

Abstract—This paper reports how OptBees, an algorithm
inspired by the collective decision-making of bee colonies, per-
formed in the test bed developed for the Special Session &
Competition on Real-Parameter Single Objective Optimization
at CEC-2014. The test bed includes 30 scalable functions, many
of which are both non-separable and highly multi-modal. Re-
sults include OptBees’ performance on the 10, 30, 50 and
100-dimensional versions of each function.

I. INTRODUCTION
WARM Intelligence has attracted the interest of many
researchers over the past years. It can be defined as any
attempt to design algorithms or distributed prob-

lem-solving techniques inspired by the collective behavior of
social insect colonies and other animal societies [1]. This
definition is focused on social insects, such as termites, bees,
wasps, as well as different ant species. The classical example
of a swarm is bees swarming around their hive, but the meta-
phor can be easily extended to other systems with a similar
architecture. For instance, an ant colony can be thought of as a
swarm whose individual agents are ants; a flock of birds is a
swarm of birds; an immune system [2] is a swarm of cells;
and a crowd is a swarm of people [3]. The individual agents
of a swarm behave without supervision and each of these
agents has a stochastic behavior that takes into account its
perception of the neighborhood. Local rules, without any re-
lation to the global pattern, and interactions between agents
lead to the emergence of a collective intelligence, called
swarm intelligence.

 Self-organization in swarms presents four main characteris-
tics [1]:

1. Positive feedback: simple behavioral rules promote
the creation of convenient structures. Recruitment
and reinforcement, such as trail laying and following
in some ant species or dances in bees, are examples
of positive feedback;

2. Negative feedback: this type of feedback counter-
balances positive feedback and helps to stabilize the
collective pattern and emergent behaviors. In order
to avoid the saturation which might occur in terms of
available foragers, a negative feedback mechanism,

Renato Dourado Maia is with the Computer Sciences Department, State

University of Montes Claros, MG, Brazil (phone: +55 38 3229 8273; fax:
+55 38 3229 8270; e-mail: renato.dourado@unimontes.br).

Leandro Nunes de Castro is with Natural Computing Laboratory (LCoN),
Graduate Program in Electrical Engineering, Mackenzie University, São
Paulo, Brazil (e-mail: lnunes@mackenzie.br).

Walmir Matos Caminhas is with the Computational Intelligence Labor-
atory, Electronic Engineering Department, Federal University of Minas
Gerais, MG, Brazil (e-mail: caminhas@cpdee.ufmg.br).

such as food source exhaustion, crowding or com-
petition at the food sources, is needed;

3. Fluctuations: random walks, errors or random task
switching among swarm individuals are vital for
creativity and innovation. Randomness is often cru-
cial for emergent structures, since it enables the
discovery of new solutions;

4. Multiple interactions: an important feature of
swarms is that agents use information coming from
other agents and the environment for decision mak-
ing.

According to [4], five principles have to be satisfied by a
swarm so that intelligent behaviors emerge:

1. Proximity: The swarm should be able to do simple
space and time computations;

2. Quality: The swarm should be able to respond to
quality factors in the environment, such as the qual-
ity of food sources or the safety of their location;

3. Diverse response: The swarm should not allocate all
its resources along excessively narrow channels and
should distribute resources into many nodes;

4. Stability: The swarm should not change its mode of
behavior upon every fluctuation of the environment;

5. Adaptability: The swarm must be able to change be-
havior mode when the investment in energy is worth.

Although the self-organization and division of labor fea-
tures defined by [1] and the satisfaction principles stated in
[4] for swarm intelligence are strongly and clearly seen in bee
colonies, problem solving techniques based on bee swarm
intelligence have begun to be introduced only very recently,
from the early to the mid 2000 and have shown promising
results in various domains.

The main purposes of this paper are: 1) to present Opt-
Bees [5], a bee-inspired algorithm for optimization in conti-
nuous spaces; 2) and to evaluate its performance by applying
it to all thirty minimization problems proposed for the IEEE
2014 Congress on Evolutionary Computation Competition on
Real-Parameter Single Objective Optimization (CEC 2014),
considering spaces of 10, 30, 50 and 100 dimensions. A dis-
tinguishing feature of OptBees, when compared with other
bioinspired techniques such as most evolutionary algorithms,
is the use of different types of agents with different roles that
may change for each agent according to the features of the
problem and the dynamics of the algorithm.

The remainder of this paper is organized as follows. Sec-
tion II presents OptBees, a bee-inspired algorithm for conti-
nuous optimization, and Section III reports and discusses ex-
perimental results. Section IV outlines concluding remarks
and avenues for future research.

