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Abstract—For many-objective optimization problems, i.e. the
number of objectives is greater than three, the performance of
most of the existing Evolutionary Multi-objective Optimization
algorithms will deteriorate to a certain degree. It is therefore
desirable to reduce many objectives to fewer essential objectives,
if applicable. Currently, most of the existing objective reduction
methods are based on objective selection, whose computational
process is, however, laborious. In this paper, we will propose an
online objective reduction method based on objective extraction
for the many-objective optimization problems. It formulates
the essential objective as a linear combination of the original
objectives with the combination weights determined based on the
correlations of each pair of the essential objectives. Subsequently,
we will integrate it into NSGA-II. Numerical studies have show
the efficacy of the proposed approach.

I. INTRODUCTION

The Evolutionary Multiobjective Optimization (EMO) al-
gorithms have successfully used in a variety of real-world
applications. However, most of the well-known EMO algo-
rithms, such as NSGA-II [1], [2], MOEA/D [3], [4], cannot
work well for the many-objective optimization problem [5],
i.e. the number of objectives is greater than three, because
of the poor scalability of the most existing EMO algorithms,
difficulty in visualization [6], [7], and high computational
cost. Undoubtedly, many-objective optimization problems are
more challenging compared to the 2-objective or 3-objective
problems.

Recently, a number of efforts, e.g. modifying dominance
relations [8], [9], [10], indicator based ranking [11], and sub-
stitute distance assignments [12], [13], have been made to deal
with the many-objective optimization problems. Nevertheless,
it is still desirable to first investigate whether the many-
objective problem is really a many-objective one. More often
than not, the problem at hand may have many objectives, but
they may be reducible to fewer essential objectives, which can
therefore be solved by an existing optimization algorithm.

In recent years, as summarized in [7], [14], a number
of dimensionality reduction (also called objective reduction
interchangeably) schemes for many-objective problems have
been presented. The early seminal work discussing the issue
of redundancy in objectives was presented by Gal and Leber-

ling [15]. More extensive studies in this domain have been
made in the last decade. For example, Saxena and Deb [7]
have proposed a Correlation-Based Reduction method, in
which a set of non-dominant solutions for dimensionality
analysis is obtained by running NSGA-II for a large number of
generations. Thereafter, the correlation matrix 𝑅 is computed
using the objective values of the final population. The eigen-
values and corresponding eigenvectors are then analyzed in
order to reduce the objectives. Also, a Dominance Structure-
Based Reduction method is presented in [6], [16]. They have
investigated how adding and omitting an objective affects
the problem characteristics. Formal definitions of conflict and
redundancy of objective sets are discussed. It aims at finding
a subset of objectives such that either the entire or most of the
dominance relation is preserved. However, its time complexity
is quite high, which limits its applications from the practical
viewpoint. Recently, Jaimes et al. [17], [18] have developed a
dimensionality reduction scheme based on Feature Selection.
In their approach, the objective set is first divided into homoge-
neous neighborhoods based on a correlation matrix of a set of
non-dominant solutions obtained by an EMO algorithm. The
conflict between the objectives can be utilized as a distance
metric. That is, the more conflict between the objectives,
the more distance they are in the objective “conflict” space.
Thereafter, the most compact neighborhood is chosen, and in
which all the objectives except the center one are dropped as
they are the least conflicting.

The methods stated above all try to find an objective subset
from the original objectives set such that the entire or most of
dominance relation is preserved. It is a binary hard decision on
selecting the objectives. The numerical results have shown that
these algorithms can successfully identify the redundant objec-
tives. Nevertheless, these approaches are quite time-consuming
and inapplicable to online objective reduction. In this pa-
per, we will propose an online objective reduction method
for many-objective optimization problems. It formulates the
essential objective as a linear combination of the original
objectives with the combination weights determined based on
the correlations of each pair of the essential objectives. It is
a continuous optimization problem and can be solved by an
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analysis method. Then, we integrate the proposed objective
reduction method into an EMO algorithm to deal with many-
objective optimization problems. Experimental results have
shown the efficacy of the proposed method.

