cumulative probability of success) and I(M, i, z) (the total
number of individuals that must be processed to yield a correct
solution with probability z = 99%). The difference of those
two generating methods is statistically analyzed by the Welch
t-test by comparing the fitness values of the best individuals of
the run. The graphs showing mean values of the fitness of the
best individual and the average size of individuals throughout
generations contain error bars representing the standard error
of the mean (SEM).

The experiments were performed under identical conditions
on a fairly standard desktop computer with 4 core 3.3 GHz
processor and 4 GB RAM. The running times noted for each
experiment should be considered only a rough estimate of the
time complexity of particular methods.

A. Simple Symbolic Regression

Simple Symbolic Regression is a problem described in [1].
The objective of this problem is to find a function f(x) that
fits a sample of twenty given points. The target function is a
function defined as ft(x) = x4 + x3 + x2 + x. The desired
type of generated programs τ and the building blocks context
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Fig. 1. Graphs for Simple symbolic regression.

Γ are the following.

τ = R→R
Γ = {(+) : R→ R→ R, (−) : R→ R→ R,

(∗) : R→ R→ R, rdiv : R→ R→ R,
sin : R→ R, cos : R→ R,
exp : R→ R, rlog : R→ R}

where

rdiv(p, q) =

{
1 if q = 0

p/q otherwise

rlog(x) =

{
0 if x = 0

log(|x|) otherwise.

The fitness function is computed as follows.

fitness(f) =
1

1 +
20∑
i=1

|f(xi)− yi|

TABLE II. STATISTICAL ANALYSIS - SIMPLE SYMBOLIC REGRESSION.

Ramped half-and-half Geometric
Mean 0.7999030182 0.8174067512
SD 0.1521369287 0.1826109800
SEM 0.0215154108 0.0258250925
N 50 50
t-value 0.5207 α = 0.05
p-value 0.6038 Not statistically significant.

where (xi, yi) are 20 data samples from [−1, 1], such that
yi = ft(xi). An individual f such that |f(xi)− yi| < 0.01 for
all data samples is considered as a correct individual.

Figure 1 shows the results of this experiment. Table II
summarizes statistical analysis of the fitness values of the best
individuals of the run (p-value = 0.6038). By conventional
criteria, this difference is considered to be not statistically
significant. Standard ramped half-and-half strategy scored
17/50 (34%) success rate. The minimal I(M, i, z) value was
in the generation 23 with 192,000 individuals to be processed.
The average individual size for generation 50 was 68.8. The
experiment took 46 minutes. Our geometric strategy scored
21/50 (42%) success rate. The minimal I(M, i, z) value was
in generation 29 with 150,000 individuals to be processed.
The average individual size for generation 50 was 44.1. The
experiment took 26 minutes. Thus, for the Simple symbolic
regression our geometric strategy is slightly more successful
than the ramped half-and-half strategy in these observed met-
rics.

B. Artificial Ant

Artificial Ant is another problem described in [1]. The
objective of this problem is to find a control program for an
artificial ant so that it can find all food items located on the
”Santa Fe” trail. The Santa Fe trail lies on a toroidal square
grid. The ant is in the upper left corner, facing right. The ant
is able to move forward, turn left, and sense if a food piece is
ahead of him.

τ = AntAct

Γ = { l : AntAct, r : AntAct,m : AntAct,

ifa : AntAct→ AntAct→ AntAct,

p2 : AntAct→ AntAct→ AntAct,

p3 : AntAct→ AntAct→ AntAct→ AntAct}

The actions l and r turn the ant left and right, respectively.
The action m moves the ant forward. The action ifa x y
(if-food-ahead) performs the action x if a food piece is ahead
of the ant, otherwise it performs the action y. The actions p2
and p3 perform two and three consecutive actions, respectively.
The actions l, r and m each take one time step to execute. An
ant action is performed over and over again until it reaches
the predefined maximal number of steps. The fitness value is
equal to number of eaten food pieces. An individual such that
eats all 89 pieces of food is considered a correct solution. This
limit is set to be 600 time steps7.

Figure 2 shows results of this experiment. Table III sum-
marizes statistical analysis of the fitness values of the best

7In [1] this limit is said to be 400 time steps. But there is also one solution
mentioned as correct but needing 545 time steps. (for 400 time steps it eats
only 79 pieces of food). Thus we use 600 time steps.
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Fig. 2. Graphs for Artificial ant problem.

TABLE III. STATISTICAL ANALYSIS - ARTIFICIAL ANT PROBLEM.

Ramped half-and-half Geometric
Mean 66.20 79.78
SD 12.33 8.77
SEM 1.74 1.24
N 50 50
t-value 6.3479 α = 0.05
p-value <0.0001 Extremely stat. significant.

individuals of the run (p-value < 0.0001). According to this
analysis our strategy performed better; by conventional crite-
ria, this difference is considered to be extremely statistically
significant. The standard ramped half-and-half strategy scored
7/50 (14%) success rate. The minimal I(M, i, z) value was in
the generation 28 with 449,500 individuals to be processed.
The average individual size for generation 50 was 279.5. The
experiment took 265 minutes. Our geometric strategy scored
19/50 (38%) success rate. The minimal I(M, i, z) value was
in generation 10 with 115,500 individuals to be processed.
The average individual size for generation 50 was 94.1. The
experiment took 107 minutes. This is a big improvement in all
watched factors.