Real-Parameter Optimization with OptBees
Renato Dourado Maia, Leandro Nunes de Castro, and Walmir Matos Caminhas

S

2649

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

II. OPTBEES – A BEE-INSPIRED ALGORITHM FOR SOLVING
CONTINUOUS OPTIMIZATION PROBLEMS

Ants and bees have provided some of the best described
mechanisms of collective decision-making. In many insect
societies, the essence of these mechanisms is the same, even
if some details remain particular to each society. This section
formalizes an optimization algorithm inspired by the collec-
tive decision-making process of insect societies, specifically
bee colonies, targeting continuous optimization. It also pro-
vides a brief review of related works from the literature.

Some of the most important features of collective deci-
sion-making by bee colonies for the design of algorithms for
solving optimization problems are [6]:

1. Bees dance to recruit nestmates to a food source;
2. Bees adjust the exploration and recovery of food

according to the colony state;
3. Bees, unlike ants, exploit multiple food sources si-

multaneously, but almost invariably converge to the
same new construction site of the nest;

4. There is a positive linear relationship between the
number of bees dancing and the number of bees re-
cruited to a food source: the linear system of re-
cruitment means that workers are evenly distributed
among similar options;

5. The dance communicates the distance and direction
of new sites for nests. Recruitment for the new site
continues until a threshold number of bees is
reached;

6. The quality of the food source influences the bee
dance;

7. All bees retire after some time, which means that
regardless of the quality of the new site, bees stop re-
cruiting other bees. This retirement depends on the
quality of the site: the larger, the later the retirement.

By seeking inspiration in these collective decision-making
features in bee colonies, the OptBees algorithm, whose main
steps are presented below, was proposed [5]. A distinguishing
feature of OptBees when compared with other bioinspired
techniques, such as most evolutionary algorithms, is the use of
different types of agents with different roles. In OptBees, there
are three main types of agent bees: 1) recruiters, responsible
for recruiting bees for exploiting a certain (promising) region
of the space; 2) scouts, that randomly search for new promis-
ing regions of the space; and 3) recruited, that are recruited by
recruiters to exploit its corresponding (promising) region of
the space. These three types of bees represent the active ones,
i.e., the bees involved in the foraging activity (task). The other
bees represent the inactive bees that stay at the hive with no
specific task to perform.

The active bees fly around the space, searching for high
quality food sources (promising regions in the search space).
According to the qualities of the food sources being explored
by active bees, each is classified as recruiter or non-recruiter:
this means that multiple food sources (promising regions) can
be exploited simultaneously. The recruiter bees attract some of
the non-recruiters to exploit their corresponding food source
(as in the natural phenomena, the number of bees that each
recruiter recruits is proportional to the quality of the food

source being explored) and the other non-recruiter bees, the
scouts, randomly search for new promising regions (the re-
cruitment process simulates the dance). If the active bees
discover a large number of high quality food sources, some of
the inactive bees become active and engage in the foraging
activity: this process mimics the bees’ capability of adjusting
the exploration and recovery of food according to the colony
state. A high-level pseudocode of the proposed OptBees al-
gorithm is presented below, and a detailed discussion of each
step follows in the sequence.

OptBees Algorithm
Input Parameters:

• nmin: initial number of active bees.
• nmax: maximum number of active bees.
• ρ: inhibition radius.
• nmean: average foraging effort.
• pmin: minimum probability of a bee being a recruiter.
• prec: percentage of non-recruiter bees that will be actu-

ally recruited.

Output Parameters:

• Active bees and the respective values of the objective
function.

1. Randomly generate a swarm of N bees.

while (stopping criterion is not attained) do
2. Evaluate the quality of the sites being explored by the ac-
tive bees.
3. Apply local search.
4. Determine the recruiter bees.
5. Update the number of active bees.
6. Determine the recruited and scout bees.
7. Perform the recruitment process.
8. Perform the exploration process.

end while

9. Evaluate the quality of the sites being explored by the active
bees.
10. Apply local search.

A. Initialization (Step 1)
The OptBees algorithm was designed to solve continuous

optimization problems. Thus, the natural choice of represen-
tation for the bees is to use real-valued vectors. The ni active
bees are initialized by randomly creating real-valued vectors
in a space of dimension L, using uniform distribution, where
L is the number of coordinates (dimension) of the problem
being solved, according to the search space limits.

B. Evaluation of Bees (Steps 2 and 9)
The target application of the OptBees algorithm in this pa-

per is optimization in continuous spaces. Thus, some know-
ledge (information) about the function to be optimized is
available (e.g., the function itself, f(x) = x3 + x + 3), and the
objective is to determine the values of x that optimize this
function. Therefore, in the present paper if the objective is to
minimize (or maximize) function f(x) = x3 + x + 3, then the
objective can be stated as follows: min f(x) (or max f(x)). In
OptBees, the quality of food sources being exploited by ac-

2650

tive bees are determined using the values of the objective
function f(x) corresponding to the vector of real numbers
represented by each one of them. As conceptually quality is a
feature to be maximized, for minimization problems it is
necessary to perform an appropriate treatment for mapping
the values of the objective function to the corresponding
values of quality (an example of such treatment is to replace
min f(x) by max f1(x) = – f(x)).