The remainder of this paper is organized as follows. Section
II briefly introduces the many-objective optimization problem
and the existing objective reduction methods. Section III gives
the detailed description of the proposed objective reduction
method, as well as its characteristics. We shall integrate the
proposed objective reduction method into the NSGA-II algo-
rithm and conduct the experiments in Section IV and Section
V, respectively. Finally, we draw a conclusion in Section VI.

II. CORRELATION-BASED OBJECTIVE REDUCTION

Without loss of generality, the multi-objective optimization
problem can be formulated as follows:

min 𝐹 (𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑀 (𝑥))𝑇

𝑠.𝑡. 𝑥 ∈ Ω,
(1)

where Ω ⊂ 𝑅𝑛 is the decision space and 𝑛 is the dimension-
ality of the decision variable 𝑥. 𝐹 : Ω → 𝑅𝑀 consists of 𝑀
real-value objective functions. When 𝑀 ≥ 4, the problem (1)
is regarded as a many-objective optimization problem.

Let 𝑢 = (𝑢1, . . . , 𝑢𝑀 )𝑇 and 𝑣 = (𝑣1, . . . , 𝑣𝑀 )𝑇 ∈ 𝑅𝑀 be
two solutions, 𝑢 is said to dominate 𝑣 (𝑢 ≺ 𝑣) if and only
if 𝑢𝑖 ≤ 𝑣𝑖 for all 𝑖 = 1, . . . ,𝑀 and 𝑢 ∕= 𝑣. 𝑥∗ is called
Pareto optimal solution if there is no solution 𝑥 ∈ Ω such that
𝐹 (𝑥) ≺ 𝐹 (𝑥∗). The set of all Pareto optimal solutions in Ω is
denoted as 𝐸(𝑓,𝐷). Also, the set of Pareto optimal solutions
in the objective space is called as Pareto Front (PF).

Typically, most of the existing objective reduction methods
select an objective subset from the original objective set such
that the dominance relation with respect to (w.r.t.) the non-
dominant set obtained by an EMO algorithm is preserved
as much as possible. The mathematical description of the
objective reduction in many-objective optimization problem
can be formulated as follows: Let 𝒳 = {𝑥1, 𝑥2, . . . , 𝑥𝑁} be
𝑁 non-dominant solutions obtained by an EMO algorithm.
Then, an 𝑚-size (𝑚 ≤𝑀 ) objective subset can be defined as

𝐹 ′(𝑥) = (𝑓𝑘1
(𝑥), . . . , 𝑓𝑘𝑚

(𝑥))𝑇

= ℐ𝑇 (𝑓1(𝑥), . . . , 𝑓𝑀 (𝑥))𝑇
(2)

where 𝑘1, 𝑘2, . . . , 𝑘𝑚 ∈ {1, 2, . . . ,𝑀} and ℐ𝑀𝑚 =
[𝑒𝑘1

, 𝑒𝑘2
, . . . , 𝑒𝑘𝑚

] is an index matrix with

𝑒𝑘𝑖
= (0, . . . , 0︸ ︷︷ ︸

𝑘𝑖−1

, 1, 0, . . . , 0︸ ︷︷ ︸
𝑀−𝑘𝑖

)𝑇 .

We have 𝑓𝑘𝑖
= 𝑒𝑇𝑘𝑖

(𝑓1, 𝑓2, . . . , 𝑓𝑀 )𝑇 . The objective reduction,
or more accurately, objective selection can be regarded as
finding the index matrix ℐ such that the non-dominant relation
w.r.t. 𝒳 is preserved as much as possible. Since it is a discrete
combinatorial optimization problem, the computation cost is
quite high, which make it inapplicable to online objective
reduction. Under the circumstances, It is desired to relax
the discrete index matrix into contiguous weighted matrix to

express the essential objective as a linear combination of the
original objectives and solve it by an analysis method. Along
this line, we will propose an online objective reduction method
in the next section.