C. Even Parity Problem

The previous two problems were instances of standard GP,
i.e. their building symbols obeyed the closure requirement.
This third experiment will break the closure requirement, thus

TABLE IV. STATISTICAL ANALYSIS - EVEN PARITY PROBLEM.

Ramped half-and-half Geometric
Mean 0.895000 0.930000
SD 0.075170 0.078490
SEM 0.010631 0.011100
N 50 50
t-value 2.2772 α = 0.05
p-value 0.0250 Statistically significant.

it is an ideal candidate for testing typed GP techniques. The
even-parity function is a boolean function taking as inputs N
boolean values and returning True if an even number of inputs
are True. For odd number it returns False. This problem has
been used by many researchers as a benchmark for GP. We
compare our results with that obtained by Yu in [4], where an
approach to evolve recursive and modular programs by use of
higher-order functions and λ-abstractions is presented. We use
very similar set of building symbols as in [4].

τ = [Bool]→ Bool

Γ = {and : Bool→ Bool→ Bool,

or : Bool→ Bool→ Bool,

nand : Bool→ Bool→ Bool,

nor : Bool→ Bool→ Bool,

foldr : (Bool→ Bool→ Bool)

→ Bool→ [Bool]→ Bool,

head′ : [Bool]→ Bool,

tail′ : [Bool]→ [Bool]}

The type [Bool] stands for list of Bools and for purpose
of this problem is considered atomic. Unlike in [4], we use
specific instance of polymorphic function foldr. Modifica-
tions of functions head (returning the first element of the
list) and tail (returning the list without the first element) are
used; making them total by returning default value False and
[], respectively. We use the same fitness function as in [4].
The fitness function examines the individual by giving it all
possible boolean lists of length 2 and 3.

Figure 3 shows results of this experiment. Table IV sum-
marizes statistical analysis of the fitness values of the best
individuals of the run (p-value = 0.0250). According to this
analysis our strategy performed better; by conventional criteria,
this difference is considered to be statistically significant.

The standard ramped half-and-half strategy scored 9/50
(18%) success rate. The minimal I(M, i, z) value was in
generation 17 with 333,000 individuals to be processed. The
average individual size for generation 50 was 47.7. The
experiment took 28 minutes. Our geometric strategy scored
32/50 (64%) success rate. The minimal I(M, i, z) value was
in generation 0 with 28,000 individuals to be processed.
The average individual size for generation 50 was 74.3. The
experiment took 33 minutes.

Once again, this represents a big improvement over the
standard GP method.

One may get the impression that geometric strategy suffers
from bloat here, but as is stated in [5]: ”We should not
equate growth with bloat and we should define bloat as
program growth without (significant) return in terms of fitness.”
Considering that it performs significantly better and that term
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Fig. 3. Graphs for Even parity problem.

size around 75 is similar as for the previous two problems,
it seems to us that the ramped half-and-half strategy may
have difficulties with constructing more complex terms, and
therefore it is ”staying small”.

Another itnteresting observation is that 4 times out of 50
(8% of all runs) the 100% correct solution was present in
the generation 0. This is good result for uninformed search.
However, our results are less successful than those presented
in [4] (with slightly different set of building symbols); they
scored 40/50 (80%) success rate and I(M, i, z) of 17,500 in
generation 4. But by an observation of the typical solution
which is often some modification of foldr xor True
inputList one sees that the important task for GP here is
to create the xor function. This is the advantage for the more
specialized term representation used in [4] (restricting the use
of outer variables). The difference in crossover operators may
also be involved in the difference, but such analysis is beyond
the scope of this paper. Finally, our result at least outperforms
other results mentioned in [4]: Generic genetic programming
scored 17/60 (28%); min I(M, i, z) = 220, 000. GP with
ADFs scored 10/29 (34%); min I(M, i, z) = 1, 440, 000.

VI. CONCLUSIONS

In this work, we have proposed a generalization of genetic
programming for simply typed lambda calculus. The main

focus of this paper is on the individual generation algo-
rithms. The main idea is to explore the spectrum of available
approaches bounded on one end by the traditional ramped
half-and-half strategy, while the second bound represents an
exhaustive systematic search. Thus, three population initial-
ization methods have been designed, depending on different
search strategies. The first strategy corresponds to the above
mentioned traditional genetic programming initialization, the
second one corresponds to exhaustive search, and the third one
represents a novel geometric strategy. Experiments on three
well known benchmark problems show that the geometric strat-
egy outperforms the standard ramped half-and-half generating
method in success rate, best fitness value, time consumption
and average individual size. The relevance of these algorithms
does not effect only initialization, but it can be used during
mutation operator in a straightforward way.

Our future research will focus on exploring other possible
search strategies positioned in the middle ground identified in
this paper. Since the search strategy can be easily described
by a rather simple filtration algorithm, it might be interesting
to allow the typed GP system to evolve the search strategy it
utilizes in a kind of meta-evolution way.
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Tomáš Křen has been partially supported by the project GA
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