C. Local Search Operator (Steps 3 and 10)
The local search operator is not inspired by the behavior of

bees and was used only to improve the performance of Opt-
Bees. Any local search algorithm for continuous spaces can
be used in these steps. The algorithm used as the local search
operator was LocalSearch1, proposed as part of the MTS
algorithm [7] (the winner of the 2008 CEC Special Session
and Competition on Large Scale Global Optimization [8]),
because it performed well over many problems. This algo-
rithm works in each dimension (variable) of the candidate
solutions sequentially and independently, by decreasing or
increasing the values of such variables according to a search
range (which can be reduced during the execution of the al-
gorithm every time this increase/decrease does not lead to
improvements of the candidate solution). A more detailed
explanation of this local search algorithm can be found in [7].
This operator is applied at each iteration of OptBees, consi-
dering only the bee that represents the current best solution,
for thirty iterations, using half of the domain of the variable
being changed as the search range: for example, if the varia-
ble xi is such that a ≤ xi ≤ b, the correspondent search range
for the local search operator is (b – a)/2.

D. Determination of the Recruiter Bees (Steps 4)
Determining the recruiter bees involves three steps. In the

first step, a probability pi of being a recruiter bee is associated
with each active bee. These probabilities are calculated by
Equation 1, in which qi represents the quality of the food
source being explored by bee i and qmin and qmax represent,
respectively, the minimum and maximum qualities among the
food sources being explored by each active bee in the current
iteration (these quality values are determined using the ob-
jective-function values, as explained in Section 2.1.2) and
pmin defines the minimum probability of a bee to be a recrui-
ter.

 ()1 min
i i min min

max min

p
p q q p

q q

⎛ ⎞−= ⋅ − +⎜ ⎟−⎝ ⎠
(1)

Equation 1 performs a linear scaling between the quality of
the food source being explored by a bee and the probability of
this bee to be a recruiter. In the second step, the bees are
processed and, according to the probabilities calculated in the
previous step, are now classified as recruiters or
non-recruiters. A random number nrandom uniformly distri-
buted onver the interval [0, 1] is generated, using a uniform
distribution, for each bee i so that, the higher the pi value, the
more likely the bee i is classified as recruiter: if nrandom is
smaller than pi, than the bee i is classified as recruiter. In the
third step, the recruiter bees are processed, in accordance with
the corresponding food sources qualities, from best to worst

and, for each recruiter bee, the other recruiters, which are at a
distance less than or equal to the social inhibition radius ρ, are
inhibited, i.e., they become classified as non-recruiters. Let
d(i, j) be the Euclidian distance between bees i and j, and
consider the set of recruiter always sorted in descending order
of qualities. The social inhibition process can be formulated
as follows, for each recruiter bee j: for all the other recruiter
bees i (i ≠ j), if d(i, j) < ρ, the bee i is classified as
non-recruiter. The motivation for this inhibition process is to
avoid the presence of more than one recruiter bee at the same
region of the search space.

E. Number of Active Bees Update (Step 5)
After the determination of the recruiter bees, let r be the

number of recruiter bees. The average foraging effort nmean
determines the desired number of non-recruiter bees for each
recruiter bee, i.e., in a given iteration, the number nd = (r +
1)·nmean determines the desired number of active bees. If this
number nd is greater than the current number of active bees
nactive, nadjust = nd – nactive is the necessary number of bees that
have to become active in order to achieve nd active bees; if
this number is less than the current number of active bees,
nadjust = nactive – nd is the necessary number of bees that have to
become inactive in order to achieve nd active bees. This
process respects the maximum (nmax) and minimum (nmin)
number of active bees (the minimum number of active bees
nmin is equal to the initial number of active bees ni): if nd >
nmax, then nd is forced to nmax; if nd < nmin, then nd is forced to
nmin. When an inactive bee becomes active, it is inserted in a
random position in the search space. For the inactivation
process, the bees are selected according to the corresponding
food source quality they explore, from the worse to the best.
When a bee is inactivated, it is removed from the swarm and,
when a bee is activated, it is inserted into the swarm, i.e., the
swarm size varies dynamically. Through this procedure, the
foraging effort (computational effort) adapts in accordance
with the number of recruiter bees and the maximum number
of active bees.