III. THE PROPOSED OBJECTIVE REDUCTION METHOD

A. A Novel Correlation-based Objective Reduction Model

In general, a negative correlation between each pair of
objectives means that one objective increases while the other
one decreases and vice versa [19]. Therefore, we claim that
the more negative the correlation between two objectives,
the more conflict between them. That is, we can use the
correlation between two objectives to measure the degree of
conflict between them. Subsequently, we propose an objective
reduction (also called objective extraction) method based on
correlation to deal with many-objective optimization problems.
Specifically, the model of the objective reduction method
proposed in this paper can be formulated as follows:

min 𝐿(𝑊 ) =

𝑚∑
𝑖=1

𝑚∑
𝑗=1,𝑗 ∕=𝑖

[
𝜌(𝑔𝑖, 𝑔𝑗) + 𝜆𝑊

𝑇
𝑖 𝑊𝑗

]
𝑠.𝑡. 0 ≺𝑊𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚,
∥𝑊𝑖∥2 = 1, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚.

(3)

where 𝑊 = [𝑊1, . . . ,𝑊𝑚] ∈ 𝑅𝑀𝑚
+ is the weighted ma-

trix. The 𝑖th reduced objective 𝑔𝑖(𝑥) = 𝑊𝑇
𝑖 (𝑓1, . . . , 𝑓𝑀 )𝑇

expresses as a linear combination of the original objectives.
𝜌(𝑔𝑖, 𝑔𝑗) is the correlation between objectives 𝑔𝑖 and 𝑔𝑗 . The
term 𝑊𝑇

𝑖 𝑊𝑗 is the inner product of the vectors of 𝑊𝑖 and 𝑊𝑗 .
This term makes the solutions of the model (3) are sparse. That
is, most of the elements of 𝑊𝑖 equal to zero, 𝑖 = 1, . . . ,𝑚.
𝜆 = 1 is a constant parameter, which is used to control the
level of the sparsity. The greater value of 𝜆 is, the sparser the
solution of the model is. 0 ≺ 𝑊𝑖 means 𝑊𝑖, 𝑖 = 1, . . . ,𝑚
is a positive non-zero vector. Then, the reduced objective
optimization problem is:

𝐺(𝑥) =𝑊𝑇 (𝑓1(𝑥), . . . , 𝑓𝑀 (𝑥))𝑇

𝑠.𝑡. 𝑥 ∈ Ω.
(4)

In this problem, the variable 𝑊 is a contiguous variable.
According to the definition of correlation, problem (3) can be
converted into the following optimization problem:

min𝐿(𝑊 ) =

𝑚∑
𝑖=1

𝑚∑
𝑗=1,𝑗 ∕=𝑖

[
𝑊𝑇

𝑖 𝑅𝑊𝑗

∥𝑊𝑖∥𝑅∥𝑊𝑗∥𝑅
+ 𝜆𝑊𝑇

𝑖 𝑊𝑗

]

𝑠.𝑡. 0 ≺𝑊𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚,
∥𝑊𝑖∥2 = 1, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚.

(5)

where 𝑅 is the correlation matrix of 𝐹 (𝑥) with respect to
𝒳 = {𝑥1, 𝑥2, . . . , 𝑥𝑁} and ∥𝑊𝑖∥𝑅 =

√
𝑊𝑇

𝑖 𝑅𝑊𝑖.
To solve problem (5), We optimize 𝑊𝑖 alternately for 𝑖 =

1, . . . ,𝑚. That is, supposing 𝑊𝑗s with 𝑗 = 1, . . . , 𝑖 − 1, 𝑖 +
1, . . . ,𝑚 are fixed, the 𝑖th optimization problem w.r.t. 𝑊𝑖,
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which is deduced from the problem (5), is given as follows:

min 𝑙𝑖(𝑊𝑖) =

𝑚∑
𝑗=1,𝑗 ∕=𝑖

[
𝑊𝑇

𝑖 𝑅𝑊𝑗

∥𝑊𝑖∥𝑅∥𝑊𝑗∥𝑅
+𝜆𝑊𝑇

𝑖 𝑊𝑗

]

𝑠.𝑡. 0 ≺𝑊𝑖,

∥𝑊𝑖∥2 = 1.