F. Determination of the Recruited and Scout Bees (Step 6)
The number of non-recruiter bees is determined by nnr =

nactive – r (r is the number of recruiter bees determined in Step
4). Only a percentage of the non-recruiters will be recruited
and the others will become scout bees. Thus, the number of
recruited bees is nr = [prec·nnr] ([·] denotes the nearest integer
function) and the number of scout bees is ns = nnr – nr. The
process for determining the recruited bees involves three
steps. In the first step, the number of recruited bees to be as-
sociated with each recruiter is determined. The relative qual-
ity of the food source being explored by each recruiter in re-
lation to the other determines this number: each recruiter re-
cruits a number of bees proportional to the quality of the food
source it explores. Let nri be the number of recruited bees to
be associated with the recruiter bee i, Qrecruiters the sum of the
qualities of the food sources being explored by all the re-
cruiter bees and qi the quality of the food source being ex-
plored by bee i. The values of nri (i = 1, 2, ···, r) are calculated
using the expression nri = [(qi/Qrecruiters)·nr] ([·] denotes the
nearest integer function and Qrecruiters = ∑ ୀଵݍ)

2651

With the number nri of recruited bees to be associated with
each recruiter already determined, the non-recruiter bees are
processed and associated with the nearest recruiter among
those who do not have associated with them a number of bees
recruited equal to the corresponding number nri determined in
the first step. After these procedures, the remaining ns
non-recruiter bees are considered scout bees.

G. Recruitment Process (Step 7)
In the recruitment process, the recruiter bees attract the re-

cruited bees to the food sources (search space region) they ex-
plore. This recruitment process is implemented by Equation 2
or 3, each with 50% probability, where xi is the recruited bee,
y is the recruiter bee, u is a random number with uniform
distribution in the interval [0, 1], U is a vector whose elements
are random numbers with uniform distribution in the interval
[0, 1] (U has the same dimension as xi and y) and the symbol
⊗ denotes the element-wise product.

݅ܠ ൌ ݅ܠ 2 · ٔ܃ ሺܡ െ ሻ (2)݅ܠ

݅ܠ ൌ ݅ܠ 2 · ݑ · ሺܡ െ ሻ (3)݅ܠ

Fig. 1 shows the difference between the two recruitment
processes, considering a two-dimensional problem: using
Equation 3, the recruited bee, after recruitment, will be posi-
tioned in any point in the vector that connects the recruiter bee
and the point xi + 2·(y – xi), while using Equation 2 the re-
cruited bee will be positioned in any point inside the dashed
rectangle.

Fig. 1. Differences between the two recruitment processes, considering a
two-dimensional problem: xi and y are, respectively, the recruited and the
recruiter bee.

H. Exploration Process (Step 8)
In the exploration process, each one of the ns scout bees is

moved to a random position in the search space.

III. EXPERIMENTAL RESULTS
To evaluate the performance of OptBees, experiments

were performed based on the set of test problems proposed
for the Special Session & Competition on Real-Parameter
Single Objective Optimization at CEC-2014 (CEC-2014
Competition), which occurred in the IEEE Congress on
Evolutionary Computation (CEC) in 2014 [9].

The CEC-2014 Competition problem set consists of thirty
minimization mono-objective problems in continuous spaces,
which may include several characteristics, such as: uni or
multimodality, large number of local optima, dependence or
not between variables, non-differentiability in some search
space points, and presence of plateaus. Details about these
problems can be found in [9].

For the experiments, the Matlab® version of the original
implementation for all CEC-2014 Competition problems,
available at the following address (CEC-2014 folder), was
used:

http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared
Documents/Forms/AllItems.aspx

(last accessed on January 09, 2014).

A. Algorithm Complexity
The experiments were carried out using a Matlab® imple-

mentation of OptBees in a Windows 7 64 bits machine with
Intel(R) Core (TM) i7-3630QM CPU @ 2.40 GHz processor
and 16 GB of RAM, running Matlab® 8.1 R2013a. The sta-
tistics that describe the complexity of the algorithm are pre-
sented in Table I. ܶ0 is the time of the test program described
in [9] and does not depend on the dimension. ܶ1 corresponds
to the computing time for 200,000 evaluations of the function
18 of [9] and is calculated for the corresponding dimension.
Finally, ܶ2 is the complete computing time of the algorithm,
for a given dimension, with 200,000 evaluations as stopping
criterion when tackling benchmark function 18. ܶ2 is rec-
orded 5 times and ܶ2 is the mean of these five values.

TABLE I. ALGORITHM COMPLEXITY.

D ܶ0 ܶ1 ܶ2 (ܶ2 – ܶ1)/ܶ0
10 0.1293 s 1.4264 s 54.8171 s 412.9211
30 0.1293 s 1.5837 s 54.4716 s 409.0325
50 0.1293 s 1.9408 s 54.0424 s 402.7644
100 0.1293 s 3.4185 s 39.8139 s 281.4803

The ܶ2 values presented in Table I seem odd, specially

the cost reduction with the increase in dimension (the smaller
value was obtained for the greater dimension). This fact is
justified by the local search operator used in OptBees, which
was implemented using the MTS algorithm [7]. This operator
represents, in the worst case, an increase of 40·D function
evaluations per iteration. As one of the stopping criteria is the
number of function evaluations (see Section III.B), the use of
the local search operator can considerably reduce the total
number of iterations performed by the algorithm, because this
operator demands, in the worst case, 2 · D functions evalua-
tions reducing the total execution time compared to the ver-
sion without the local search step. To better demonstrate the
relation of the algorithm’s complexity with the dimension,
Table II presents the same information of Table I, but using
the OptBess without the local search step.

TABLE II. ALGORITHM COMPLEXITY.

D ܶ0 ܶ1 ܶ2 (ܶ2 – ܶ1)/ܶ0
10 0.1293 s 1.4264 s 86.5571 s 658.3968
30 0.1293 s 1.5837 s 148.7507 s 1138.1825
50 0.1293 s 1.9408 s 162.9534 s 1245.2637
100 0.1293 s 3.4185 s 196.2801 s 1491.5824

B. Results Presentation and Discussion
 The experimental methodology used followed the com-

petition guidelines [9], as presented below:

ܠ 2 · ሺܡ െ ሻܠ
 ܠ ܡ

2652

• The stopping criterion is a maximum number of eval-
uations of the objective function equals to D·104 (D is
the dimension of the problem) or an absolute error
between the best solution found and the global op-
timum less than 1·10-8 (in all experiments, only the
first criterion was considered).

• Solutions must be initialized randomly, using uniform
distributions and considering each problem range.

The values used for the parameters, defined in preliminary
tests and which were the same for D = 10, 30, 50 and 100,
were: minimum number of active bees nmin = 200; maximum
number of active bees nmax = 1500; average foraging effort
nmean = 20; social inhibition radius ρ varying linearly with the
number of function evaluations between 0.1 and 0.4 (these
numbers correspond to a percentage of the maximum possible
distance between two points in the problem’s search space);
minimum probability of a bee to be a recruiter pmin = 0.01;
percentage of non-recruiter bees that will be actually recruited
prec varying linearly with the number of function evaluations
between 0.5 and 1.

For each pair function/dimension, 51 executions have been
performed. Tables III to VI present, for each function, the
best, worst, median, mean and standard deviation of the 51
error values between the best solutions obtained in each ex-
ecution and the global optimum of each problem, for D = 10,
30, 50 and 100, respectively.

Considering the threshold of 1·10-8 [9] and analyzing the
mean and median of the error values (Tables III to VI), it is
possible to note that the algorithm succeeded only for func-
tion 8, for 10, 30, 50 and 100 dimensions.

Comparing the results obtained for functions 8 (Shifted
Rastrigin’s Function) and 9 (Shifted and Rotated Rastrigin’s
Function), it is possible to suggest that rotation degenerates
the performance of OptBees. This is only a speculation, be-
cause there is no more pairs for comparison in the set of
functions.

Another fact to be emphasized is that the algorithm did not
performed well for functions 1-3, although they are unimodal.
The mean and median of the error values for function 1were
the worst for all dimension values.

IV. CONCLUSIONS AND FUTURE RESEARCH
This paper presented OptBees, an algorithm for solving

continuous optimization problems inspired by the processes
of collective decision-making by bee colonies, and evaluated
it, in terms of global search, in all thirty minimization prob-
lems proposed for the Special Session & Competition on
Real-Parameter Single Objective Optimization at CEC-2014
(CEC-2014 Competition), which occurred in the IEEE Con-
gress on Evolutionary Computation (CEC) in 2014, consi-
dering 10, 30, 50 and 100 dimensions. It is important to
highlight that the same set of parameters was used in all ex-
periments. By doing this, the results obtained can be used as a
means to indirectly assess the robustness of the algorithm in
relation to its own parameters. Moreover, the values used may
serve as a reference for tuning the parameters of the algo-
rithm.

For future research, the authors plan to adapt OptBees for

solving clustering and classification problems. Finally, Opt-
Bees will be extended for solving constrained, multiobjective
and combinatorial optimization problems.

ACKNOWLEDGMENT
The authors thank Capes (Proc. n. 9315/13-6), CNPq,

MackPesquisa, Fapesp and Fapemig for the financial support.

REFERENCES
[1] E. Bonabeau, M. Dorigo, G. Theraulaz, “Swarm Intelligence: From

Natural to Artificial Intelligence”, NY: Oxford University Press,
NewYork, 1999.

[2] L. N. De Castro and J. Timmis, “Artificial Immune Systems: A New
Computational Intelligence Approach”, Springer-Verlag, 2002.

[3] J. Vesterstrøm, J. Riget, “Particle swarms extensions for improved
local, multimodal and dynamic search in numerical optimization”,
M.Sc. Thesis, May 2002.

[4] M. M. Millonas, “Swarms, phase transitions, and collective
intelligence”. In: Artificial life III. Addison-Wesley, Reading, pp.
417–445, 1994.

[5] R. D. Maia, L. N. de Castro, and W. M. Caminhas, “Bee colonies as
model for multimodal continuous optimization: the OptBees
algorithm”, In: Proc. of the 2012 IEEE World Congress on
Computational Intelligence (WCCI), pp. 3316–3323, 2012.