(6)

As this problem is a constraint optimization problem, the
gradient projection method [20] can therefore be used to solve
it in this paper.

The gradient projection method is based on projecting
the search direction into the subspace tangent to the active
constraints. The gradient of Eq.(6) is given as follows:

∇𝑙𝑖 =
𝑚∑

𝑗=1,𝑗 ∕=𝑖

[
𝑅𝑊𝑗

∥𝑊𝑖∥𝑅∥𝑊𝑗∥𝑅
− 𝑊

𝑇
𝑖 𝑅𝑊𝑗𝑅𝑊𝑖

∥𝑊𝑖∥3𝑅∥𝑊𝑗∥𝑅
+ 𝜆𝑊𝑗

]
.

(7)
We choose an initial 0 ≺𝑊𝑖 and repeat

𝑊 𝑘
𝑖 = 𝑃 (𝑊 𝑘−1

𝑖 − 𝛼∇𝑙𝑖) (8)

where 𝑃 (𝑥) = 𝑥+

∥𝑥+∥2 , 𝑥+ is componentwise max of 0 and 𝑥,
∥𝑥+∥2 is the 2-norm of vector 𝑥+, and 𝛼 is the step length,
which can be calculated by a linear search method. Since this
is a constraint optimization problem, 𝛼 is finite. According to
the constraint 0 ≺𝑊𝑖, we have

𝛼𝑚𝑎𝑥 < max
𝑗

{
𝑊𝑖,𝑗

∇𝑙𝑖,𝑗

∣∣∣∇𝑙𝑖,𝑗 > 0

}
, (9)

where 𝑊𝑖,𝑗 , ∇𝑙𝑖,𝑗 are the 𝑗th element of 𝑊𝑖 and ∇𝑙𝑖, respec-
tively. The pseudocode of computing the weighted matrix is
given in Algorithm 1.

Algorithm 1: Compute the Weighted Matrix 𝑊
input :
∙ A stopping criterion;
∙ The correlation matrix 𝑅;
∙ The initial weighted matrix 𝑊 .

output: The weighted matrix 𝑊 .
while the stopping criteria is not met do

for 𝑖← 1 to 𝑚 do
Compute the gradient w.r.t. 𝑊𝑖 by Eq. (7);
Perform the linear search on 𝛼 to obtain the
optimal step length 𝛼 by solving problem:

𝛼𝑏𝑒𝑠𝑡 ← 𝑎𝑟𝑔 min
0≤𝛼<𝛼𝑚𝑎𝑥

𝑙𝑖(𝑃 (𝑊𝑖 − 𝛼∇𝑙𝑖));

𝑊𝑖 ← 𝑃 (𝑊𝑖 − 𝛼𝑏𝑒𝑠𝑡∇𝑙𝑖).
end

end

B. Characteristics of the Proposed Objective Reduction
Method

The characteristics of the proposed objective reduction
method are two-fold:

1) Preservation of the Dominance Relation: The reduced
problem 𝐺(𝑥) defined in Eq. (4) can preserve the dominance
relation. Subsequently, we have the following proposition:

Proposition 1: Let 0 ≺ 𝑊𝑖 with 𝑖 = 1, . . . ,𝑚. For any
𝑢, 𝑣 ∈ Ω, if 𝐹 (𝑢) ≺ 𝐹 (𝑣), we have 𝐺(𝑢) ≺ 𝐺(𝑣). That is,
𝐸(𝐺,Ω) ⊂ 𝐸(𝐹,Ω).

This proposition claims that for any non-dominant solution
of the reduced problem 𝐺(𝑥), it is also a non-dominant
solution of the original problem 𝐹 (𝑥), but not vice versa.
It means that we can obtain a subset of the non-dominant
solutions of the original problem. Moreover, it also gives the
reason to limit 0 ≺𝑊𝑖.