[6] R. D. Maia, L. N. de Castro, and W. M. Caminhas,
“Collective decision-making by bee colonies as model for optimization
- the OptBees algorithm”. Applied Mathematical Sciences, Vol. 7,
2013, no. 87, 4327–4351. http://dx.doi.org/10.12988/ams.2013.35271

[7] J. Gadau, and J. Fewell (eds.), “Organization of insect societies: from
genome to sociocomplexity”, Cambridge: Harward Univesity Press,
2009.

[8] Y. Tseng and C. Chen, “Multiple trajectory search for large scale global
optimization,” in Proc. of the 2008 IEEE Congress on Evol.
Computation, CEC (IEEE World Congress on Computational
Intelligence), 2008, pp. 3052–3059.

[9] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. -P Chen, C. M.
Chen, Z. Yang, “Benchmark functions for the CEC 2008 special
session and competition on large scale global optimization”. Tech
report, Nature Inspired Computation and Appl. Lab., USTC, China,
2007.

[10] J. J. Liang, B-Y. Qu, P. N. Suganthan, "Problem Definitions and
Evaluation Criteria for the CEC 2014 Special Session and Competition
on Single Objective Real-Parameter Numerical Optimiza-
tion", Technical Report 201311, Computational Intelligence Labora-
tory, Zhengzhou University, Zhengzhou China and Technical Report,
Nanyang Technological University, Singapore, December 2013.

2653

TABLE III. RESULTS FOR D = 10.

Function Best Worst Median Mean Standard Deviation
1 1.261675e+00 2.242969e+03 5.015910e+02 7.841906e+02 6.959889e+02
2 8.526513e-14 4.573520e-01 9.254413e-07 9.882615e-03 6.399495e-02
3 1.261924e-11 1.427346e+01 9.693412e-03 9.213070e-01 2.940135e+00
4 1.136868e-13 6.659546e+00 7.387894e-04 2.690817e+00 2.878214e+00
5 1.999909e+01 2.000000e+01 2.000000e+01 1.999997e+01 1.285257e-04
6 1.758454e-01 5.678854e+00 2.927143e+00 3.016623e+00 1.279700e+00
7 1.136868e-13 5.166064e-01 9.836176e-02 1.561593e-01 1.399044e-01
8 0.000000e+00 2.273737e-13 1.136868e-13 1.159160e-13 5.792541e-14
9 1.989918e+00 3.482345e+01 2.089412e+01 2.083557e+01 7.575815e+00

10 3.539870e+00 3.799565e+02 2.404790e+02 2.192256e+02 1.044594e+02
11 1.253307e+02 7.754740e+02 3.741770e+02 3.927480e+02 1.632871e+02
12 1.738923e-02 3.525246e-01 1.100401e-01 1.303986e-01 7.850468e-02
13 8.961890e-02 8.979782e-01 3.895233e-01 4.161576e-01 1.827992e-01
14 8.280050e-02 9.999562e-01 3.206315e-01 3.686513e-01 1.941139e-01
15 6.309924e-01 5.859628e+00 2.369609e+00 2.438871e+00 1.245568e+00
16 1.646939e+00 3.433115e+00 2.694207e+00 2.639589e+00 3.936085e-01
17 7.459763e+00 5.101045e+03 3.413958e+02 6.843999e+02 9.403682e+02
18 1.346650e+00 2.870701e+02 2.117447e+01 3.350430e+01 4.599888e+01
19 6.103675e-02 2.514376e+00 1.034284e+00 9.330416e-01 3.776804e-01
20 1.479826e-01 1.549413e+02 3.219025e+00 8.957556e+00 2.236439e+01
21 5.223295e-03 2.174918e+02 1.945200e+01 5.705615e+01 6.260637e+01
22 3.326307e-01 2.206911e+01 2.048040e+01 1.702468e+01 7.475871e+00
23 9.094947e-13 3.294575e+02 3.294575e+02 2.723515e+02 1.022859e+02
24 1.213682e+02 1.595922e+02 1.364543e+02 1.373780e+02 9.916332e+00
25 1.155083e+02 1.783876e+02 1.466656e+02 1.459907e+02 1.307333e+01
26 1.001178e+02 1.008855e+02 1.003349e+02 1.003964e+02 1.928558e-01
27 3.277668e+00 1.446173e+01 7.019261e+00 7.422917e+00 2.415321e+00
28 3.063329e+02 3.071682e+02 3.066547e+02 3.066715e+02 1.960580e-01
29 2.035722e+02 3.158630e+02 2.115400e+02 2.199635e+02 2.217210e+01
30 2.568144e+02 5.751023e+02 3.876258e+02 3.891652e+02 7.953363e+01

TABLE IV. RESULTS FOR D = 30.

Function Best Worst Median Mean Standard Deviation
1 2.128259e+03 2.015254e+06 1.449797e+04 8.568108e+04 3.042808e+05
2 1.421086e-13 7.335643e-11 3.979039e-13 3.317538e-12 1.140735e-11
3 2.074785e-11 2.661897e-01 3.280730e-06 8.413625e-03 3.770659e-02
4 1.591616e-12 7.923307e+01 1.780862e+01 1.256348e+01 1.370719e+01
5 1.999993e+01 2.000002e+01 2.000000e+01 2.000000e+01 1.020580e-05
6 9.971452e+00 2.540501e+01 1.610041e+01 1.637620e+01 3.440187e+00
7 5.684342e-13 1.840124e-01 2.712538e-02 3.745587e-02 3.819787e-02
8 2.273737e-13 5.684342e-13 3.410605e-13 3.633520e-13 1.042443e-13
9 7.362678e+01 2.367972e+02 1.353126e+02 1.371473e+02 3.241943e+01

10 5.937099e+02 1.659468e+03 1.067921e+03 1.041298e+03 2.521947e+02
11 1.425681e+03 4.058494e+03 2.755178e+03 2.716635e+03 5.683141e+02
12 6.907802e-02 3.457577e-01 1.727159e-01 1.812459e-01 6.117389e-02
13 2.248237e-01 9.068504e-01 5.580158e-01 5.608331e-01 1.474928e-01
14 1.939904e-01 1.159490e+00 3.196832e-01 3.995474e-01 2.311388e-01
15 4.593759e+00 4.694168e+01 1.086428e+01 1.271035e+01 6.923406e+00
16 9.349669e+00 1.224433e+01 1.090429e+01 1.090813e+01 6.906300e-01
17 6.958538e+02 2.444064e+05 1.265433e+04 2.740173e+04 4.041942e+04
18 4.689211e+01 3.507524e+03 1.220316e+02 1.955904e+02 4.767984e+02
19 4.532170e+00 1.293697e+01 7.862976e+00 7.898369e+00 1.878753e+00
20 4.311325e+01 3.273664e+03 6.701585e+02 8.526656e+02 7.788849e+02
21 1.494755e+03 8.526872e+04 1.065338e+04 1.743190e+04 1.821236e+04
22 2.336580e+01 5.001664e+02 2.450420e+02 2.320181e+02 9.249958e+01
23 3.145566e+02 3.148715e+02 3.147871e+02 3.147704e+02 6.655945e-02
24 2.274264e+02 2.462545e+02 2.367150e+02 2.361550e+02 5.471342e+00
25 2.007298e+02 2.014085e+02 2.009381e+02 2.009750e+02 1.686304e-01
26 1.003022e+02 1.011311e+02 1.005128e+02 1.005510e+02 1.723199e-01
27 4.012412e+02 4.048401e+02 4.020528e+02 4.024000e+02 9.765229e-01
28 4.036819e+02 4.586777e+02 4.277527e+02 4.313996e+02 1.524469e+01
29 2.125023e+02 2.175793e+02 2.160027e+02 2.159010e+02 1.176235e+00
30 3.539336e+02 8.591254e+02 5.785674e+02 5.928338e+02 9.868715e+01

2654

TABLE V. RESULTS FOR D = 50.

Function Best Worst Median Mean Standard Deviation
1 2.617628e+04 5.495306e+05 1.093822e+05 1.399895e+05 9.700890e+04
2 1.258329e-08 1.363155e-02 2.539062e-05 1.007515e-03 2.951449e-03
3 5.179866e-01 7.584468e+02 1.003823e+02 1.710623e+02 1.799747e+02
4 4.661160e-12 1.399486e+02 3.307430e+01 3.887269e+01 3.450702e+01
5 1.999999e+01 2.000016e+01 2.000000e+01 2.000001e+01 2.596923e-05
6 1.863885e+01 4.078708e+01 3.002901e+01 3.038208e+01 4.527025e+00
7 1.250555e-12 2.192783e-01 9.857285e-03 2.382861e-02 3.930165e-02
8 3.410605e-13 1.364242e-12 6.821210e-13 6.709753e-13 1.985519e-13
9 1.452637e+02 3.532047e+02 2.467485e+02 2.470609e+02 4.863315e+01