2) Preservation of the Non-dominant Relation as Much
as Possible: The proposed objective reduction method can
preserve the non-dominant as much as possible. Subsequently,
we have the following proposition:

Proposition 2: Let 𝒳 = {𝑥1, 𝑥2, . . . , 𝑥𝑁} be 𝑁
non-dominant solutions w.r.t. the original 𝐹 . For any
𝑘1, 𝑘2, . . . , 𝑘𝑚 ∈ {1, 2, . . . ,𝑀}, we have

𝑚∑
𝑖=1

𝑚∑
𝑗=1,𝑗 ∕=𝑖

𝜌(𝑔𝑖, 𝑔𝑗) ≤
𝑚∑
𝑖=1

𝑚∑
𝑗=1,𝑗 ∕=𝑖

𝜌(𝑓𝑘𝑖
, 𝑓𝑘𝑗

).

Proof: It is easy to verify that

𝐿(ℐ) =
𝑚∑
𝑖=1

𝑚∑
𝑗=1,𝑗 ∕=𝑖

[
𝜌(𝑓𝑘𝑖

, 𝑓𝑘𝑗
) + 𝜆⟨𝑒𝑘𝑖

, 𝑒𝑘𝑗
⟩
]

Noting that 𝑒𝑇𝑘𝑖
𝑒𝑘𝑗

= 0 as 𝑖 ∕= 𝑗, we have

𝐿(ℐ) =
𝑚∑
𝑖=1

𝑚∑
𝑗=1,𝑗 ∕=𝑖

𝜌(𝑓𝑘𝑖
, 𝑓𝑘𝑗

).

Moreover, based on the model in Eq. (3), we have
𝑚∑
𝑖=1

𝑚∑
𝑗=1,𝑗 ∕=𝑖

𝜌(𝑔𝑖, 𝑔𝑗)≤
𝑚∑
𝑖=1

𝑚∑
𝑗=1,𝑗 ∕=𝑖

[
𝜌(𝑔𝑖, 𝑔𝑗)+𝜆𝑊

𝑇
𝑖 𝑊𝑗

]
= 𝐿(𝑊 ).

Since 𝑊 is the optimal solution of problem (3), we have
𝐿(𝑊 ) ≤ 𝐿(ℐ). This implies that

𝑚−1∑
𝑖=1

𝑚∑
𝑗=𝑖+1

𝜌(𝑔𝑖, 𝑔𝑗) ≤
𝑚−1∑
𝑖=1

𝑚∑
𝑗=𝑖+1

𝜌(𝑓𝑘𝑖
, 𝑓𝑘𝑗

).

From this proposition, we can know that, as ℐ is the optimal
solution of problem (3), the proposed objective reduction
method is equivalent to the objective selection. It means that
the most of existing objective selection is a special case of the
proposed objective reduction method. This proposition also
implies that one can use fewer objectives to preserve the non-
dominant relation than the objective reduction method based
on objective selection. This claim can be further justified
by a test problem: Its PF is three line segments that join
the center of the plane 𝑓1 + 𝑓2 + 𝑓3 = 1 with the points
(1, 0, 0)𝑇 , (0, 1, 0)𝑇 and (0, 0, 1)𝑇 , as illustrated in Fig. 1(a).
We randomly generated 300 points on the PF as the non-
dominant solution. The optimal value of 𝑊 obtained via
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(c) Plot of the non-dominant set on the subspace
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Fig. 1. Illustration of the proposed objective reduction method on a synthetic test problem.