10 1.069273e+03 2.843562e+03 1.780572e+03 1.839321e+03 3.424270e+02
11 3.375450e+03 6.602790e+03 5.024166e+03 5.132490e+03 6.832365e+02
12 7.808634e-02 3.196506e-01 1.540429e-01 1.607579e-01 4.687016e-02
13 3.561553e-01 8.149059e-01 5.944466e-01 6.046181e-01 1.159827e-01
14 2.312876e-01 1.073320e+00 3.812685e-01 4.731432e-01 2.341573e-01
15 1.213786e+01 6.204396e+01 2.405014e+01 2.622750e+01 9.193322e+00
16 1.734696e+01 2.027107e+01 1.897125e+01 1.891172e+01 8.794893e-01
17 3.878289e+03 1.653589e+05 2.027864e+04 3.259546e+04 3.515002e+04
18 8.293306e+01 3.798608e+03 2.370893e+02 6.842287e+02 1.085504e+03
19 9.513997e+00 2.184479e+01 1.516925e+01 1.521910e+01 2.781164e+00
20 5.367037e+02 8.095507e+03 1.486798e+03 1.928721e+03 1.457190e+03
21 2.813547e+03 1.712816e+05 5.459435e+04 6.008911e+04 4.130791e+04
22 2.677056e+02 1.232272e+03 7.527340e+02 7.583594e+02 2.006227e+02
23 3.375432e+02 3.387941e+02 3.381861e+02 3.381523e+02 2.832484e-01
24 2.594103e+02 2.788712e+02 2.700276e+02 2.696632e+02 3.255931e+00
25 2.012042e+02 2.043458e+02 2.020610e+02 2.021852e+02 6.086605e-01
26 1.003582e+02 1.008554e+02 1.005482e+02 1.005664e+02 1.212595e-01
27 4.160825e+02 1.492730e+03 1.164281e+03 1.138903e+03 2.158727e+02
28 4.024549e+02 5.730176e+02 4.314004e+02 4.446973e+02 3.813471e+01
29 2.258692e+02 2.369583e+02 2.318918e+02 2.319770e+02 2.384018e+00
30 5.884245e+02 1.061502e+03 8.277122e+02 8.182176e+02 1.292997e+02

TABLE VI. RESULTS FOR D = 100.

Function Best Worst Median Mean Standard Deviation
1 1.329004e+05 5.777974e+05 2.821950e+05 2.998119e+05 1.002993e+05
2 5.345442e-03 1.460913e+02 1.395706e+00 1.089401e+01 2.921521e+01
3 2.965819e+01 3.794404e+03 4.760710e+02 7.501311e+02 7.863212e+02
4 3.994568e+00 2.915990e+02 1.445005e+02 1.423510e+02 5.475983e+01
5 2.000000e+01 2.000010e+01 2.000000e+01 2.000001e+01 2.493669e-05
6 5.710250e+01 9.014743e+01 7.093542e+01 7.146720e+01 7.729229e+00
7 3.069545e-12 2.712538e-02 6.593837e-12 5.890736e-03 8.046122e-03
8 9.094947e-13 2.273737e-12 1.364242e-12 1.424429e-12 3.045050e-13
9 4.745929e+02 9.302746e+02 6.467167e+02 6.656778e+02 9.791608e+01

10 2.847064e+03 4.978270e+03 4.382945e+03 4.256601e+03 4.299952e+02
11 9.494610e+03 1.484734e+04 1.226856e+04 1.236003e+04 1.110371e+03
12 1.456756e-01 3.511581e-01 2.254343e-01 2.316516e-01 5.078015e-02
13 4.002629e-01 7.983901e-01 5.850623e-01 5.896901e-01 8.163608e-02
14 1.807082e-01 2.710252e-01 2.278829e-01 2.269719e-01 2.270765e-02
15 4.080465e+01 1.253867e+02 6.288085e+01 6.593136e+01 1.829844e+01
16 3.801807e+01 4.342127e+01 4.099111e+01 4.090655e+01 1.173099e+00
17 2.170690e+04 2.755429e+05 8.997073e+04 1.094500e+05 6.739481e+04
18 2.738600e+02 6.594198e+03 5.666371e+02 1.593554e+03 2.110345e+03
19 2.888583e+01 1.118899e+02 5.210050e+01 5.283433e+01 1.564400e+01
20 3.430015e+03 2.011230e+04 9.705619e+03 1.062428e+04 4.235490e+03
21 5.585455e+04 9.653459e+05 2.698928e+05 3.107895e+05 1.596048e+05
22 1.238000e+03 2.595178e+03 2.007131e+03 2.027456e+03 3.309572e+02
23 3.451288e+02 3.490721e+02 3.459302e+02 3.462065e+02 9.282852e-01
24 3.313020e+02 3.622777e+02 3.554554e+02 3.489227e+02 1.049998e+01
25 2.060476e+02 2.119307e+02 2.080475e+02 2.081813e+02 1.124885e+00
26 1.004603e+02 1.007565e+02 1.006335e+02 1.006235e+02 6.835259e-02
27 1.728359e+03 2.559276e+03 2.175416e+03 2.160226e+03 1.671294e+02
28 5.478686e+02 7.346008e+02 6.056181e+02 6.137071e+02 4.041927e+01
29 2.671713e+02 2.821926e+02 2.748931e+02 2.748131e+02 3.274910e+00
30 2.174755e+03 3.280027e+03 2.890718e+03 2.855360e+03 2.420633e+0

2655