Eq. (5) was: 𝑊1 = (0.7041, 0.7101, 0)𝑇 and 𝑊2 = (0, 0, 1)𝑇 .
The distribution of the reduced objectives, i.e. the projection
of the original objective values on the subspace spanned with
𝑊1 and 𝑊2, is shown in Fig. 1(b). Moreover, the distribution
of the projection of the original objective on the subspace
{𝑓1, 𝑓2}, {𝑓1, 𝑓3} and {𝑓2, 𝑓3} is the same. Also, we plot the
original objectives of the non-dominant solution on subspace
{𝑓1, 𝑓2} in Fig. 1(c). From Fig. 1(b) it can be seen that
the non-dominant relation of the most solutions is preserved.
That is, we can find most of the non-dominant solutions
in this subspace. However, the non-dominant relation cannot
be preserved in the subspace {𝑓1, 𝑓2}. This means that this
problem cannot be reduced. Therefore, we can claim that the
proposed objective reduction method can preserve the non-
dominant relation with fewer objectives.

IV. INTEGRATION OF THE PROPOSED OBJECTIVE

REDUCTION METHOD INTO AN EMO ALGORITHM

This section will integrate the objective reduction method
into an EMO algorithm to deal with the many-objective
optimization problems. We obtain a set of non-dominated
solutions for an𝑀 -objective problem, and initialize the weight
matrix 𝑊 . Then, we compute the weighted matrix 𝑊 by
Algorithm (1) on the current non-dominated solutions and
run the EMO algorithm corresponding to the new problem
𝐺(𝑥) described in Eq. (4). Algorithm 2 gives the details of the
EMO algorithm with the proposed online objective reduction
method.

V. SIMULATION RESULTS

In order to demonstrate the performance of the proposed
objective reduction method, we conducted NSGA-II with the
proposed objective reduction method, denoted as NSGA-II-
OE, on one test instance P1 presented in [21]. This test
instance can be compacted into the following form:

P1 : 𝑓𝑖(𝑥) = 𝛼𝑖(𝑥𝐼) + 𝛽𝑖(𝑦𝑚+1:𝑛), for 𝑖 = 1, . . . ,𝑀
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Fig. 2. The final population obtained by NSGA-II-OE in the objective space
of 𝑓1 versus 𝑓2, 𝑓1 versus 𝑓3, 𝑓1 versus 𝑓4, 𝑓1 versus 𝑓5 on P1 with 5-
objective.
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Fig. 3. The final population obtained by NSGA-II-OE in the objective space
of 𝑓1 versus 𝑓2, 𝑓1 versus 𝑓3 on P1 with 10-objective.
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Fig. 4. The final population obtained by NSGA-II-OE in the objective space
of 𝑓1 versus 𝑓2, 𝑓1 versus 𝑓3 on P1 with 20-objective.
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Fig. 5. The final population found by NSGA-II-OE in the subspace of 𝑥1 versus 𝑥2 on P1 with 5-objective, 10-objective and 20-objective.

Algorithm 2: Pseudocode of the EMO Algorithm with the
Objective Reduction Method

input :
∙ The maximum number of the generations: 𝐺𝑚𝑎𝑥;
∙ Number of reductions during the search: 𝑂;
∙ The size of the population: 𝑁 ;
∙ Genetic operators and their associated parameters.

output: All the non-dominated solutions in 𝑃𝑡.
⋄ Initialize a random population 𝑃𝑡 in the decision space.
⋄ Run the EMO algorithm 𝑘 generations for original
objectives until all the solutions in the population are
non-dominant solutions.
⋄ Compute the weighted matrix 𝑊 on current
non-dominant solutions.
⋄ 𝐺𝑝𝑟𝑒 ← ⌈(𝐺𝑚𝑎𝑥 − 𝑘)/𝑂⌉.
for 𝑜← 1 to 𝑂 do

for 𝑔 ← 1 to 𝐺 do
⋄ Run the EMO algorithm on the new
optimization problem 𝐹

′
(𝑥) =𝑊𝑇𝐹 (𝑥) and

obtain the population 𝑃𝑡;
end
⋄ Compute the correlation matrix 𝑅 of 𝐹 (𝑥) w.r.t. 𝑃𝑡;
⋄ Update the weighted matrix 𝑊 as described in
Algorithm 1;

end

where 𝑥 ∈ [0, 1]𝑛 and 𝑛 = 10. Furthermore, 𝛼 functions are
defined as follows:

𝛼1(𝑥𝐼) = 𝑥1

𝛼2(𝑥𝐼) = 1−
√
𝑥1

𝛼𝑘(𝑥𝐼) =

(
𝑘 − 2

𝑀
−
√
𝑥1

)2

∀ 𝑘 = 3, 4, . . . ,𝑀

and 𝛽 functions are defined as

𝛽1(𝑦3:𝑛) =
1

∣𝐽1∣
∑
𝑗∈𝐽1

𝑦2𝑗

𝛽2(𝑦3:𝑛) =
1

∣𝐽2∣
∑
𝑗∈𝐽2

𝑦2𝑗

𝛽𝑘(𝑦3:𝑛) = 𝐴𝑘

𝑛∑
𝑗=3

𝑎𝑘𝑗𝑦
2
𝑗 ∀ 𝑘 = 3, 4, . . . ,𝑀.

where 𝑦𝑗 = 𝑥𝑗 − 𝑥
0.5(1.0+

3(𝑗−2)

𝑛−2
)

1 , 𝐽1 = {𝑗∣2 ≤ 𝑗 ≤
𝑛, and 𝑗 − 1 is a multiple of 2} and 𝐽2 = {𝑗∣2 ≤ 𝑗 ≤
𝑛, and 𝑗 is a multiple of 2}. 𝐴𝑘 and 𝑎𝑖𝑗 are randomly gen-
erated constants. Its PF is curve in the objective space.

We conducted NSGA-II-OE on P1 with the different di-
mensionality 𝑀 = 5, 10, 20. For all the test instances, the
parameter settings of the algorithm are as follows:

∙ The algorithm stop after 200 generations for all the test
instances.

∙ The number of reductions 𝑂 is set at 20 during the search.
∙ The crossover and mutation operators with the same

control parameters in [4] are used.
∙ The population size 𝑁 is 100.

Figs. 2, 3, 4 show the final population obtained by the
NSGA-II-OE on partial subspace of objective space with
𝑀 = 5, 10 and 20, respectively. It can be seen that we can
obtain an approximate Pareto solutions for the test instance.
Moreover, Fig. 5 shows the final solutions obtained by NSGA-
II-OE in the subspace of 𝑥1 versus 𝑥2 on the test instance with
the different values of 𝑀 . Again, the algorithm can obtain an
approximate solution for the test instance. Figs. 6(b), 7(b) and
8(b) give the parallel coordinate plots of the final solutions
on the test instance with 𝑀 = 5, 10 and 20, respectively. For
comparison, we also give the parallel coordinate plots of 100
points which are uniformly distributed in the objective space
along the PF in Figs. 6(a), 7(a) and 8(a). By comparing the
experimental results with the ideal one, the solutions obtained
by the proposed algorithm are promising, from which it can
be seen that the proposed objective reduction method is able
to extract the essential objectives accurately.

1169



1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective Number

O
bj

ec
tiv

e 
V

al
ue

(a) Analytical(Ideal)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective Number

O
bj

ec
tiv

e 
V

al
ue

(b) NSGA-II with the Proposed Objective Reduction Method

Fig. 6. Parallel coordinate plots after 200 generations for 5-objective from a single run.
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Fig. 7. Parallel coordinate plots after 200 generations for 10-objective from a single run.
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Fig. 8. Parallel coordinate plots after 200 generations for 20-objective from a single run.
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VI. CONCLUSION

In this paper, we have proposed an online objective reduc-
tion method for the many-objective optimization problems. It
formulates the essential objective as a linear combination of
the original objectives with the weights determined based on
the correlations of the essential objectives. Subsequently, we
have integrated it into a state-of-the-art EMO, i.e. NSGA-II, to
deal with many-objective optimization problems. Experiments
have demonstrated the performance of the proposed method on
one test instance with the different dimensionality. The promis-
ing results have shown that the proposed objective reduction
method can extract the essential objectives accurately.
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